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Abstract 

Background: Findings of new targeted treatments with adequate safety evaluations are essential for better cancer 
cures and mortality rates. Immunotherapy holds promise for patients with relapsed disease, with the ability to elicit 
long-term remissions. Emerging promising clinical results in B-cell malignancy using gene-altered T-lymphocytes 
uttering chimeric antigen receptors have sparked a lot of interest. This treatment could open the path for a major dif-
ference in the way we treat tumors that are resistant or recurring.

Main body: Genetically altered T cells used to produce tumor-specific chimeric antigen receptors are resurrected 
fields of adoptive cell therapy by demonstrating remarkable success in the treatment of malignant tumors. Because 
of the molecular complexity of chimeric antigen receptors-T cells, a variety of engineering approaches to improve 
safety and effectiveness are necessary to realize larger therapeutic uses. In this study, we investigate new strategies for 
enhancing chimeric antigen receptors-T cell therapy by altering chimeric antigen receptors proteins, T lymphocytes, 
and their relations with another solid tumor microenvironment (TME) aspects. Furthermore, examine the potential 
region of chimeric antigen receptors-T cells therapy to become a most effective treatment modality, taking into 
account the basic and clinical and practical aspect.

Short conclusions: Chimeric antigen receptors-T cells have shown promise in the therapy of hematological cancers. 
Recent advancements in protein and cell editing, as well as genome-editing technologies, have paved the way for 
multilayered T cell therapy techniques that can address numerous important demands. At around the same time, 
there is crosstalk between various intended aspects within the chimeric antigen receptors-T cell diverse biological 
complexity and possibilities. These breakthroughs substantially improve the ability to comprehend these complex 
interactions in future solid tumor chimeric antigen receptor-T cell treatment and open up new treatment options for 
patients that are currently incurable.
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1  Background
Cancer immunotherapy (CI) is fast progressing, and it is 
currently regarded as the "5th pillar" of cancer treatment, 
alongside surgeries, toxic chemotherapy, irradiation, and 
various targeted therapies. Antibodies that target sup-
pressive immune checkpoint molecules have generated 

the most research in cancer immunotherapy. Combining 
treatment with another immunotherapeutic medicine, as 
suggested by the 50% of responses in patients with car-
cinoma cells, has even greater potential for patients with 
this type of cancer [67]. Cancer immunotherapy (CI) has 
also been demonstrated to be useful in different types of 
cancer, and its use in association with other therapeutic 
methods like immuno-oncology is quite beneficial. There 
are two arms to the immune system: innate and adaptive. 
The initial defense mechanism toward foreign substances 
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is innate immune cells, which do not involve antigen 
activation. B- and T cell cells are produced by adap-
tive immunity [4, 87]. Immunotherapy is a type of can-
cer treatment that targets the immune system instead of 
tumor cells. In the fight against cancer, tumor vaccines, 
cytokine killers, monoclonal and bispecific antibodies, 
immune blockade checkpoint, tumor-infiltrating lym-
phocytes, and chimeric antigen receptors have all been 
employed.

Whereas a tumor cell may have over 11,000 genetic 
variants, several unique tumor-associated antigens 
(TAAs) may be presented. Tumor-associated antigens 
and major histocompatibility complex molecules can 
be observed on the cell surface. The identification of an 
antigen-MHC complex by a T-lymphocyte receptor acti-
vates the body’s immune system [28]. To become "effec-
tive," some malignant tumors can modify their qualities 
as well as the properties of the cells in their environment. 
Interleukin-2 and other immunostimulatory cytokines 
are conventional and non-specific immunotherapies 
[32]. The BCG vaccine was the first to be used in the 
treatment of bladder cancer. BCG promotes the expres-
sion of tumor antigens indirectly. As a result, several 
cytokines, including those produced by T helper 1 cells, 
are released in a sophisticated manner [116]. Oncolytic 
viruses are a sort of cancer treatment that falls between 
biologics and immunotherapy. These viruses have been 
genetically altered to be non-virulent to healthy cells. 
They can enter cancerous cells that have dropped many 
of their antiviral mechanisms and lyse them [118]. Lysis 
is one of the numerous ways that cause malignant cells 
to die when they are infected with a virus. Different viral 
vectors are now being investigated in the clinical crea-
tion of numerous malignancies. Tumor antigens have 
elicited a response, with some trials combining many 
cancers treatment [42]. Antigens in tumors have elic-
ited a reaction, although there are various "checkpoints" 
in place [119]. T cell receptors interact with molecules 
on other cells in the micro-environment. Some of the 

co-stimulatory and co-inhibitory checkpoint component 
combinations include TIM3/GAL-9 and LAG-3/MHCII 
[6]. LAG-3 has a structure comparable to CD4 but has a 
higher affinity for MHC class II antigens than CD4 [65, 
70]. Antibody-like molecules (MAbs) could be known to 
cure many types of cancer [43]. MAbs that are currently 
being used in clinical trials target CTLA-4, PD-L1, etc., 
which "minimize unfavorable T-cell blocking," hence 
improving anti-tumor immunity [44]. The wide range of 
reported adverse effect percentages reflects the various 
drug regimens, concentration levels, and types of cancers 
treated [1].

Adoptive cell therapy (ACT) is immunotherapy in 
which cancer T cells are isolated and grown in a labora-
tory before even being injected directly into the person. 
ACT responds quickly to tumoral metastasis and hema-
tologic malignancies. Natural killer cells were also used 
in these tests, which respond quickly and effectively to 
these conditions [75]. ACT therapies include several that 
require growing malignant cells lymphocytes gathered 
from the tumor. Chimeric antigen receptor T lympho-
cytes, which produced and activated in vitro to recognize 
and destroy tumors, are used in some treatments [101].

