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LETTER TO THE EDITOR

AlphaFold-latest: revolutionizing protein 
structure prediction for comprehensive 
biomolecular insights and therapeutic 
advancements
Henrietta Onyinye Uzoeto1,2, Samuel Cosmas3, Toluwalope Temitope Bakare4,5 and 
Olanrewaju Ayodeji Durojaye6,7,8*   

Abstract 

Breakthrough achievements in protein structure prediction have occurred recently, mostly due to the advent 
of sophisticated machine learning methods and significant advancements in algorithmic approaches. The most 
recent version of the AlphaFold model, known as “AlphaFold-latest,” which expands the functionalities of the ground-
breaking AlphaFold2, is the subject of this article. The goal of this novel model is to predict the three-dimensional 
structures of various biomolecules, such as ions, proteins, nucleic acids, small molecules, and non-standard residues. 
We demonstrate notable gains in precision, surpassing specialized tools across multiple domains, including protein–
ligand interactions, protein–nucleic acid interactions, and antibody–antigen predictions. In conclusion, this AlphaFold 
framework has the ability to yield atomically-accurate structural predictions for a variety of biomolecular interactions, 
hence facilitating advancements in drug discovery.
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Dear Editor,

Recent advances in protein structure prediction have 
witnessed groundbreaking developments, largely pro-
pelled by the emergence of advanced machine learning 
techniques and substantial improvements in algorithmic 
approaches [1–3]. Key highlights in this dynamic field 
include the release of AlphaFold2 by DeepMind which 
marked a watershed moment in protein structure predic-
tion [3]. Leveraging deep learning methodologies, Alpha-
Fold demonstrated remarkable accuracy, often rivaling 
experimental techniques such as X-ray crystallography 
and cryo-electron microscopy [3]. This success has paved 
the way for subsequent iterations, such as AlphaFold-lat-
est, with expanded capabilities covering a broader range 
of biomolecular interactions.

The field has also seen a diversification of approaches 
beyond traditional methods. Integrating evolutionary 

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Beni-Suef University Journal of
Basic and Applied Sciences

*Correspondence:
Olanrewaju Ayodeji Durojaye
lanredurojaye@mail.ustc.edu.cn
1 Department of Therapy and Applied Science, Federal University of Allied 
Health Sciences, Enugu, Enugu State, Nigeria
2 Department of Biological Sciences, Coal City University, Emene, Enugu 
State, Nigeria
3 Department of Biochemistry, University of Nigeria, Nsukka, Enugu State, 
Nigeria
4 Department of Nursing Sciences, Babcock University, Ilishan-Remo, 
Ogun State, Nigeria
5 Nursing Department, The Alpha Assisted Reproductive Klinic, Ikoyi, 
Lagos State, Nigeria
6 MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, 
Hefei National Laboratory for Physical Sciences at the Microscale, 
University of Science and Technology of China, Hefei 230027, Anhui, 
China
7 School of Life Sciences, Department of Molecular and Cell Biology, 
University of Science and Technology of China, Hefei, China
8 Department of Chemical Sciences, Coal City University, Emene, Enugu 
State, Nigeria

http://orcid.org/0000-0001-8988-8154
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43088-024-00503-y&domain=pdf


Page 2 of 5Uzoeto et al. Beni-Suef Univ J Basic Appl Sci           (2024) 13:46 

information, co-evolution analysis, and deep learning, 
these approaches capitalize on large-scale genomic data 
and advancements in computational power [4]. Such 
diversity allows for more robust predictions across vari-
ous protein classes and interaction types. Recent models 
exhibit enhanced accuracy in predicting intricate pro-
tein structures. They showcase improved generalization 
capabilities, allowing accurate predictions even for pro-
teins with low homology to training data. This addresses 
a longstanding challenge in the field, making structural 
predictions applicable to a more extensive range of bio-
logical entities [5].

