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Abstract 

Background:  Protein–peptide and protein–protein interactions play an essential role in different functional and 
structural cellular organizational aspects. While Cryo-EM and X-ray crystallography generate the most complete 
structural characterization, most biological interactions exist in biomolecular complexes that are neither compliant 
nor responsive to direct experimental analysis. The development of computational docking approaches is therefore 
necessary. This starts from component protein structures to the prediction of their complexes, preferentially with 
precision close to complex structures generated by X-ray crystallography.

Results:  To guarantee faithful chromosomal segregation, there must be a proper assembling of the kinetochore (a 
protein complex with multiple subunits) at the centromere during the process of cell division. As an important mem-
ber of the inner kinetochore, defects in any of the subunits making up the CENP-HIKM complex lead to kinetochore 
dysfunction and an eventual chromosomal mis-segregation and cell death. Previous studies in an attempt to under-
stand the assembly and mechanism devised by the CENP-HIKM in promoting the functionality of the kinetochore 
have reconstituted the protein complex from different organisms including fungi and yeast. Here, we present a 
detailed computational model of the physical interactions that exist between each component of the human CENP-
HIKM, while validating each modeled structure using orthologs with existing crystal structures from the protein data 
bank.

Conclusions:  Results from this study substantiate the existing hypothesis that the human CENP-HIK complex shares 
a similar architecture with its fungal and yeast orthologs, and likewise validate the binding mode of CENP-M to the 
C-terminus of the human CENP-I based on existing experimental reports.
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1  Introduction
Although molecular and cell biology have made huge 
advancements toward the delivery of powerful methodol-
ogies for the discovery and identification of protein–pro-
tein interactions, likewise their subcellular localization, 

structural biology alone is able to give definite answers 
regarding interaction mechanisms through the uncov-
ering of atomistic and high-resolution structures of the 
underlying complexes [1]. Determination of the struc-
ture of such biomolecular interactions, however, can be 
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a costly, laborious and time-consuming endeavor [2]. 
The gap increment between the universe of determined 
3D structures and that of known sequences is proof that 
high‐throughput structural biology remains a fantasy [3], 
as the gap increases more with the consideration of avail-
able number of biomolecular complex structures [4]. By 
contrast, computational structural biology has the poten-
tial to generate protein–protein interaction models of 
high resolution [5].

The timely and accurate segregation of chromosomes 
in meiosis and mitosis is crucial for organismal and cel-
lular viability. Sister chromatids produced through DNA 
replication during mitosis maintain strong cohesion till a 
bioriented arrangement is formed on the mitotic spindle. 
The loss of sister chromatid cohesion during the transi-
tion from metaphase to anaphase allows for successful 
separation of the sister chromatids into daughter cells 
with genetic identity [6]. The sister chromatid attach-
ment to microtubules is mediated by the kinetochores 
[7]. Kinetochores become established on a part of the 
centromere (specialized chromatin), with the presence 
of CENP-A (a variant of histone H3) as a major hall-
mark [8]. The kinetochores at low resolution assume 
a laminar structure appearance, with the ends of each 
microtubule connected to its outer plate and a dense cen-
tromeric chromatin adjacent to its inner plate [9]. The 
outer kinetochore plate serves as a host for the KMN 
network (Knl1, Mis12 and Ndc80 complexes); an assem-
bly consisting of ten protein subunits that act as a micro-
tubule receptor [10, 11]. The inner kinetochore on the 
other hand serves as a host for the CCAN (constitutive 
centromere–associated network), a complex consisting 
of sixteen different centromeric proteins (CENPs) [12], 
most of which were identified originally in the verte-
brates’ CENP-A interactome [13].

The sixteen CCAN proteins of vertebrates are grouped 
into different sub-complexes, including CENP-LN, 
CENP-C, CENP-OPQUR, CENP-HIKM and CENP-
TWSX [14]. Orthologs of most of the listed sub-com-
plexes have been recognized in species like fungi [15] and 
yeast [16]. As a nucleosomal canonical H3 substitute, the 
CENP-A accumulates at the nucleosome of centromeres 
[17] for the initiation of the CCAN assembly through 
the binding to CENP-C [18] and CENP-LN [19]. Sev-
eral studies have also established the crucial role of the 
CCAN in mediating the outer kinetochore assembly [20, 
21]. CENP-T and CENP-C function as the outer kine-
tochore structural platform through direct interaction 
with the NDC80 and MIS12 complexes [22].

Many CCAN components are held in place by a cum-
bersome protein–protein interaction network [23, 24]. 

However, the exact way in which the CCAN complex 
is assembled by these interactions is yet to be com-
pletely understood. As a core CCAN subunit, CENP-
H (Mcm16/Fta3), CENP-I (Ctf3/Mis6) and CENP-K 
(Mcm22/Sim4) assemble into a ternary complex and 
are likewise crucial for the kinetochore integrity. Chro-
mosomal congression is compromised upon the loss of 
any of these proteins [25], while their localization to the 
centromere has also been revealed to be dependent on 
each other [26]. CENP-M (another subunit of the CCAN) 
through in vitro reconstitution has been shown to form 
a stable complex with the CENP-HIK via an interaction 
with the CENP-I C-terminus. This interaction is essential 
for chromosomal alignment and also for the localization 
of the CENP-IM to the centromere [27]. Although low-
resolution electron microscopy analyses have shown the 
overall CENP-HIKM organization, the specific molecular 
basis for the complex assembly remains predominantly 
uncharacterized [27].