T cells can recognize tumor-associated antigens with-
out using the major histocompatibility complex if they 
have a chimeric antigen receptor made artificially [57]. 
In the therapy of resistant B cell malignancies, chimeric 
antigen receptor-T cells that targeted the pan–B-cell 
marker CD19 showed an excellent reaction [126]. To 
overcome tumor-defensive pathways such as antigen 
resistance, physiological hurdles, and immunosuppres-
sive entrance into solid tumors, creating appropriate 
chimeric antigen receptor-T immunotherapy for non-
B-cell cancers has necessitated more technically com-
plicated techniques [97]. We look at current and future 
chimeric antigen receptors design methods, tumor-spe-
cific T lymphocytes receptors, and how designed T-lym-
phocytes interface with the tumor microenvironment 
shown in Fig.  1. The goal of this research is to improve 

Fig. 1 Approaches for enhancing the activity of chimeric antigen receptor-T cells in solid tumors
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T-lymphocyte immunotherapy for tumor types related to 
effectiveness and safety.

2  Main text
2.1  Development in chimeric antigen receptor designs
The first brilliant idea for combining antibody-type spec-
ificity with T-lymphocyte activation was to combine the 
constant area of a T cell receptor to the variable regions 
of a bacterial antigen-recognizing antibody [66]. Sin-
gle-chain variable fragments are still widely seen as the 
exogenous antigen-sensing domain in chimeric antigen 
receptors. They are made up of a flexible binder that joins 
a monoclonal antibody’s variable heavy and light chains 
[95].

Antigens identified by single-chain variable fragments 
linked to the CD3z activation domain may produce 
tumor-specific toxicity, according to the first tests using 
tumor-targeting chimeric antigen receptors. In the great 
majority of instances, T cells produce these “1st gen-
eration” chimeric antigen receptors, which only would 
include the CD3z chain for T-lymphocytes signaling, 
unsuccessful to provoke substantial antitumor reactions 
[22]. Second- and third-generation chimeric antigen 
receptors with one or two costimula were produced after 
it was recognized that the endogenous T cell receptor 
required connotation with the other costimulatory or 
adjunct molecules for vigorous signaling [53, 54].

These costimulatory domains, which are primar-
ily derivative from CD28, improved overall cyto-
toxicity, cytokine secretion, and chimeric antigen 
receptors-T cell tumor development and persistence 

[89]. The costimulatory domain employed affects a lot of 
things, namely metabolic activities, T cell memory devel-
opment, and antigen-independent regulatory stimula-
tion, all of which are essential driving variables [123].

The release of the anti-inflammatory cytokine interleu-
kin (IL)-10 was inhibited by third-generation chimeric 
antigen receptors containing OX40 and CD28 costimula-
tory domains. Chimeric antigen receptors of the fourth 
generation, named "armored" chimeric antigen receptors 
because of their extra stimulation domains, have recently 
been developed. Chimeric antigen receptors T cells that 
generate pro-inflammatory cytokines are known as T 
cells redirected for ubiquitous cytokine-mediated killing 
(TRUCK) [7].

The ability of soluble agents like CCL-7 and CCL-19 to 
increase T-lymphocytes activation, as well as a combina-
tion of IL-15 and IL18 to recruit endogenous immune 
system has been studied [82]. Advances in chimeric 
antigen receptors design have permitted much more 
optimization of each of the four primary components 
of a chimeric antigen receptor hinged domains or extra-
cellular spacer, extracellular antigen-sensing domains, 
intracellular signaling domains, and the single transmem-
branes, enabling chimeric antigen receptors therapy to 
progress [112].

2.2  Logic‑gated T cell activation through combinatorial 
antigen sensing

Chimeric antigen receptors-T cells stability and antican-
cer efficiency, Boolean logic gates were used to identify 
many antigens in the combination shown in Fig. 2(1). To 

Fig. 2 Protein designing methodologies to enhance the safety, program, and effectiveness of chimeric antigen receptor 1. Antigen recognition 
via AND and AND-NOT logic, respectively, can improve binding ability and efficiency. 2. Chimeric antigen receptor-T cell activity may be rapidly 
and effectively changed with ON/OFF switches. 3. Chimeric antigen receptors to activate only when an adapter is assembled can provide chimeric 
antigen receptor-T cells more control over their activity
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trigger a chimeric antigen receptors-T cell, AND-gate 
logic necessitates the coexistence of several antigens, 
decreasing the threat of off-target recognition or toxici-
ties that kill healthy cells [51]. The synthetic Notch (syn-
Notch) receptor was intended to measure a TAA and 
trigger the production of chimeric antigen receptors, 
which can then induce T-lymphocytes response when 
secondary TAA is detected [124, 127]. When the targeted 
non-cancer is not close to the cancer cells, this method 
has been demonstrated to reduce inflammatory reactions 
[20]. Because synNotch recognizes TAA #1 before chi-
meric antigen receptors recognize TAA #2, TAA #1 from 
a malignant cell could trigger a T cell’s synNotch recep-
tor, which then targets a normal cell producing TAA #2. 
In the alternate AND-gate technique, the CD3z chain and 
costimulatory domain split into binary distinct receptors, 
to each one recognizes the other [90].

