Skip to main content

Table 3 Numerical results of problem three at an exact value \(\alpha = 1\)

From: Modified homotopy perturbation method and its application to analytical solitons of fractional-order Korteweg–de Vries equation

\(t\)

Value of (x)

Numerical solution

Exact solution

Abs error

\(t = 0\)

 − 0.04

2.668682966

2.668682966

0

 − 0.02

1.334341483

1.334341483

0

0

0

0

0

0.02

 − 1.334341483

 − 1.334341483

0

0.04

 − 2.668682966

 − 2.668682966

0

\(t = 0.02\)

 − 0.04

3.031965441

3.032594279

0.000628838

 − 0.02

1.515982720

1.516297139

0.000314419

0

0

0

0

0.02

 − 1.515982720

 − 1.516297139

0.000314419

0.04

 − 3.031965441

 − 3.032594279

0.000628838

\(t = 0.04\)

 − 0.04

3.499774890

3.511424956

0.011650066

 − 0.02

1.749887445

1.755712478

0.005825033

0

0

0

0

0.02

 − 1.749887445

 − 1.755712478

0.005825033

0.04

 − 3.499774890

 − 3.511424956

0.011650066

\(t = 0.06\)

 − 0.04

4.099780218

4.169817134

0.070036916

 − 0.02

2.049890109

2.084908567

0.035018458

0

0

0

0

0.02

 − 2.049890109

 − 2.084908567

0.035018458

0.04

 − 4.099780218

 − 4.169817134

0.070036916

\(t = 0.08\)

 − 0.04

4.859650332

5.132082627

0.272432295

 − 0.02

2.429825166

2.566041313

0.136216147

0

0

0

0

0.02

 − 2.429825166

 − 2.566041313

0.136216147

0.04

 − 4.859650332

 − 5.132082627

0.272432295

\(t = 0.10\)

 − 0.04

5.807054134

6.671707415

0.864653281

 − 0.02

2.903527067

3.335853708

0.432326641

0

0

0

0

0.02

 − 2.903527067

 − 3.335853708

0.432326641

0.04

 − 5.807054134

 − 6.671707415

0.864653281

  1. As occurred in the first two problems, the data in Table 3 indicate that the absolute error progressively becomes worse as the value of t increases. It was discovered that the error initially increases from 0 to an order that significantly increases from \(\times 10^{ - 2}\) to \(\times 10^{ - 1}\).