Homology modeling has grown into a very crucial 
structural biology technique, contributing significantly to 
the gap narrowing between experimentally determined 
structures and known sequences of proteins [28]. Fully 
automated tools and workflows have streamlined and 
simplified the process of homology modeling, thereby 
allowing non-experts to generate highly reliable mod-
els of proteins and likewise provide easy access to the 
results, interpretation, and visualization of homology 
models [29]. The homology modeling role is even greater 
in the characterization of protein–protein interactions, 
given the binding modes and protein partners multiplic-
ity [30]. Protein–protein complex prediction methods fall 
into two major categories, including the free docking, in 
which binding mode sampling, based on proteins physic-
ochemical and structural complementarity, is conducted 
without any knowledge of experimentally determined 
similar complexes, and template-based (or comparative, 
homology) docking, which relies solely on similar com-
plex structures regarded as the templates [30].

With reference to the existing complex structure of 
the CENP-HIK from yeast and fungi, we have predicted 
in this study the organizational model of the human 
CENP-HIKM complex, using extensive computational 
approaches. Our result also shows great consistency 
with experimental inter-model interaction studies from 
several published literature works. Additionally, indi-
vidual models of the CENP-HIKM as reported in this 
study showed great similarity with models of the recently 
released AlphaFold protein structure database (https://​
www.​alpha​fold.​ebi.​ac.​uk/), which further supports the 
reliability of the models (Additional file 1: Figure S1).

https://www.alphafold.ebi.ac.uk/
https://www.alphafold.ebi.ac.uk/
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2 � Methods
2.1 � Reference sequence and structure retrieval
For structural validation purposes, the modeled protein 
complex (hsCENP-HIKM) was compared with structural 
orthologs with known three-dimensional structures. The 
reference sequences and structures were retrieved from 
the NCBI (National Center for Biotechnology Informa-
tion) database [31], and the PDB (Protein Data Bank) 
[32]. 5Z08 and 6YPC which represent the PDB codes 
for the crystal structures of the fungal (Thielavia ter-
restris) kinetochore CENP-HIK triple complex subunits 
and the yeast (Saccharomyces  cerevisiae) kinetochore 
CENP-HIKTW subunits, respectively, were used for 
the retrieval of the corresponding structures from the 
protein data bank. The crystal structure of the human 
CENP-M was also retrieved with the PDB code 4P0T. 
The PDB codes for each structure were submitted to the 
NCBI database to obtain their corresponding amino acid 
sequences, while the full-length sequence for each subu-
nit of the human CENP-HIK was retrieved using their 
respective accession numbers: Q9H3R5, Q92674 and 
Q9BS16.

2.2 � 3D structural modeling of the human CENP‑HIK
High-quality 3D structural models of the hsCENP-H, -I, 
and -K were individually predicted using the RaptorX 
Contact tool [33]. RaptorX Contact predicts contacts 
through the integration of both sequence conservation 
and evolutionary coupling information by using an ultra-
deep neural network formed by two residual neural net-
works. Different forms of one-dimensional sequential 
feature transformation is conducted by the first residual 
network while the second conducts different types of 
two-dimensional pairwise information transformation 
which include, pairwise potential, first residual network 
output, and evolutionary coupling information. Through 
the use of these very deep residual networks, RaptorX 
Contact accurately models patterns of contact occur-
rence and complex sequence–structure relationship 
[33]. RaptorX outperforms other predictive tools, espe-
cially in the modeling of proteins that have no close PDB 
homologs or proteins containing very few evolutionary 
information (i.e., highly sparse sequence profile). This 
tool uses deep convolutional neural fields (DeepCNF), a 
powerful deep learning model for the prediction of dis-
order regions, secondary structures, and solvent accessi-
bility. Deep convolutional neural fields in addition to its 
ability to model complex sequence–structure relation-
ships via deep hierarchical architecture also model inter-
dependencies between adjacent property labels [33].

2.3 � Structural refinement and model quality evaluation
Following successful modeling of each protein subunit 
(hsCENP-H, -I, and -K), a structural refinement proto-
col was conducted using the GalaxyRefine [34] which 
is based on a method of refinement that has success-
fully undergone trials in CASP10. In this method, side 
chains are first rebuilt and, through molecular dynamics 
simulation, an overall structure relaxation is performed. 
This approach according to the assessment by CASP10 
displayed the best potential for local structure qual-
ity improvement. Both local and global structure quali-
ties were improved upon the refinement of the RaptorX 
Contact-generated models using this method. The quality 
of each refined structural model was assessed using the 
ProSA-web program [35] which implements the z-scor-
ing function for structural analysis. Additional model 
quality assessment was conducted using the PROCHECK 
suite [36]. The PROCHECK suite delivers a comprehen-
sive stereochemistry check on protein structures. The 
generated output is made up of several PostScript format 
plots and a detailed residue-by-residue listing. This high-
lights regions of the protein structure that might require 
additional investigation and also gives an evaluation 
of the overall structural quality in comparison to well-
refined structures [36].