This technique, though, is susceptible to “leakiness” 
because first-generation chimeric antigen receptors that 
just incorporate the CD3z chain already are proficient in 
signaling. Another way instructs T cells to release a spe-
cifically active cytotoxic protein in response to TAA #1 
on the surface of the cell getting identified by chimeric 
antigen receptors or TCR; the designed protein gets cyto-
toxic only if TAA #2 within the cell is identified [72, 73]. 
OR-gate logic was used to improve therapeutic impact by 
preventing antigen spillage and carcinoma cells’ loss of 
the target epitope [94].

Chimeric antigen receptors immunotherapy designed 
to use AND–NOT logic can also assist protect normal 
tissue from toxicity. This method combines inhibiting 
chimeric antigen receptors that target a TAA with acti-
vation chimeric antigen receptors that target an antigen 
present on normal tissue [100]. A prostate-specific mem-
brane antigen binds to chimeric antigen receptors, trig-
gering the production of apoptosis protein. Although 
AND and AND–NOT logic can enhance chimeric anti-
gen receptors-T cell protection by enhancing specificity, 
OR-gate logic is used to increase the antitumor effect to 
avoid leakage of antigen, or tumor cells losing targeting 
epitope [56]. OR-gate chimeric antigen receptors can 
identify two distinct TAAs, and attaching to one of them 
activates T cells. One OR-gate technique makes use of a 
pooled combination of two chimeric antigen receptors-T 
cell populations (chimeric antigen receptors pool), each 
of which expresses monospecific chimeric antigen recep-
tors. A variation on this topic is to give two separate 
chimeric antigen receptors-T cell products at the same 
time [114]. Signaling domain 1 PD1inhibitory was coex-
pressed with CD19 inhibiting chimeric antigen receptors 
in solid evidence research, and the inhibiting chimeric 
antigen receptors suppressed chimeric antigen recep-
tors-T cell stimulation in the vicinity of prostate-specific 

membrane antigen (PSMA) [8]. Coexpression of two 
distinct chimeric antigen receptors in each T cell (dual 
chimeric antigen receptors) is another technique [37]. 
Another option employs tandem bispecific chimeric anti-
gen receptors (Tan-chimeric antigen receptors), which 
consist of split single receptor chain on 2 scFv domains, 
and has been proven to be substantially better both to the 
chimeric antigen receptors pool and dual-chimeric anti-
gen receptors strategies [101]. CD19-CD20 and CD19-
CD22 bispecific chimeric antigen receptors, for example, 
have been studied in the treatment of B-cell malignan-
cies and are currently being evaluated in clinical trials for 
myeloma and lymphocytic leukemia, respectively [40].

2.3  Controllability and safety using ON/OFF switches
Self-regulating on/off switches have also been utilized to 
increase the security and adaptability of chimeric anti-
gen receptor modifications. Chimeric antigen receptors-
T cells that have previously been employed are “always 
on.” When it comes to chimeric antigen receptors derived 
cytotoxicity, however, this is not necessarily the greatest 
solution. Patients treated with chimeric antigen recep-
tors-T cells have reported a variety of systemic adverse 
effects in adding to off-target damage. A common occur-
rence is cytokine release syndrome (CRS). However, 
when it comes to chimeric antigen receptors derived 
cytotoxicity, this is not always the best option [19, 20].

Changing the structure of the chimeric antigen recep-
tors protein can access the availability of functional chi-
meric antigen receptors, allowing the receptor to be 
signaling-competent only under specified conditions, 
rather than modifying protein half-life. For example, 
chimeric antigen receptors have an antigen-binding 
region that can be masked by a tailored inhibiting pep-
tide, allowing them to function only when the inhibiting 
peptide is removed [49]. Modifying the chimeric antigen 
receptors protein illustrated in Fig.  2(2) can affect the 
function of functional chimeric antigen receptors.

2.4  Chimeric antigen receptors that are 
adapter‑dependent

Genetically manipulated T lymphocytes in order to gen-
erate receptor that requires the addition of a second pro-
tein component before it can translate antigen detection 
into T cell activation shown in Fig.  2(3). A biotin-bind-
ing region is coupled to an intracellular T cell triggering 
region in a "ubiquitous" receptor. T cells that express this 
biotin-specific receptor may theoretically be employed to 
attack antibody along with biotinylated which is a target 
[14]. Scientists can use biotin-specific receptors to assault 
a wide range of TAAs and manage the ON/off condi-
tion of T cells by providing or withholding biotinylated 
antibodies. To tackle tumor variants, researchers used 
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a wide chimeric antigen receptor in combination with 
one or more antigen-targeting adaptor proteins [21]. The 
discovery of a new form of receptor that binds to FITC 
and folate that alleviates the negative effects of CRS-like 
harmful effects in lab rats made possible by adapter-
dependent chimeric antigen receptor designs [16]. The 
SUPRA chimeric antigen receptors system is based on 
the idea of overexpressing a ubiquitous receptor on T 
cells surfaces in combination with an extrinsically admin-
istered adaptor protein, by exhibiting multiple receptors, 
each holding various adaptor protein associations rec-
reated by the leucine-zipper dime, which can produce 
diverse Boolean logic gates in designed T lymphocytes 
[110].

Using AND-NOT or AND gates, researchers can 
increase sensitivity and cure tumor diversity by treating 
numerous antigens with different adaptor proteins [21]. 
Multi-component processes, on the other hand, have a 
larger range of factors to optimize, such as the adapter 
protein’s half-life, bioavailability, and interface kinetics, 
as well as the base receptors, adaptor proteins, altered 
T cell’s half-life, bioavailability, and interfaces kinetics 
[122]. As a result, it is unclear whether adaptor-depend-
ent chimeric antigen receptors designs’ sophisticated 
signal processing will convert into effective medicinal 
possibilities [24].