Language model has become a household phrase. 
Yet, what many may not realize is the profound impact 
language models have had within the realm of protein 
research [6, 7]. Among these advancements stand the 
illustrious AlphaFold2, renowned for its uncanny abil-
ity to accurately predict protein structures solely from 
amino acid sequences, employing an attention-based 
transformer architecture [8]. This transformative archi-
tecture, pioneered by Google in 2017, marked a paradigm 
shift in natural language processing, enabling machines 
to understand and process language with unprecedented 
nuance and context. Indeed, the sequence–structure–
function paradigm of proteins lies at the very heart of 
molecular biology, serving as the linchpin for under-
standing biological mechanisms. By harnessing language 
models borrowed from the domain of computer science, 
we gain a powerful lens through which to explore the 
intricate relationship between protein sequences, struc-
tures, and functions [6].

In the domain of protein sciences, language models 
serve a dual purpose: They excel in protein representation 
and facilitate protein design. By encoding proteins into a 
format intelligible to machines, language models pave the 
way for enhanced understanding of their structural and 
functional properties. Moreover, they empower research-
ers to venture into the realm of protein design, leverag-
ing computational prowess to engineer proteins with 
tailored functionalities for a myriad of applications [9]. 
In essence, the marriage of language models and protein 
sciences heralds a new era of discovery and innovation, 
where the boundaries between disciplines blur, and the 
vast potential of interdisciplinary collaboration unfolds. 
As we continue to unlock the secrets encoded within the 
language of proteins, the transformative impact of lan-
guage models will undoubtedly continue to reverberate 
throughout the scientific community and beyond [6, 9].

Advancements extend beyond single-chain protein 
structures to encompass protein–protein interactions, 
protein–ligand binding, and nucleic acid interactions. 
Models such as AlphaFold-multimer and AlphaFold-
latest showcase the ability to predict structures of 

complexes, including non-protein elements such as 
nucleic acids and small molecules [10]. This expansion 
broadens the scope for studying the intricacies of bio-
molecular assemblies. The integration of experimental 
data, such as cryo-EM maps and NMR (nuclear magnetic 
resonance) data, with computational predictions further 
refines and validates models. This synergistic approach 
enhances the accuracy and reliability of predicted struc-
tures, providing a more comprehensive understanding of 
protein conformations [10]. The high accuracy achieved 
by recent models holds significant implications for drug 
discovery. Virtual screening and structure-based drug 
design benefit from reliable predictions of protein–ligand 
interactions. This has the potential to expedite the iden-
tification of drug candidates and streamline the drug 
development process [11].

Several recent advances emphasize open science and 
collaborative efforts. Initiatives like the Critical Assess-
ment of Structure Prediction (CASP) provide a plat-
form for evaluating and comparing different models. 
Open-sourcing models and datasets foster transparency 
and accelerate progress across the scientific community 
[4]. These recent strides in protein structure prediction 
reflect a transformative era in computational biology. 
These advances not only push the boundaries of pre-
diction accuracy but also open up new possibilities for 
understanding the complexities of biomolecular interac-
tions, accelerating drug discovery, and contributing to a 
more comprehensive knowledge of cellular processes. 
The integration of diverse methodologies and ongo-
ing collaborative efforts position the field for continued 
breakthroughs in the coming years [12].

Further in this piece, we highlight the progress on 
the latest iteration of the AlphaFold model, termed 
“AlphaFold-latest,” which extends the capabilities of the 
groundbreaking AlphaFold2 [13]. This new model aims 
to predict the 3D structures of a wide range of biomol-
ecules, including proteins, nucleic acids, small molecules, 
ions, and modified residues. This development highlights 
significant improvements in accuracy, outperforming 
specialized tools in various categories, such as protein–
ligand interactions, protein–nucleic acid interactions, 
and antibody–antigen predictions, while the outcome 
indicates the potential for achieving atomically-accurate 
structure predictions for diverse biomolecular interac-
tions within the AlphaFold framework. This expanded 
scope is crucial for understanding the full complexity of 
biological systems [13].