2.4 � Structural alignment and visualization
In order to evaluate the degree of structural similarity 
between each human model and their corresponding 
orthologs, we carried out a structural alignment proto-
col using the Alignment/Superposition function of the 
PyMOL molecular visualizer plugin [37]. PyMOL is a 
cross-platform tool for molecular graphics and it has 
been popularly used for the 3D visualization of trajecto-
ries, surfaces, electron densities, small molecules, nucleic 
acids and proteins. The tool is also used for movie mak-
ing, molecule editing and ray tracing. PyMOL being a 
Python-based software has been designed along with 
many plugin tools to facilitate its usage for the 3D visuali-
zation of macromolecules as performed in this study [37].

2.5 � Validation of residue conservation
Specific residues of CENP-H and CENP-M have been 
reported in different studies as essential in facilitating 
intermolecular interaction with residues of other subu-
nits in the complex [38]. We validated the evolutionary 
conservation of these residues with the use of ConSurf 
[39]. ConSurf is popularly used for the detection of 
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macromolecules’ functional regions, through the analysis 
of the evolutionary dynamics of nucleic acid and amino 
acid substitutions in homologous sequences. The tool 
evaluates the nucleic acid and amino acid evolutionary 
rates by mapping them onto the structure or sequence 
of the query macromolecule. Slowly evolving regions 
on the surface of the query macromolecule are known 
to be essential for functionality and thus, the analysis of 
ConSurf can highlight very important regions within the 
query macromolecule [39].

2.6 � Protein–protein docking
The molecular docking protocol for the purpose of pre-
dicting the binding modes and pattern of organization 
of each member of the CENP-HIKM complex was con-
ducted using ClusPro [40], which is a popularly used tool 
for the docking of different proteins. ClusPro provides 
multiple computational steps: rigid docking sampling 
of billions of conformations, RMSD (root-mean-square 
deviation)-based clustering of structures with the low-
est energy (which are generated to detect the largest 
clusters that will represent the complex’s closest mod-
els), and energy minimization refinement of selected 
structures. ClusPro employs PIPER, a docking algorithm 
that is anchored on the Fast Fourier Transform (FFT) 
correlation technique, to dock the rigid body. The FFT 
technique has made significant progress in rigid body 
protein–protein docking [40]. The method involves plac-
ing a protein (the receptor) at the coordinate system ori-
gin on a fixed grid and another protein (the ligand) on a 
moveable grid, with the energy of interaction represented 
as a correlation function. The numerical efficiency is 
reinforced by the fact that such energy functions can be 
generated quickly, allowing for the sampling of various 
conformations of protein–protein interactions as well as 
the evaluation of grid point energies. As a result, an FFT-
based approach allows for protein docking without prior 
knowledge of their structures [40].

2.7 � Normal mode analysis and molecular dynamics 
simulation

The normal mode dynamics of the hypothetical hsCENP-
HIKM complex was assessed using the iMOD [41] 
and DynaMut [42] tools. This analysis was directed at 
determining the stability of the docked complex and 
also for the exploration of the protein–protein interac-
tion dynamics. iMOD analyses the conformational flex-
ibility of nucleic acid and protein structures by utilizing 
the normal mode analysis in internal coordinates. Con-
sidering the dihedral angles as variables lowers the non-
physical distortions and cost of computation of classical 
Cartesian normal mode analysis approaches. Operation 

of the framework is at various coarse-grained levels and 
delivers an active framework for the conduction of nor-
mal mode analysis-based conformational studies which 
include pathway exploration, vibrational analysis or 
Monte Carlo simulations [41]. The iMOD normal mode 
analysis also functions as a rational option for atomis-
tic simulation. The stiffness of motion is presented by a 
given value while covariance matrix, eigenvalue, deform-
ability and elastic network model are also calculated 
[41]. DynaMut on the other hand implements normal 
mode analysis using two different methods, ENCoM and 
Bio3D, delivering simplified and rapid access to insightful 
and efficient protein motion analysis [42].

Furthermore, each component of the CENP-HIKM 
sub-complex was subjected to molecular dynamics simu-
lation using the 2019.2 version of the GROMACS soft-
ware [43]. First vacuum minimization was performed for 
5000 steps using the steepest descent algorithm. Individ-
ual structures were further solvated in a triclinic box type 
with an SPC (simple point charge) water model. Subse-
quently, systems were maintained with an appropriate 
concentration of salt (0.15  M) through the addition of 
sodium and chloride counter ions. System equilibration 
was carried out using the NVT/NPT equilibration types 
at a temperature of 300  K. Each simulation was per-
formed for 100 ns, followed by post-simulation analyses 
which include the RMSD (root-mean-square deviation), 
Rg (radius of gyration), SASA (solvent-accessible sur-
face area) and the PCA (principal component analysis) 
calculations.

2.8 � In silico mutagenesis
To assess the consistency of the predicted CENP-HIKM 
organizational pattern with experimental reports from 
previous studies [38], in silico mutants of the CENP-H 
and CENP-M were designed using the Chimera-curated 
backbone-dependent Dunbrack rotamer library [44]. 
The backbone-dependent rotamer library is composed 
of variances, rotamer frequencies, and mean dihedral 
angles as a function of the backbone dihedral angles. 
The prediction of structures and methods of design 
that utilizes backbone flexibility benefit strongly from 
smoothly varying angles and probabilities. A new back-
bone-dependent rotamer library version was developed 
to use adaptive kernel regression for variances and mean 
dihedral angle calculations and also the adaptive kernel 
density calculations for the frequency of rotamers. This 
design creates an avenue for the estimation of variances, 
probabilities of rotamers, and mean angles as a con-
tinuous and smooth function of psi and phi [44]. The 
estimation of continuous probability density for the non-
rotameric degrees of freedom of aromatic side chains, 
amides, and carboxylates was modeled as a function 
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of the rotamers and backbone dihedrals of the residual 
degrees of freedom.