3  Designing a car expressing cell
3.1  Designing allogeneic compatibility and site‑specific 

chimeric antigen receptors transgene insertion
Synthesized inducible promoters are utilized in the afore-
mentioned cases of regulatory expression of genes, T 
cell genomes frequently contain a gene-expression cas-
sette, employing lentiviral and retroviral vectors, result-
ing in a range of integration sites and copy counts [77]. 
Integrating the transgenic into specific genomic regions 
is another way for establishing dynamic chimeric antigen 
receptors levels of expression [77]. CRISPR and CRISPR-
associated protein 9 are two gene-editing techniques 
(Cas9). T cell designing has become possible mainly to 
the use of zinc finger nucleases (ZNFs) and activator-
like effector nucleases (TALENs) [37]. Chimeric antigen 
receptor-T cells wipe out retrovirus-mediated random 
chimeric antigen receptor-transgene integration after 
CRISPR-Cas9-mediated incorporation of the CD19 chi-
meric antigen receptor transgenic into the TRAC loci 
[61, 62]. The CD19 chimeric antigen receptor transgene 
was introduced into the TRAC region using CRISPR-
Cas9, resulting in chimeric antigen receptor-T cells with 
enhanced in  vivo studies [78]. However, new informa-
tion suggests that whether site-specific chimeric antigen 
receptor insertion into TRAC loci improves T cell acti-
vation is dependent on the chimeric antigen receptor 

design employed. Allogeneic T cell therapy has also been 
made easier due to gene-editing techniques [81].

T cell products obtained from better and healthier 
people can help resolve some of the challenges that arise 
with producing autologous cell therapy, such as getting 
enough high-quality T cells from individuals who have 
been heavily pretreated and have a chronic illness [12]. 
Allogeneic T cell transplant, on either hand, is a fairly 
new concept. Allogeneic T cell transfer has been pro-
posed to limit allograft resistance by including the dele-
tion class-I major histocompatibility complex and TCR 
to avoid host disease-versus-graft [12]. ZFN-mediated 
suppression of HLA-A or TCRab expression in CD19 
chimeric antigen receptor-T cells was used to achieve 
this [93]. Gene editing has been utilized to defend against 
GvHD in addition to avoiding the disease [115]. Before 
injecting chimeric antigen receptor-T cells, lymphode-
pletion is a typical preconditioning method boost the 
efficiency of the transplanted cells endogenous gene dele-
tion and chimeric antigen receptors transgenic injection 
was conducted separately in the work mentioned above, 
resulting in a wide range of chimeric antigen receptor-T 
cells [92].

By inserting a single-guide RNA into chimeric anti-
gen receptors U3 domain encoding lentiviral vector’s 30 
long terminal repeat sequence, the scientists were able to 
combine genome—editing and chimeric antigen recep-
tors integration. Following Cas9 mRNA was electropo-
rated, magnetic resonance imaging was employed [34].

3.2  Negative regulators are eliminated
Negative T cell regulators’ expression can also be sup-
pressed via gene-editing approaches. Immune-check-
point ligands are generally upregulated in tumor cells 
[13]. T cell action is evaluated in the tumor microen-
vironment when cytotoxic T-cells-associated antigen 
(CTLAA) receptors PD-1 AND CTLA-4 are activated 
on T lymphocytes, which inhibits the activity. In recent 
times, antibodies have been utilized to impair immuno-
logical checkpoints [27]. On modified T cells, checkpoint 
suppression can also be substituted by deletion of check-
point receptor expression [61, 62]. Several knockouts 
employing CRISPR-Cas9 in chimeric antigen receptor-
T cells have been shown in numerous studies to reduce 
alloreactivity while also improving T cell functionality 
[88]. Cas9:sgRNA ribonucleoprotein (RNP) complexed 
with mRNA expressing was electroporated into chimeric 
antigen receptor-T cells [124, 127].

3.3  Switching from an inhibited to a stimulatory mode 
of receptors

Despite having shown tremendous therapeutic effective-
ness against hematologic malignancies, chimeric antigen 
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receptor-T cells have been limited in their ability to treat 
specific solid tumors due to a variety of obstacles. Fur-
thermore, tumor cells induce tumorigenic and antigen 
heterogeneity TME immunosuppressive factors, and thus 
inhibiting environment is exacerbated by immunosup-
pressive cells MDSCs and Tregs are examples of these 
forms of cells [65, 70]. Among the transforming growth 
factor-b is a predominantly immunosuppressive soluble 
factor identified in the TME. T cell differentiation into 
Tregs is triggered by this powerful cytokine as well as the 
immunosuppressive polarization of macrophages pheno-
type M2 [59, 99]. The development of a chimeric antigen 
receptor that responds to transforming growth factor-b 
showed that chimeric antigen receptors usage to identify 
a soluble feature and T cells are rearranged to transform 
inhibitory signals into antitumor activity signals [25]. 
Transforming growth factor-b responsive chimeric anti-
gen receptor-T cells multiply in the presence of soluble 
transforming growth factor-b and generate cytokines 
related with t helper cells type 1 (Th1). A combination 
of transforming growth factor-b internalization and par-
acrine Th1 cell stimulation protects neighboring cells 
against transforming growth factor-inhibitory effects. 
[48].