The reported performance of AlphaFold-latest is high-
lighted across various benchmarks, demonstrating supe-
rior accuracy compared to the previous models and 
specialized tools. The model excels in ligand docking, 
protein–protein interactions, and interactions involving 
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nucleic acids [13]. The results showcase the model’s abil-
ity to predict the 3D structures of different biomolecular 
entities, including proteins, nucleic acids, ligands, and 
modified residues, while also emphasizing the model’s 
generalizability and potential applications in diverse sci-
entific domains. AlphaFold-latest’s success in predicting 
therapeutically relevant structures, including covalently 
bound ligands and structures with unique folds, under-
scores its versatility. The ability to make accurate pre-
dictions for challenging drug targets suggests practical 
implications for drug design and therapeutic inter-
ventions [13]. Following this segment is some insights 
into the realm of biomolecular discovery, guided by 
the remarkable capabilities of AlphaFold-latest and its 
unprecedented precision in predicting protein structures 
and its potential in therapeutic advancements.

Unprecedented accuracy AlphaFold-latest, the latest 
iteration of DeepMind’s groundbreaking protein folding 
algorithm, stands as a pinnacle of achievement in predic-
tive accuracy. By leveraging a sophisticated blend of deep 
learning and evolutionary principles, AlphaFold-latest 
has demonstrated unparalleled precision in predicting 
protein structures from their amino acid sequences. This 
level of accuracy transcends previous limitations, offering 
researchers a reliable blueprint of protein structures with 
unprecedented fidelity [13].

Expeditious insights Traditional methods of experi-
mental protein structure determination, such as X-ray 
crystallography and cryo-electron microscopy, are often 
time-consuming and resource-intensive. In contrast, 
AlphaFold-latest expedites the process by swiftly generat-
ing accurate structural models, thereby accelerating the 
pace of biomolecular research. This rapid turnaround 
time empowers scientists to glean insights into the struc-
ture–function relationships of proteins more efficiently, 
unlocking a deeper understanding of their biological 
roles and mechanisms of action [13].

Facilitating drug discovery The ability to accurately 
predict protein structures has profound implications for 
drug discovery and development. With AlphaFold-latest, 
researchers can now elucidate the three-dimensional 
architectures of key drug targets with unprecedented 
precision. This enables rational drug design, wherein 
therapeutics can be tailored to interact more effectively 
with their target proteins, thereby enhancing efficacy and 
minimizing off-target effects. Additionally, AlphaFold-
latest aids in the identification of druggable binding sites 
and facilitates virtual screening of small molecule com-
pounds, expediting the process of drug candidate selec-
tion [13].

Insights into disease mechanisms Many diseases, 
ranging from cancer to neurodegenerative disorders, 
are rooted in aberrant protein function. By accurately 

predicting protein structures, AlphaFold-latest provides 
invaluable insights into the molecular underpinnings of 
disease. Researchers can elucidate how mutations alter 
protein structures and functions, unraveling the intricate 
mechanisms driving pathogenesis. This deeper under-
standing of disease mechanisms lays the groundwork 
for the development of targeted therapies and precision 
medicine approaches [13].

Empowering structural biology AlphaFold-latest 
democratizes access to structural biology insights, mak-
ing advanced computational techniques accessible to 
researchers worldwide. Its open-access framework and 
user-friendly interface empower scientists from diverse 
backgrounds to explore protein structures and inter-
rogate biomolecular phenomena with unprecedented 
granularity. This democratization of structural biol-
ogy catalyzes collaboration and innovation, fostering a 
vibrant scientific community poised to tackle the most 
pressing challenges in biology and medicine [13].