2.9 � Binding free energy prediction
The binding free energy of the wild-type protein com-
plex and the change in binding free energy upon muta-
tion was predicted using different predictive tools, such 
as BeAtMuSiC [45], mCSM-PPI2 [46], mmCSM-PPI [47], 
MutaBind2 [48] and HawkDock [49]. BeAtMuSiC is a 
coarse-grained prediction tool for the binding free energy 
changes as a result of point mutations. The algorithm 
depends on a set of statistical potentials extracted from 
proteins with known structures and combines the muta-
tion effect on the overall complex stability and on the 
strength of the protein–protein interactions at the inter-
face [45]. mCSM-PPI2 is a novel machine learning tool 
developed for the precise prediction of missense muta-
tion effects on the binding affinity of protein–protein 
interactions. The tool utilizes graph-based structural sig-
natures for the modeling of variation effects on energetic 
terms, complex network metrics, evolutionary informa-
tion and inter-residue interaction network for the genera-
tion of an optimized prediction tool [46]. mmCSM-PPI 
is an effective and scalable machine learning tool for the 
accurate assessment of protein–protein interaction bind-
ing affinity changes resulting from multiple and single 
missense mutations. The tool utilizes a well-established 
graph-based signature in capturing geometrical and 
physiochemical properties of various wild-type residues 
and integrates them with both normal mode analysis 
dynamics terms and substitution scores [47]. MutaBind2 
estimates protein–protein interaction binding affinity 
changes as a result of single- and multiple-site mutations 
in corresponding sequences. The tool makes predic-
tions based on the protein–protein complex structure. 
MutaBind2 uses rapid side chain optimization algorithms 
built through random forest method, mechanics force 
fields and statistical potentials. The training set used for 
the development of multiple and single models of muta-
tion consists of 1707 multiple mutations from 120 pro-
tein complexes and 4191 single mutations from 265 
protein complexes, respectively [48]. The development of 
HawkDock was targeted at the prediction and analysis of 
protein–protein interactions through the integration of 
the MM/GBSA free energy decomposition analysis, ATT​
RAC​T docking algorithm and the HawkRank scoring 
function. The integration of MM/GBSA into HawkDock 
is to serve the purpose of analyzing important residues in 
the binding interface of protein–protein interactions and 
also for the purpose of model re-ranking [49].

2.10 � Interatomic interaction analysis
The existing non-covalent interactions between subunits 
of the CENP-HIKM complex were analyzed using Arpeg-
gio [50]. The program is implemented in Python and it 
calculates interactions between and within proteins and 
small-molecule ligands, protein or DNA. Analyzed inter-
actions in this study include van der Waals’, hydrogen 
bonds and hydrophobic interactions.

3 � Results
3.1 � Modeling of the human CENP‑H, CENP‑I and CENP‑K
Structural models were generated using the amino acid 
sequence of each protein as described in the methods 
segment, as input. The 3D structure prediction method 
employed by RaptorX contact is unique in that it makes 
a simultaneous prediction of all protein contacts, which 
allows for an easy modeling of high-order residue cor-
relation. The output provides 5 different models that 
are ranked by estimated root-mean-square deviation 
(RMSD). The estimated RMSD is a calculated average 
deviation distance in Å of a 3D model from its experi-
mental structure. The smaller the estimated RMSD value 
is, the higher the likelihood of the 3D model to good 
quality. The estimated RMSD values of the top rank mod-
els for CENP-H, -I and -K (Fig. 1) are 5.7546 Å, 13.445 Å 
and 5.7311  Å, respectively. All generated models share 
high similarity with the PDB structures of their respec-
tive orthologs (Additional file 1: Figures S2 and S3) and as 
such were selected for structural refinement.

Fig. 1  Predicted 3D models of the human CENP-H (blue), CENP-I 
(pale yellow) and CENP-K (green) showing close similarity with 
X-ray crystal structures of fungal (PDB 5Z08) and yeast (PDB 6YPC) 
orthologs
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3.2 � Model quality evaluation
Following the structural refinement of the three models 
with GalaxyRefine, we proceeded with the protocol for 
the quality evaluation of each model. Using the ProSA-
web, the z-score for each model was obtained (Additional 
file 1: Figure S4). The z-score is an indication of the over-
all model quality. hsCENP-H, hsCENP-K and hsCENP-I 
produced individual z-scores of -3.17, -4.66 and -7.38, 
respectively, indicating that all the three models fall 
within the quality range of the nuclear magnetic reso-
nance (NMR) as shown in the Additional file 1: Figure S4.

The PROCHECK suite was used for the calculation 
of the stereochemical quality of the models through the 
analysis of the overall structural and individual residue 
geometry. The Ramachandran plot for each modeled pro-
tein showed that over 92% of the residues were located 
in the most favorable region, with an average of 5.4% of 
the residues located in the allowed region while less than 
0.4% were in the disallowed region (Additional file 1: Fig-
ure S5). Based on the analysis of 118 structures with a 
minimum of 2.0 Å and a maximum R-factor value of 20%, 
it is expected that a good-quality model will have more 
than 90% of its residues in the most favored region.