Switch receptors, which are chimeras made up of an 
extracellular domain that attaches to a repressive protein 
and an endodomain that controls the modulatory path, 
can be utilized to rewire signals, for example, IL-4 is a 
kind of cytokine performing numerous functions inside 
the body. [55]. Tumor microenvironment functions 
include promoting tumor development and producing 
M2 polarization, suppressing the development of malig-
nant cells effector T lymphocytes [109]. IL-4Ra in IL-4 
receptors ectodomain is linked to either the IL-4 recep-
tor or the IL-4Rb receptor ectodomain in IL-4 switching 
receptor [121]. The bc receptor subunits or IL-7Ra endo-
domain similar to IL2 and IL-15 transmission has been 
reported to increase T lymphocytes and IL-4 multiplica-
tion [35]. As a consequence, chimeric antigen receptor 
with coexpression of the IL4Ra: bC switching receptor 
had the better cytotoxic capability [50].

3.4  Chimeric antigen receptor‑T cells and cancer cells 
in tumor microenvironment

Chimeric antigen receptor-T cells’ limited therapeutic 
efficiency in solid tumors is due to the TME’s immuno-
suppression properties [76]. The solid tumor microenvi-
ronment is characterized by physical barriers to immune 
cell invasion by tumors, elevated checkpoint recep-
tors, and a pro-tumor stromal microenvironment, all 
of which have been thoroughly discussed elsewhere, an 
excess of immunosuppression and pro-metastatic solu-
ble molecules, a pro-tumor stromal microenvironment, 

an overabundance of immunosuppression, pro-meta-
static soluble chemicals, and increased production of 
chemokines that primarily recruit immunosuppression 
leukocytes [96]. Researchers are striving to improve the 
development of tumor microenvironment-responsive 
chimeric antigen receptor-T cells resulting from these 
methods shown in Fig.  3 [96].These methods are dis-
cussed below.

3.5  Penetration and tumor homing
The effectiveness of chimeric antigen receptor-T cell 
treatment in solid tumors is dramatically reduced due to 
decreased immune activation [52]. The chemokine axis 
regulates T cell migration. Tumor cells may influence 
tumor-associated cell chemokine expression and upreg-
ulation or downregulation of inflammatory cytokines, 
leading to poor chimeric antigen receptor-T cell attrac-
tion [79]. Chimeric antigen receptor-T cells that are 
designed to regulate the chemokine receptors expression 
that is highly activated in the tumor microenvironment 
can turn a cancer defense pathway against it [107].

CCR2b, the main subtype of the chemokine recep-
tor CCL2, has been transformed into chimeric antigen 
receptor-T cells that target GD2 and mesothelin, subse-
quent in improved T lymphocytes adhesion to CCL2-
expressing malignant glioblastoma and mesothelial 
[83]. The better structured extracellular matrix associ-
ated with solid-tumors nodules prevents chimeric anti-
gen receptor-T cells from accessing the cancer site. As a 
result, transgenic chimeric antigen receptor-T cells that 
produce heparinase, an anticoagulant, have been devel-
oped [53, 54].

Chimeric antigen receptor-T cell activation can be 
aided or hindered by cytokines, which are signaling 
substances. Co-expression of chimeric antigen recep-
tors with immunomodulatory cytokines may have a big 
impact. It is possible to improve chimeric antigen recep-
tor-T cell growth, survivability, and mediator activity 
[15]. The immune system is inhibited by the microenvi-
ronment of solid tumors. For example, T cells coexpress 
a CD19-targeting chimeric antigen receptor-T cells that 
generate CD19-targeting chimeric antigen receptors plus 
IL-IL-21, IL-7, IL-15 and IL-2 inhibit tumors more effi-
ciently in vivo than T lymphocytes the chimeric antigen 
receptors individually. Surprisingly, the gamma subunit 
is found in all four cytokine receptor complexes. On the 
proliferative chain, each cytokine had a distinct effect 
(GC) [125]. T cells that generate IL-21, IL-18, in associa-
tion with chimeric antigen receptors that target several 
antigens have also been reported to be more active, mul-
tiply, and/or persist in vivo. But on the other hand, per-
sistent overexpression of immunomodulatory cytokines 
can worsen damage [23].
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3.6  Disruption of immune‑suppressive axes
TME is rich in immune-checkpoint receptors and media-
tors including PD-L1 and PD-1, which reduce chimeric 
antigen receptor-T cell cytotoxic effects and cause anergy 
[91]. Immune checkpoint suppression has been shown in 
various studies to have a substantial synergistic impact 
with chimeric antigen receptor-T cell treatment [44]. A 
combined therapy combining chimeric antigen receptor-
T cells and externally given checkpoint inhibitors are now 
being investigated for the treatment. Chimeric antigen 
receptor-T cells are sometimes used to develop immune-
checkpoint blockers such PD-1 scFvs and PD-L1 anti-
body, and the ability to express PD-1 receptors that are 
notably negative (DNRs) [45].

Tumor development and chimeric antigen receptor-T 
cell therapy resistance are connected to aberrant cytokine 
expression in the TME. Transforming growth factor b 
interacts with cancer cells, stroma, and both to contrib-
ute a complex role in cancer development [91]. Adaptive 
and innate immune cells secrete chemokines, cytokines, 
and growth factors that weaken the immune system; (2) 
ECM remodeling (3) macrophage, neutrophil, and mono-
cyte immunosuppressive T cells; and (4) prevent T cells 
from multiplying. Chimeric antigen receptor-T cells have 
been developed to produce a transforming growth factor 
b receptor to counteract these exceptional effects [124, 
127]. DNR suppresses endogenous transforming growth 
factor b signaling in a prostate cancer model, resulting 
in enhanced T cell proliferation and antitumor effective-
ness. These findings prompted the activation of T cells 

