Skip to main content

Table 1 Numerical results of problem one at an exact value \(\alpha = 1\)

From: Modified homotopy perturbation method and its application to analytical solitons of fractional-order Korteweg–de Vries equation

\(t\)

Value of (x)

Numerical solution

Exact solution

Abs error

\(t = 0\)

0

 − 0.16667

 − 0.16667

0

0.1

 − 0.1583333334

 − 0.1583333333

\(1 \times 10^{ - 10}\)

0.2

 − 0.1500000000

 − 0.1500000000

0

0.3

 − 0.1416666667

 − 0.1416666667

0

0.4

 − 0.1333333334

 − 0.1333333333

\(1 \times 10^{ - 10}\)

0.5

 − 0.1250000000

 − 0.1250000000

0

\(t = 0.2\)

0

 − 0.1851833335

 − 0.1851851852

0.0000018517

0.1

 − 0.1759241666

 − 0.1759259259

0.0000017593

0.2

 − 0.1666650000

 − 0.1666666667

0.0000016667

0.3

 − 0.1574058335

 − 0.1574074074

0.0000015739

0.4

 − 0.1481466666

 − 0.1481481481

0.0000014815

0.5

 − 0.1388875000

 − 0.1388888889

0.0000013889

\(t = 0.4\)

0

 − 0.2082666667

 − 0.2083333334

0.0000666667

0.1

 − 0.1978533334

 − 0.1979166667

0.0000633333

0.2

 − 0.1874400000

 − 0.1875000001

0.0000600001

0.3

 − 0.1770266667

 − 0.1770833334

0.0000566667

0.4

 − 0.1666133334

 − 0.1666666667

0.0000533333

0.5

 − 0.1562000000

 − 0.1562500000

0.0000500000

\(t = 0.6\)

0

 − 0.2375166667

 − 0.2380952380

0.0005785713

0.1

 − 0.2256408334

 − 0.2261904761

0.0005496427

0.2

 − 0.2137650000

 − 0.2142857142

0.0005207142

0.3

 − 0.2018891667

 − 0.2023809523

0.0004917856

0.4

 − 0.1900133334

 − 0.1904761904

0. 0,004,628,570

0.5

 − 0.1781375000

 − 0.1785714285

0.0004339285

\(t = 0.8\)

0

 − 0.2749333335

 − 0.2777777778

0.0028444443

0.1

 − 0.2611866666

 − 0.2638888889

0.0027022223

0.2

 − 0.2474400000

 − 0.2500000000

0.0025600000

0.3

 − 0.2336933335

 − 0.2361111111

0.0024177776

0.4

 − 0.2199466666

 − 0.2222222222

0.0022755556

0.5

 − 0.2062000000

 − 0.2083333334

0.0021333334

\(t = 1.0\)

0

 − 0.3229166667

 − 0.3333333334

0.0104166667

0.1

 − 0.3067708334

 − 0.3166666667

0.0098958333

0.2

 − 0.2906250000

 − 0.3000000001

0.0093750001

0.3

 − 0.2744791667

 − 0.2833333334

0.0088541667

0.4

 − 0.2583333334

 − 0.2666666667

0.0083333333

0.5

 − 0.2421875000

 − 0.2500000000

0.0078125000

\(t = 1.2\)

0

 − 0.3842666667

 − 0.4166666666

0.0323999999

0.1

 − 0.3650533334

 − 0.3958333333

0.0307799999

0.2

 − 0.3458400000

 − 0.3749999999

0.0291599999

0.3

 − 0.3266266667

 − 0.3541666666

0.0275399999

0.4

 − 0.3074133334

 − 0.3333333333

0.0259199999

0.5

 − 0.2882000000

 − 0.3125000000

0.0243000000

\(t = 1.4\)

0

 − 0.4621833335

 − 0.5555555556

0.0933722221

0.1

 − 0.4390741666

 − 0.5277777778

0.0887036112

0.2

 − 0.4159650000

 − 0.5000000000

0.0840350000

0.3

 − 0.3928558335

 − 0.4722222223

0.0793663888

0.4

 − 0.3697466666

 − 0.4444444445

0.0746977779

0.5

 − 0.3466375000

 − 0.4166666667

0.0700291667

\(t = 1.6\)

0

 − 0.5602666667

 − 0.8333333334

0.2730666667

0.1

 − 0.5322533334

 − 0.7916666667

0.2594133333

0.2

 − 0.5042400000

 − 0.7500000001

0.2457600001

0.3

 − 0.4762266667

 − 0.7083333334

0.2321066667

0.4

 − 0.4482133334

 − 0.6666666667

0.2184533333

0.5

 − 0.4202000000

 − 0.6250000000

0.2048000000

\(t = 1.8\)

0

 − 0.6825166667

 − 1.666666667

0.9841500003

0.1

 − 0.6483908334

 − 1.583333333

0.9349424996

0.2

 − 0.6142650000

 − 1.500000000

0.8857350000

0.3

 − 0.5801391667

 − 1.416666667

0.8365275003

0.4

 − 0.5460133334

 − 1.333333333

0.7873199996

0.5

 − 0.5118875000

 − 1.250000000

0.7381125000

  1. Table shows the approximate solution, exact solution, and absolute errors computed at a time-varying level of \(x\). We observed that the approximate result deviates from the exact solutions as the value increases. For example, the absolute error observed when \(t = 0\) is of order \(\times 10^{ - 10}\); at \(t = 1\) the absolute error is in order of \(\times 10^{ - 3}\) to \(\times 10^{ - 2}\); and at \(t = 1.8\) the absolute error is in order of \(\times 10^{ - 1}\).