3.3 � Structural alignment
Previous studies have reported a high degree of sequence 
conservation between the various subunits of the CENP-
HIK complex across different organisms [14, 51]. It is 
therefore expected that the human model of each subunit 

displays a high level of structural similarity with the ref-
erence structures from fungi and yeast (Fig. 2) to further 
validate the reliability and quality of the models.

3.4 � Computational validation of residue conservation
Details of the CENP-HK binding interface at the C-ter-
minal were revealed in the crystal structure of the fun-
gal HIK complex (5Z08). The side chain of ILE-205, 
ILE-211 and LEU-219 from thCENP-H were shown to 
insert into the hydrophobic pocket of thCENP-K which 
is surrounded by several residues, including LEU-177, 
TRP-179, PHE-180, HIS-184, ILE-270 and PHE-300. On 
the CENP-HI interface, thCENP-H uses its contacting 
helix (HH2) in interacting with the ctCENP-INT HEAT 
repeat. A salt bridge was reported to be formed between 
the ARG-220 of thCENP-H and the GLU-86 of ctCENP-
INT, while the LEU-224 was reported to insert into the 
ctCENP-INT hydrophobic pocket (surrounded by LEU-
89, VAL-126 and VAL-130) [14]. The alignment of amino 
acid sequences from different orthologs of CENP-H (T. 
terrestris, G. gallus, O. aries, R. norvegicus, M. musculus 
and H. sapiens) revealed a high degree of conservation in 
favor of the CENP-K and -I-binding residues of the pro-
tein, which in human correspond to LEU-219, VAL-225, 
LEU-233, LYS-234 and LEU-238 [14]. Using ConSurf, we 
validated the degree of conservation of the reported resi-
dues in the hsCENP-H model. The output depicted that 
all the five reported residues (LEU-219, VAL-225, LEU-
233, LYS-234 and LEU-238) are conserved with varying 
degrees of conservation (Additional file 1: Figure S6).

In a similar study involving the human CENP-M (PDB 
4P0T), conserved surface residues were also identified to 
be involved in the interaction with the C-terminal of the 
hsCENP-I an interaction which leads to the stabilization 
of the hsCENP-I and likewise required for an unabated 
kinetochore localization [38]. Using the same computa-
tional approach, the reported conserved surface residues 
of the hsCENP-M were also shown to be conserved and 
each exhibits varying degrees of conservation (Additional 
file 1: Figure S6B), hence validating experimental reports 
from the previous studies.

3.5 � Protein–protein docking study
With the availability of the hsCENP-M crystal structure 
(PDB 4P0T) and having successfully generated high-
quality models for each component of the hsCENP-HIK 
complex, we proceeded with the docking of the subu-
nits. According to the Hu et al. [14] model, biochemical 
analysis and structures revealed that the thCENP-K and 
thCENP-H form a heterodimer via interactions at both 
N-terminal and C-terminal. The integration of ctCENP-
INT into the complex is through its interaction with 
the thCENP-H C-terminal, resulting in the formation 

Fig. 2  Alignment of the CENP-HIK subunits from fungi, yeast and 
the human models. A structural alignment of the hsCENP-HCT, 
thCENP-HCT and scCENP-HCT, colored in yellow, green and blue, 
respectively. B and C also show the structural alignment of CENP-KCT 
and CENP-I from the three organisms, colored in yellow, green and 
blue, respectively. The alignment shows a high degree of structural 
similarity between the structures
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of a ternary complex where thCENP-H is sandwiched 
between ctCENP-INT and thCENP-K [14]. The study 
also reported the conservation of this architecture in the 
human HIK complex. Upon the stepwise docking of each 
generated model of the hsCENP-H, -I, and -K, the result-
ing output showed a similar architecture to the experi-
mental reports from the literature, suggesting a structural 
conservation across the species (Fig. 3).

In a similar study, Basilico et  al. [38] reported the 
structural organization of the hsCENP-HIKM complex, 
using a computational model to represent the full-length 
hsCENP-I as there existed no full-length ortholog of the 
protein. Consistent with existing literature reports, the 
molecular docking output also showed that the hsCENP-
M binds to the C-terminal of the full-length hsCENP-
I model (Fig.  3) in an appearance that resembles the 
importin-β/Ran complex as reported by Basilico et  al. 
[38]. The α-solenoid fold of importin-β is consistently 
reported to be a high-confidence hsCENP-I structural 
modeling template [38] (Fig. 4).

3.6 � Normal mode analysis
The quality and stability of the hypothetical hsCENP-
HIKM model were evaluated through the iMod-esti-
mated elastic network map, deformability, covariance 
map, eigenvalue and the B-factor (Fig.  5). The deform-
ability of the main chain is an estimation of the deforma-
tion capability of a molecule at each of its residues. The 
B-factor (a crystallographic atomic displacement param-
eter) is reported for the most X-ray crystal structure of 
proteins, and it is directly related to the fluctuations due 
to static disorder or motion in structures. The B-factor 
also provides a measure of an averaged root mean square 
(RMS). Motion stiffness is represented by the eigen-
value that is associated with each normal mode. Its value 
is related directly to the required energy for structural 
deformation. The green- and red-colored bars show the 
cumulative and individual variances, respectively, while 
the covariance matrix denotes residue pair coupling, 
i.e., whether the paired residues experience anti-corre-
lated, uncorrelated or correlated motions (colored in 