in a new therapy trial for the prevention of chronic and 
resistant metastatic prostate cancer that coexpressed 
PSMA chimeric antigen receptors and the DNR [118]. 
Unlike transforming growth factor b-targeting chimeric 
antigen receptors and transforming growth factor b 
switch receptors, the DNR does not send a signal to the 
transformed T cell. It has been shown that the anticancer 
potential of CD19-targeting chimeric antigen receptor-
T cells that additionally expressed mbaIL6, membrane-
bound IL-6 receptor, is maintained in vivo. However, it’s 
unclear whether this chimeric antigen receptor-T cells 
can prevent CRS [36]. Cancer penetration and death were 
accelerated in chimeric antigen receptor cells that gener-
ated ezrin-mediated which is a peptide inhibition of PKA 
transport to immunological synapse. Increased levels of 
relevant entities molecules in the TME, such as reactive 
oxygen species, play a key role in carcinogenesis [98]. 
Increased intracellular catalase levels have been shown 
to boost the cytolytic activity of chimeric antigen recep-
tor cells. The ability of chimeric antigen receptor cells to 
metabolise hydrogen peroxide has been studied [63].

3.7  Promoting endogenous immunoresponses 
by restructuring TMEs

To promote immune regulation or repression, tumors 
have acquired the ability to recruit or reject particular 
types of leukocytes, such as chimeric antigen receptor-
T cells. Additionally, cancer is on the rise it can cause a 
pro-metastatic phenotypic or immunosuppression in 

Fig. 3 Approaches for enhancing chimeric antigen receptor with cancer interactions. Through such a range of strategies, chimeric antigen receptor 
were designed to be used, counter, or avoid tumor-driven immunosuppressive mediators and pathways



Page 8 of 14Hussain  Beni-Suef Univ J Basic Appl Sci           (2022) 11:49 

the localized stroma, in addition to anti-inflammatory or 
phenotypic defects in localized lymphocytes [11].

Redesigning the tumor-cellular composition and 
reversing the immunosuppressive cell niche pheno-
type are two further ways to enhance the chimeric anti-
gen receptor-T cell treatment efficiency [64]. To do this, 
designed chimeric antigen receptor-T cells to release 
cytokines or other soluble chemicals that promote parac-
rine or endocrine TME modification [113].

In syngeneic animal models, designed chimeric antigen 
receptor-T cells that generate IL-12 were able to redesign 
the tumor microenvironment by modifying M1 pheno-
type (tumor associated macrophages) and lowering Tregs 
and myeloid derived suppressor cells variety [96]. Chi-
meric antigen receptor-T cells that release IL-18 regularly 
can change the organization of the tumor microenviron-
ment by boosting M1 macrophages, activating DC, and 
provoking NK cells [26]. The number of M2 macrophages 
and Treg cells is decreasing, whereas the number of cells 
is increasing [23].

In a study, IL-12-producing chimeric antigen receptor-
T cells were compared to IL-18-producing chimeric anti-
gen receptor-T cells. In a syngeneic murine model, IL-18 
is more efficient at changing the immunosuppression 
tumor microenvironment [1]. The tumor microenviron-
ment can be regulated using chimeric antigen receptor-
T cells, which also create proinflammatory ligands that 
bind to the cell’s surface [60]. CD40L, for example, is fre-
quently expressed transiently on T cells. After activation 
of the TCR and contact with the CD40 receptor, a variety 
of types of immune cells can trigger APCs [9].

BiTEs, or bispecific T cell engagers, are formed by two 
scFvs linked together, can be generated by chimeric anti-
gen receptor-T cells to induce non-engineered T cells 
to encounter cancer cells, as well as CD40 + cancer cell 
apoptosis and DC licensing [47]. The researchers cre-
ated bispecific T cell engagers, one with CD3 activation 
on T cells and another scFv EGFR targeting, which is 
found in glioma cells, according to the researchers [47]. 
In several ways, chimeric antigen receptor-T cells tar-
geted EGFRvIII that create EGFR/CD3 bispecific T cell 
engagers have been shown to eradicate orthotopic cancer 
xenograft models [46].

4  Clinical experience with chimeric antigen 
receptor‑T cells on cancers

Malignant tumors can block T cells in an infinite variety 
of ways. Detailed preclinical models for testing potential 
chimeric antigen receptor immunotherapy combinations 
are very inspiring in this sector [128]. We analyzed and 
summarized new research on tumor chimeric antigen 
receptor-T cell treatment and clinical trials.

To explore if chimeric antigen receptor-T immuno-
therapy can be utilized to treat malignancy, research-
ers are doing basic and clinical studies. This strategy in 
pancreatic cancer targets antigens such as MUC1, mes-
othelin, CD133, HER2, prostate stem cell antigen, and 
CEA [3]. Chimeric antigen receptor immunotherapy are 
used in PDAC and other solid cancers treatments. Early 
experiments are being conducted on chimeric antigen 
receptor cells designed to identify mesothelin and cre-
ate antibodies against PD-1 and CTLA-4 (NCT03182803, 
NCT03030001) [40]. Patients with non-hematologic 
malignancies are being enrolled in a clinical study to test 
a potential MUC1-redirected chimeric antigen recep-
tor cell fusion. [72]. Non-self-recognition chimeric anti-
gen receptor cell techniques are being developed using 
CRISPR/Cas9. Other genome-editing options are being 
investigated, such as combining suicide genes to improve 
safety [73].