The ongoing development of AlphaFold-latest holds 
promise for the future of computational structural biol-
ogy. The model’s current capabilities, especially in pre-
dicting diverse biomolecular interactions, open avenues 
for advancing research in understanding biological pro-
cesses and designing novel therapeutics [13]. Future 
research could focus on refining the model further and 
extending its applications. Continuous refinement of 
AlphaFold-latest could involve addressing specific chal-
lenges, such as improving accuracy in large complexes 
or enhancing predictions for specific classes of biomole-
cules. Expansion to cover additional types of interactions 
or structural features may broaden its utility. Integrating 
experimental data into the model training process could 
also enhance accuracy and reliability. Combining com-
putational predictions with experimental results may 
provide a more comprehensive understanding of biomo-
lecular structures and interactions (Fig. 1).

1  Future perspective
Looking ahead, recent strides in protein structure pre-
diction signal a transformative era poised to reshape 
the landscape of biomolecular research and therapeutic 
development. Fueled by advancements in machine learn-
ing techniques and algorithmic approaches, the field is 
witnessing unprecedented progress, propelled by seminal 
innovations such as DeepMind’s AlphaFold2 [3].

The release of AlphaFold2 marked a monumental 
milestone in protein structure prediction, revolutioniz-
ing the field with its remarkable accuracy. By harnessing 
the power of deep learning methodologies, AlphaFold2 
overcame previous limitations, rivaling experimen-
tal techniques such as X-ray crystallography and cryo-
electron microscopy in predictive precision [3, 14]. This 
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breakthrough laid the foundation for subsequent itera-
tions, including the highly anticipated AlphaFold-latest, 
which promises expanded capabilities across a broader 
spectrum of biomolecular interactions [13].

Moreover, the landscape of protein structure prediction 
has evolved to embrace a diverse array of methodologies 
beyond traditional approaches. Integrating evolutionary 
information, co-evolution analysis, and deep learning, 
these innovative strategies capitalize on vast genomic 
data and computational resources, enabling more robust 
predictions across diverse protein classes and interaction 
types [13, 15].

Crucially, recent models exhibit enhanced accuracy 
and generalization capabilities, addressing long-standing 
challenges in the field and making structural predictions 
applicable to a wider range of biological entities. This 
progress extends beyond single-chain protein structures 
to encompass complex biomolecular assemblies, includ-
ing protein–protein interactions, protein–ligand binding, 
and nucleic acid interactions [16]. Furthermore, the inte-
gration of experimental data, such as cryo-EM maps and 
NMR data, with computational predictions has refined 
and validated models, providing a more comprehensive 
understanding of protein conformations. This syner-
gistic approach enhances the accuracy and reliability of 
predicted structures, paving the way for accelerated drug 
discovery efforts and therapeutic interventions [17].

The accurate prediction of protein–ligand interactions 
has direct implications for drug discovery. Future applica-
tions may involve leveraging AlphaFold-latest for virtual 
screening of potential drug candidates, optimizing lead 
compounds, and designing molecules with specific bind-
ing properties. Furthermore, as the model continues to 
advance, there is potential for tailoring predictions based 
on individual genetic variations. Personalized medicine 

approaches could benefit from accurately predicting how 
specific individuals respond to certain drug molecules 
or therapies. Beyond applications in drug discovery, 
AlphaFold-latest can contribute to fundamental biologi-
cal research by providing detailed structural insights into 
diverse biomolecular interactions. This includes unrave-
ling the intricacies of cellular processes and pathways.

In conclusion, the progress on AlphaFold-latest rep-
resents a significant leap forward in the field of compu-
tational structural biology. The model’s accuracy and 
expanded scope offer exciting possibilities for both 
applied and fundamental research, with the potential 
to impact drug development, personalized medicine, 
and our understanding of complex biological systems. 
Indeed, the future of computational structural biology 
holds great promise, with initiatives like AlphaFold-latest 
poised to push the boundaries of prediction accuracy 
and open new frontiers in understanding biomolecular 
interactions. As refinement and expansion continue upon 
these groundbreaking advancements, the integration of 
diverse methodologies and collaborative efforts will drive 
further breakthroughs, propelling the field toward new 
horizons of discovery and innovation.