Fig. 3  Cartoon and surface representation of the (A) fungal (PDB 
5Z08), (B) yeast (PDB 6YPC), and (C) human model of the CENP-HIK 
structural architecture. All CENP-H (thCENP-H184−227, scCENP-H147−181, 
and hsCENP-H194−247) are sandwiched between CENP-I (ctCENP-I8−229, 
scCENP-I2−241, and hsCENP-I1−265) and CENP-K (thCENP-K161−328, 
scCENP-K136−237, and hsCENP-K161−269). The blue, green and pale 
yellow colors denote CENP-H, CENP-K and CENP-I, respectively, for all 
species

Fig. 4  A Cartoon and B surface representation of the docked 
hsCENP-HIKM complex. The hsCENP-I is colored in two shades of 
yellow in order to distinguish the N-terminal (pale yellow) from 
the C-terminal. The binding of the hsCENP-M to the C-terminal of 
hsCENP-I shows great resemblance with the previously described 
binding of Ran to importin-β. The hsCENP-H, hsCENP-K and hsCENP-M 
are colored in blue, green and red, respectively
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blue, white and green, respectively). Atom pairs that are 
connected by springs are defined by the elastic network 
model. Each graphical dot represents a spring between 
the corresponding atom pairs. The dots are colored based 
on their stiffness, which means the darker gray colors 
denote stiffer springs and vice versa. Figure  5 shows 
an average root mean square in the B-factor and an 

insignificant hinge. The high eigenvalue (1.375238e-06) is 
an indication of a low deformation chance, while the elas-
ticity and correlation also demonstrated the high quality 
of the hypothetical protein complex model (Fig. 5).

To delineate the stability dynamics of individual com-
ponents of the CENP-HIKM sub-complex of the CCAN, 
we performed a 100  ns molecular dynamics simulation, 

Fig. 5  Normal mode analysis output for the hsCENP-HIKM complex model, showing the (A) main-chain deformability, (B) B-factor (Å2), (C) 
eigenvalues, (D) variance, (E) covariance map and the (F) elastic network map
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followed by different post-simulation analyses. The sta-
bility profile of each component of the sub-complex was 
first assessed through the RMSD calculation (Fig.  6A). 
The RMSD in bioinformatics is a measure of the distance 
backbone atoms of superimposed macromolecules. Infer-
ence regarding the stability of a protein can therefore be 
derived from its degree of deviation, as lower degree of 
deviation signifies a high level of protein stability [52].

The Rg (radius of gyration) is known as the distribu-
tion of protein atoms around its axis. Calculations of 
distance and radius of gyration are the most significant 
and widely used structural activity prediction indica-
tors [53]. Protein compactness is directly related to the 
folding rate of the protein, and these parameters can be 
monitored through the calculation of the radius of gyra-
tion [53]. For each component of the CENP-HIKM com-
plex, the degree of compactness was assessed through the 

calculation of their individual radius of gyration (Fig. 6B). 
Additionally, the solvent accessibility and the degree of 
motility of individual components were evaluated via the 
calculation of their individual SASA (solvent-accessible 
surface area) (Fig.  7A) and PCA (principal component 
analysis) (Fig.  7B), both of which are also key indica-
tors of the stability of proteins [54]. Taking together the 
resulting output of each post-simulation analysis over 
the 100 ns simulation period, CENP-I has been shown to 
be the most unstable of the four components of the sub-
complex (Figs. 7 and 8).

A similar analysis was conducted using DynaMut. The 
DynaMut normal mode analysis protocol is based on a 
bio3D package that utilizes a default C-alpha force field. 
The DynaMut-calculated deformation energy gives an 
estimation of protein complex local flexibility, while the 
atomic fluctuation shows the amplitude for the absolute 

Fig. 6  Root-mean-square deviation and radius of gyration plots for 
the individual components of the CENP-HIKM sub-complex. A shows 
the RMSD evaluation of the sub-complex components, while (B) 
displays the Rg plot for each protein making up the sub-complex. 
Trajectories of the CENP-H, CENP-I, CENP-K, and CENP-M are colored 
in black, red, green, and blue, respectively

Fig. 7  Solvent-accessible surface area and principal component 
analysis plots for the individual components of the CENP-HIKM 
sub-complex. A shows the SASA plot of the sub-complex 
components, while (B) displays the PCA plot for each protein making 
up the sub-complex. Trajectories of the CENP-H, CENP-I, CENP-K and 
CENP-M are colored in black, red, green and blue, respectively
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atomic motion. The predominant blue coloration of the 
3D protein complex structure as depicted in Fig. 8A and 
B denotes a high level of structural stability. All calcula-
tions were performed over the first ten non-trivial modes 
of the protein complex. Included in the DynaMut output 
also is the flexibility trajectory of the protein complex 
based on normal mode analysis (Fig. 8C), and the correla-
tion map which reveals the anti-correlated and correlated 
regions in the protein complex. Both regions (anti-corre-
lated and correlated) on the map are colored in blue and 
red, respectively (Additional file 1: Figure S7). A 3D ani-
mation was also generated to simulate the motion of the 
protein complex (Additional file 2: Figure S8).