Patients diagnosed with chronic HER2-positive sar-
coma and osteosarcoma, chimeric antigen receptor-T cell 
that displays the 2nd-genera on HER2– chimeric antigen 
receptor-T cell (CD28) were estimated. They were well 
tolerated with no dose-limiting effects and survived for at 
least 6 weeks after treatment [68]. In patients with recur-
rent rhabdomyosarcoma who only had chronic bone 
marrow illness, a clinical trial of the HER2–chimeric 
antigen receptor therapy showed effectiveness. Patients 
were given lymphodepleting chemotherapy before receiv-
ing the injection and showed significant improvements in 
their quality of life [2]. A clinical trial (NCT02932956) to 
examine the effectiveness and safety of GPC3-chimeric 
antigen receptor treatment in children with solid tumors, 
such as rhabdomyosarcoma, has been approved by the 
FDA [74].

Chimeric antigen receptors that target EGFRvIII, and 
interleukin 13 receptor 2 and HER2 have been studied 
in children with glioblastoma. In two investigations, only 
adults were infused, but in the HER2–chimeric antigen 
receptor treatment study, 10 of 17 participants were chil-
dren. [85]. T—Lymphocytes were capable of traveling to 
glioblastoma spots after becoming infused intravenously 
with EGFRvIII– chimeric antigen receptor. Glioblas-
toma activity of a transgene was suppressed, suggest-
ing the chimeric antigen receptor-T cell response [108]. 
Immunotherapeutic substances such as indoleamine 2,3 
dioxygenase and IL10 were shown to be upregulated in 
glioblastoma, indicating that they can neutralize pro-
inflammatory chimeric antigen receptor lymphocytes. 
Individuals with glioblastoma, particularly young people, 
are increasingly being aggressively courted for clinical 
trials [71]. In their initial clinical trial, chimeric antigen 
receptors were found to be safe for brain and pediatric 
solid cancer [58].
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ROR1 is an oncofetal protein that can sustain pro-
apoptotic and survivor signaling in lung cancer cells. 
Overexpression of the protein has been discovered in a 
range of tumors, notably lung cancer. It has been pro-
posed as a target molecule for chimeric antigen receptor 
T cell immunotherapy [104]. Carcinoembryonic antigen 
is an oncofetal protein that is usually expressed through-
out pregnancy but decreases after birth. CEA levels rise 
dramatically during lung cancer carcinogenesis and pro-
gression. Advanced lung carcinomas have been reported 
to be eradicated by chimeric antigen receptor-T cell 
[120]. Experts claim that using the PD-L1-chimeric anti-
gen receptor in the treatment of small-cell lung cancer 
could have antitumor cytotoxic efficacy. Delta-like 3 has 
been proposed as a possible strategy for the therapy of 
lung cancer [18].

The use of chimeric antigen receptor immunotherapy 
to combat liver cancer is still in its early stages, and thus 
further studies need to be done. It has been verified that 
chimeric antigen receptor-based epithelial cell adhesion 
antigen, CEA, glypican-3, and mucin-1 can be used to 
cure liver cancer. In vitro, the 32A9 antibody fused chi-
meric antigen receptor kills (GPC3+) HCC cells, and 
liver xenograft tumors are reduced in  vivo. The use of 
Glypican-3 chimeric antigen receptor immunotherapy 
treatment of liver cancer could be effective [29, 86]. 
Another study found that GPC3/chimeric antigen recep-
tor-T cells that expressed IL15/21 enhanced T cell anti-
cancer responses against HCC [108].

TAG-72, GUCY2C, CD133, and NKG2D are the most 
appropriate target antigens in colorectal tumors. The 
cytotoxic potential of chimeric antigen receptor cells are 
increased when mesenchymal stem cells are designed to 
produce IL-7/12 cytokines [5, 105]. Primary and recur-
rent colon cancer cells are successfully eradicated by 
DCLK1’s/chimeric antigen receptor immunotherapy [72, 
105].

Novel therapeutic approaches for the fight against 
ovarian cancer are urgently needed due to the high likeli-
hood of recurrence following surgery and chemotherapy. 
TAG72, protein that is exceedingly expressed on ovarian 
cancerous cells surface, has been used as a chimeric anti-
gen receptor treatment target [41, 80]. Recent research 
has created CD19- and Mesothelin-chimeric antigen 
receptor NK-92 cells for CD19 and mesothelin target-
ing [106]. Furthermore, 5T4 and FR specific/chimeric 
antigen receptor t lymphocytes suppressed the prolifera-
tion and growth of ovarian cancer cells considerably [38]. 
OVCAR3 and SK-OV-3 ovarian cancerous cells were 
killed in  vitro by MSLN/NK chimeric antigen receptor 
cells. The human ovarian SKOV3 cell line’s proliferative 
capability was limited by Her2/ chimeric antigen receptor 
[17, 117].

Mesothelin, MUC1, chondroitin sulfate proteogly-
can 4, and receptor tyrosine kinase EGFR are among the 
antigens that clinical trials for a chimeric antigen recep-
tor therapy for triple-negative breast cancer are ongo-
ing. C-Met-chimeric antigen receptor was injected into 
triple-negative patients with breast cancer and generated 
with little drug-related adverse effects, according to the 
results of clinical trial [111]. Chimeric antigen receptor 
cells were previously used to target MUC-1 for triple-
negative breast malignance cure, suggesting that this 
antigen could be regarded as a therapeutic method in the 
future [31].

The Food and Drug Administration has approved tisa-
genlecleclecleucel, the first chimeric antigen receptor 
immunotherapy for acute lymphoblastic leukemia. Axi-
cabtagtagene ciloleucel, a medication, is a second treat-
ment option for B-cell non-lymphoma Hodgkin’s. There 
are concerns about the long-term negative impact of 
gene mutations [10]. Other antigens, such as CD30 in 
refractory Hodgkin’s lymphoma and FLT3, and CD123 in 
acute myeloid leukemia are among the antigens targeted 
by chimeric antigen receptor-T lymphocytes. Commer-
cial chimeric antigen receptor therapy must be used with 
caution in cancer patient’s cure [69].