Abbreviations
CASP  Critical Assessment of Structure Prediction
NMR  Nuclear magnetic resonance

Acknowledgements
Not applicable.

Author contributions
All authors contributed equally to the writing of this article. All authors have 
read and approved the manuscript.

Funding
Authors received no funding for this project from any organization.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Authors declare no competing interest.

Received: 16 December 2023   Accepted: 13 May 2024

References
 1. Bryant P, Pozzati G, Zhu W, Shenoy A, Kundrotas P, Elofsson A (2022) 

Predicting the structure of large protein complexes using AlphaFold and 

Fig. 1 Chat illustrating potential functionalities of AlphaFold-latest 
which represents a watershed moment in the field of protein 
structure prediction, catalyzing a paradigm shift that holds 
profound implications for comprehensive biomolecular insights 
and therapeutic advancements



Page 5 of 5Uzoeto et al. Beni-Suef Univ J Basic Appl Sci           (2024) 13:46  

Monte Carlo tree search. Nat Commun 13(1):6028. https:// doi. org/ 10. 
1038/ s41467- 022- 33729-4

 2. Durojaye OA, Yekeen AA, Idris MO, Okoro NO, Odiba AS, Nwanguma BC 
(2024) Investigation of the MDM2-binding potential of de novo designed 
peptides using enhanced sampling simulations. Int J Biol Macromol 
26:131840. https:// doi. org/ 10. 1016/j. ijbio mac. 2024. 131840

 3. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunya-
suvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl 
SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back 
T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, 
Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu 
K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction 
with AlphaFold. Nature 596(7873):583–589. https:// doi. org/ 10. 1038/ 
s41586- 021- 03819-2

 4. Liu J, Guo Z, Wu T, Roy RS, Quadir F, Chen C, Cheng J (2023) Enhancing 
AlphaFold-multimer-based protein complex structure prediction with 
MULTICOM in CASP15. Commun Chem 6(1):188. https:// doi. org/ 10. 1101/ 
2023. 05. 16. 541055

 5. O’Reilly FJ, Graziadei A, Forbrig C, Bremenkamp R, Charles K, Lenz S, Elf-
mann C, Fischer L, Stülke J, Rappsilber J (2023) Protein complexes in cells 
by AI-assisted structural proteomics. Mol Syst Biol 19(4):e11544. https:// 
doi. org/ 10. 15252/ msb. 20231 1544

 6. Huang T, Li Y (2023) Current progress, challenges, and future perspectives 
of language models for protein representation and protein design. Inno-
vation (Camb) 4(4):100446. https:// doi. org/ 10. 1016/j. xinn. 2023. 100446. 
PMID: 37485 078; PMCID: PMC10 362512

 7. Vu MH, Akbar R, Robert PA, Swiatczak B, Sandve GK, Greiff V, Haug DTT 
(2023) Linguistically inspired roadmap for building biologically reliable 
protein language models. Nat Mach Intell 5(5):485–496

 8. Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, Bridgland 
A, Cowie A, Meyer C, Laydon A, Velankar S, Kleywegt GJ, Bateman 
A, Evans R, Pritzel A, Figurnov M, Ronneberger O, Bates R, Kohl SAA, 
Potapenko A, Ballard AJ, Romera-Paredes B, Nikolov S, Jain R, Clancy E, 
Reiman D, Petersen S, Senior AW, Kavukcuoglu K, Birney E, Kohli P, Jumper 
J, Hassabis D (2021) Highly accurate protein structure prediction for the 
human proteome. Nature 596(7873):590–596. https:// doi. org/ 10. 1038/ 
s41586- 021- 03828-1