3.7 � In silico mutagenesis and binding free energy 
prediction

Following the experimental mutational analysis from pre-
vious studies [14, 38], we designed in silico mutants of the 
hsCENP-H and hsCENP-M in an attempt to validate the 
predicted interactions between each subunit of the hypo-
thetical hsCENP-HIKM complex (Additional file  1: Fig-
ures S9 and S10). In order to validate predicted interface 
interactions between the C-terminal of the hsCENP-H 
and other subunits (C-terminal of the hsCENP-K and the 

N-terminal of the hsCENP-I), Hu et al. [14] constructed 
several mutants of the protein (L219A, V225A, L233A, 
K234A and L238A) based on residue conservation. The 
mutated residues correspond to ILE-205, ILE-211, LEU-
219, ARG-220 and LEU-224, respectively, in the thCENP-
H. A dramatic reduction in binding affinity was recorded 
upon the mutation of each residue to alanine, indicating 
that the residues are essential for the protein–protein 
interaction of the complex. In a similar study by Basilico 
et al. [38], mutants of the hsCENP-M (L94A and L163E) 
were also designed based on residue conservation anal-
ysis and the mutation of both residues to alanine and 
glutamate, respectively, affected the interaction of the 
protein with the C-terminal of the hsCENP-I (Table 1).

Having successfully designed the in silico mutants of 
these proteins in line with reports from the existing lit-
erature, we predicted the binding free energy changes 
using several predictive tools as reported in the Mate-
rials and Methods section. The reduction in binding 
free energy as a result of these mutations shows the 

Fig. 8  Visual analysis of the hypothetical hsCENP-HIKM complex (A) 
deformation energy and (B) atomic fluctuation. The deformation and 
fluctuation magnitude is represented by the differential coloration 
of the 3D structure. Low, moderate and high deformation and 
fluctuation magnitudes are represented by the blue, white and red 
colors, respectively. (C) NMA-based representation of the trajectory 
for the first non-trivial mode of the hypothetical hsCENP-HIKM 
complex. The figure shows the superimposition of each mode in the 
trajectory

Table 1  PDB codes of existing 3D structures of the CCAN CENP-
HIKMTW subunits

The first column shows the name of each corresponding subunit protein, while 
the second, third, and forth columns display the names and PDB IDs of each 
represented organism

Proteins Fungal 
structures

Yeast structures Human 
structures

CENP-H 5Z08 6YPC –

CENP-I 5Z08 6YPC –

CENP-K 5Z08 6YPC –

CENP-M – 6YPC –

CENP-T – 6YPC –

CENP-W – 6YPC –

Table 2  BeAtMuSiC-predicted change in binding affinity as a 
result of mutation

With the main input being the protein–protein complex structures, the output 
reports the mutated chains, the specific mutations, change in binding free 
energy (Kcal/mol) and solvent accessibility, both in partner and in complex. 
Solvent accessibility depicts the solvent-accessible surface ratio in the structure, 
based on DSSP computation

Chain(s) Mutation(s) ΔΔGbind 
(kcal /
mol)

SA (in 
partners)

SA (in complex)

H L219A 2.91 51.27% 0.52%

H V225A 0.42 42.55% 38.91%

H L233A 0.89 13.46% 13.46%

H K234A 1.70 44.29% 8.41%

H L238A 1.84 49.72% 9.84%

M L94A 1.85 36.25% 2.07%

M L163E 1.23 45.05% 20.71%
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consistency of our computational model with experi-
mental reports (Tables 2, 3, 4 and 5).

The binding free energy of the wild-type and mutant 
complexes were further estimated using the MM/GBSA 
approach which calculates ΔΔGbind based on molecular 
dynamics simulation of the protein–protein complex. 
The prediction which was achieved using HawkDock 
is intermediate both in accuracy and in computational 
effort between strict alchemical perturbation and 
empirical scoring methods. The output revealed the 
total binding energy scores on per-residue bases for 
both wild-type and mutant complexes (Tables 6 and 7). 
Detailed contribution of each residue in the complex 
can be accessed from Additional file 3: Tables S1–S6.

3.8 � Interatomic interaction analysis
Protein–protein interactions are essential for regular 
biological processes and for the regulation of cellular 

reactions that affect the function and expression of genes. 
Several studies [49] have elucidated the role of protein–
protein complex interface residues in conferring specific-
ity and stability. Interface residues of proteins are known 
to interact with main chain and side chain atoms of their 
interacting partners. However, the impact and relative 
contribution of inter-protein interactions involving inter-
face residue as compared to intra-protein interactions 
in protein–protein complexes are unclear. In order to 
ensure that essential interactions involved in the binding 
affinity and stability of the hypothetical hsCENP-HIKM 
complex are not overlooked, we report the observed 
changes in interatomic interactions of the wild-type 
and mutant protein complex subunits (Tables  8 and 9). 
A comparative study of the wild-type and mutant pro-
tein complexes showed that both inter- and intra-model 
interactions contributed to the stability of the complex 
(Additional file  1: Figures  S11-S13). Upon the mutation 
of each residue, a dramatic loss of specific interatomic 
interactions (van der Waals interactions, hydrogen bond 

Table 3  mCSM-PPI2 binding affinity change prediction upon 
residue mutation

The wild-type structure is required as input, while the output displays the 
mutated chains, position of each mutated residue, the wild-type residues, 
mutants, binding free energy change in Kcal/mol and the effect of each 
mutation on the binding affinity of the protein to its interacting partner