4.1  Difficulties facing chimeric antigen receptor‑T cell 
therapy

The most important targets for chimeric antigen recep-
tor design are tumor-linked antigens. Tumor-associated 
antigens expression by many types of tumor cells poses 
a substantial problem. Antigen expression levels at dis-
tinct tumor tissues may hinder the efficacy of chimeric 
antigen receptor treatment in the targeted site [102]. 
Co-expression of various chimeric antigen receptors and 
programmed chimeric antigen expression levels have 
both been employed to facilitate the targeting of multiple 
tumor-associated antigens by identified chimeric antigen 
receptors [39]. On the other side, targeting cancer stem 
cells, which are strongly related to tumor heterogeneity, 
is one method for eradicating tumor heterogeneity. Can-
cer stem cell marker CD133 is overexpressed in a lot of 
solid cancers and is linked to a worse prognosis [40].

In solid tumor cells, the chimeric antigen recep-
tor would be unable to reach tumor tissue through to 
the vascular endothelial cells. The existence of some 
means in cancerous tissue reduces the release of vas-
cular-related factors. Endothelin B receptor overex-
pression in tumor tissue lowers ICAM-1 expression, 
inhibiting T lymphocytes from exiting blood vessels 
[30, 98]. The absence of expression of chemokines cru-
cial for T cell penetration into tumor tissues, as well 
as the presence of substantial fibrotic substrate in 
tumors, limit the ability of chimeric antigen receptors 
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to move and infiltrate tumor cells. The levels of these 
chemokines are lower in tumor tissue [124, 127]. In 
regions at which the tumor area is confined, local-
ized injection of chimeric antigen receptors seems to 
be more effective versus systemic therapy. In glioblas-
toma, intracranial transportation is secure and has an 
adequate anti-cancer impact, while intra-pleural trans-
port has also been shown to be safe and efficacious 
[107]. CCR2 and CCR4 are chemokine-specific ligands 
that can be genetically developed to produce chimeric 
antigen receptors. In cancers, these ligands are highly 
expressed, allowing them to interact with cancerous 
cells [98]. Increasing knowledge of what facilitates 
or hinders T cell accessibility to malignancies may 
pave the way for new methods to fix chimeric antigen 
receptor cell trafficking [33].

Chimeric antigen receptors have been shown to 
express a variety of receptors. Several kinds of cells 
can infiltrate cancer cells significantly, allowing tumor 
development, angiogenesis, and proliferation to occur. 
The suppressive tumor microenvironment is a huge 
obstacle to successful chimeric antigen receptor treat-
ment for cancers. In clinical studies designed chimeric 
antigen receptors, in combination with RANTES 
receptors such as CCR5, CCR3, and CCR1, as well as 
CCL5-expressing oncolytic virus, significantly boosted 
treatment methods and eradication [73].

T-lymphocytes are the most prominent immunologi-
cal suppressor cells in the tumor site. In solid tumors, 
these cells help cancer progression and multiplica-
tion by producing signaling molecules, cytokines, and 
chemokine [59, 99]. CTLA-4, as well as PD-1, are 
immune checkpoint molecules that block the immune 
system’s capacity to combat cancer [11]. Chimeric 
antigen receptor therapy is less effective in a tumor 
microenvironment containing a lot of cells and inhibi-
tory substances. T cell responses in malignancy are 
hampered by high adenosine and reactive oxygen spe-
cies levels. Cancer patients have greater extracellular 
potassium expression that prevents TCR-mediated 
Akt-mTOR activation and subsequent lethal activity 
[84]. The purpose of T cell design is to increase potas-
sium channel activity in terms of improving potassium 
flow. Several scientists have sought to increase chi-
meric antigen receptor-T cell performance by com-
bining ACT and TME immunomodulatory [59, 99]. 
Checkpoint inhibitors that target the PD-1/PD-L1 
mechanisms are effective therapy [103]. Chimeric anti-
gen receptor responses to PD-1 and LAG3 suppression 
were created using CRISPR. Antibodies such as Anti-
CTLA-4 shown to increase immune activity against 
tumors, but the pathway is unknown [9].

5  Conclusions
Hematologic malignancies have shown considerable 
potential with chimeric antigen receptor-T cell treat-
ment. Solid tumors, on the other hand, present distinct 
obstacles that necessitate more advanced technologies 
to treat these refractory cancers magnificently. Recent 
developments in protein and cell editing have pro-
duced some remarkable discoveries. T cells’ intrinsic 
fitness has been improved, and their anticancer func-
tion is on the rise. Even though the majority of engi-
neering solutions published to date have centered on 
providing individual results. Advances in genome-edit-
ing technologies and genomic circuitry development 
have paved the way for multilayered strategies to T cell 
therapeutic strategies that can simultaneously address 
multiple critical demands. Simultaneously, the biologi-
cal complexity and potential within the T cell, there is 
crosstalk between several designed features. Cancer 
cells and other malignant cells components, as well as 
synthetic and endogenous immune cells, must all be 
examined carefully. When it comes to chimeric antigen 
receptor-T cell clinical translation, to be employed in 
the treatment of solid tumors, it is critical to achieve a 
balance. These achievements vastly improve the capa-
bility to understand and rationally plan these com-
plicated interactions in future solid tumor chimeric 
antigen receptor-T cell treatment. T cell innovations 
that can be combined and tweaked for optimal efficacy 
and safety will continue to advance human health and 
provide new treatment options for diseases that are 
presently incurable.
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