 9. Unsal S, Atas H, Albayrak M, Turhan K, Acar AC, Doğan T (2022) Learning 
functional properties of proteins with language models. Nat Mach Intell 
4(3):227–245

 10. Zhu W, Shenoy A, Kundrotas P, Elofsson A (2023) Evaluation of AlphaFold-
Multimer prediction on multi-chain protein complexes. Bioinformatics 
39(7):btad424. https:// doi. org/ 10. 1093/ bioin forma tics/ btad4 24

 11. Johansson-Åkhe I, Wallner B (2022) Improving peptide-protein dock-
ing with AlphaFold-Multimer using forced sampling. Front Bioinform 
26(2):959160. https:// doi. org/ 10. 3389/ fbinf. 2022. 959160

 12. Chen B, Xie Z, Qiu J, Ye Z, Xu J, Tang J (2023) Improved the heterodimer 
protein complex prediction with protein language models. Brief Bioin-
form 24(4):221. https:// doi. org/ 10. 1093/ bib/ bbad2 21

 13. Google DeepMind AlphaFold Team and Isomorphic Labs Team. Perfor-
mance and structural coverage of the latest, in-development AlphaFold 
model. https:// stora ge. googl eapis. com/ deepm ind- media/ DeepM ind. 
com/ Blog/a- glimp se- of- the- next- gener ation- of- alpha fold/ alpha fold_ 
latest_ oct20 23. pdf. Accessed 25 Nov 2023

 14. Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, 
Wang J, Cong Q, Kinch LN, Schaeffer RD, Millán C, Park H, Adams C, Glass-
man CR, DeGiovanni A, Pereira JH, Rodrigues AV, van Dijk AA, Ebrecht AC, 
Opperman DJ, Sagmeister T, Buhlheller C, Pavkov-Keller T, Rathinaswamy 
MK, Dalwadi U, Yip CK, Burke JE, Garcia KC, Grishin NV, Adams PD, Read RJ, 
Baker D (2021) Accurate prediction of protein structures and interactions 
using a three-track neural network. Science 373:871–876

 15. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky 
MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) 
Glide: a new approach for rapid, accurate docking and scoring. 1. Method 
and assessment of docking accuracy. J Med Chem 47:1739–1749

 16. Hekkelman ML, de Vries I, Joosten RP, Perrakis A (2023) AlphaFill: enriching 
AlphaFold models with ligands and cofactors. Nat Methods 20:205–213

 17. Holcomb M, Chang Y-T, Goodsell DS, Forli S (2023) Evaluation of Alpha-
Fold2 structures as docking targets. Protein Sci 32:e4530

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1038/s41467-022-33729-4
https://doi.org/10.1038/s41467-022-33729-4
https://doi.org/10.1016/j.ijbiomac.2024.131840
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1101/2023.05.16.541055
https://doi.org/10.1101/2023.05.16.541055
https://doi.org/10.15252/msb.202311544
https://doi.org/10.15252/msb.202311544
https://doi.org/10.1016/j.xinn.2023.100446.PMID:37485078;PMCID:PMC10362512
https://doi.org/10.1016/j.xinn.2023.100446.PMID:37485078;PMCID:PMC10362512
https://doi.org/10.1038/s41586-021-03828-1
https://doi.org/10.1038/s41586-021-03828-1
https://doi.org/10.1093/bioinformatics/btad424
https://doi.org/10.3389/fbinf.2022.959160
https://doi.org/10.1093/bib/bbad221
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/a-glimpse-of-the-next-generation-of-alphafold/alphafold_latest_oct2023.pdf
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/a-glimpse-of-the-next-generation-of-alphafold/alphafold_latest_oct2023.pdf
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/a-glimpse-of-the-next-generation-of-alphafold/alphafold_latest_oct2023.pdf

	AlphaFold-latest: revolutionizing protein structure prediction for comprehensive biomolecular insights and therapeutic advancements
	Abstract 
	1 Future perspective
	Acknowledgements
	References