Chain(s) Position Wild-type 
residues

Mutant 
residues

ΔΔGAffinity 
(Kcal/mol)

Effect

H 219 LEU ALA  − 1.387 Decreasing 
affinity

H 225 VAL ALA  − 0.22 Decreasing 
affinity

H 233 LEU ALA  − 0.427 Decreasing 
affinity

H 234 LYS ALA  − 2.149 Decreasing 
affinity

H 238 LEU ALA  − 1.091 Decreasing 
affinity

M 94 LEU ALA  − 1.615 Decreasing 
affinity

M 163 LEU GLU  − 1.19 Decreasing 
affinity

Table 4  mmCSM-PPI-predicted binding affinity change upon residue mutation

Using the 3D structure of the wild-type complex as input file, the tool display details about the mutated chains, mutated residues, average distance of the mutated 
residue from its closest interacting partner, individual binding free energy change in Kcal/mol, average (predicted) binding free energy change in Kcal/mol, and the 
impact of each mutation on the binding affinity of the complex

Chain(s) Mutation(s) Average distance (Å) Individual ΔΔGBinding 
(Kcal/mol)

Predicted ΔΔGBinding 
(Kcal/mol)

Effect

H L219A
V225A
L233A

9.75  − 1.39
 − 0.22
 − 0.43

 − 1.15 Decreasing affinity

H K234A
L238A

6.16  − 2.15
 − 1.09

 − 2.88 Decreasing affinity

M L94A
L163E

4.84  − 1.61
 − 1.19

 − 2.09 Decreasing affinity

Table 5  MutaBind2 mutation-induced change in binding 
affinity prediction

The input requires the PDB structure of the protein complex with a minimum of 
two distinct chains

A negative and positive ΔΔGbind (kcal/mol) value correspond to stabilizing and 
destabilizing mutations, predicted to increase and decrease the binding affinity, 
respectively

An all-positive value for the MutaBind2 output denotes a destabilizing effect on 
the protein–protein interaction

Chain(s) Mutation(s) ΔΔGBinding 
(Kcal/mol)

H L219A 1.95

H V225A 0.28

H L233A 0.8

H K234A 0.13

H L238A 2.18

M L94A 1.88

M L163E 0.7



Page 13 of 18Uzoeto et al. Beni-Suef Univ J Basic Appl Sci          (2022) 11:101 	

Table 6  HawkDock-MM/GBSA per-residue binding energy for the wild-type protein–protein complexes

The output displays the mutated chains, residue positions, van der Waals potential, electrostatic potential, generalized born scores, solvent accessibility and the total 
binding energy score

Chain(s) Position Residue(s) VDW ELE GB SA Total (Kcal/mol)

H 119 LEU  − 3.88  − 2.80 2.74  − 0.68  − 4.62

H 225 VAL  − 0.06  − 0.36 0.31 0  − 0.11

H 233 LEU  − 0.04 0.17  − 0.15 0  − 0.02

H 234 LYS  − 1.73 1.37  − 0.27  − 0.35  − 0.98

H 238 LEU  − 1.11 1.63  − 1.02  − 0.26  − 0.75

M 94 LEU  − 3.54  − 1.07 1.98  − 0.55  − 3.18

M 163 LEU  − 2.38  − 0.58 0.7  − 0.36  − 2.62

Table 7  HawkDock-MM/GBSA per-residue binding energy for the mutant protein–protein complexes

The output displays the mutated chains, residue positions, van der Waals potential, electrostatic potential, generalized born scores, solvent accessibility and the total 
binding energy score

Chain(s) Position Residue(s) VDW ELE GB SA Total (Kcal/mol)

H 119 ALA  − 1.88  − 1.59 1.70  − 0.37  − 2.14

H 225 ALA  − 0.04  − 0.38 0.43 0 0.01

H 233 ALA  − 0.02 0.37  − 0.35 0 0

H 234 ALA  − 3.60 71.35 -66.21  − 0.74 0.80

H 238 ALA  − 1.32 1.66  − 1.05  − 0.36  − 1.07

M 94 ALA  − 1.07  − 1.55 2.04  − 0.16  − 0.74

M 163 GLU  − 2.82  − 57.81 62.05  − 0.40 1.01

Table 8  Interatomic interactions for the wild-type hypothetical hsCENP-HIKM complex

The first and second columns show the chains and residues of interest, while the remaining columns represent the observed interaction types (van der Waals, 
hydrogen bond and hydrophobic interactions, respectively). Specific chains and residues that form a interaction with the residues of interest (wild-type residues) are 
presented in the corresponding columns for each interaction type

Chain(s) Residue(s) VDW H-bond Hydrophobic

H LEU-219 H: GLN-217
H: LEU-221
H: SER-223

H: GLN-217; K: HIS-187
H: GLY-222
H: SER-223

K: PHE-183
K: HIS-187
K: PHE-188

H VAL-225 H: SER-223 H: ILE-220
H: SER-223
H: TRP-227

H: ILE-220
H: LEU-223

H LEU-233 H: GLU-235 H: ASP-230
H: ILE-236
H: VAL-237

H: ILE-220
H: VAL-225
H: ASP-230
H: ILE-236

H LYS-234 H: TRP-227; I: GLY-186
H: ASP-230; I: PHE-187
H: ALA-232; I: PHE-189

H: TRP-227; I: LEU-183
H: ASP-230
H: PRO-231
H: LEU-238

H: TRP-227; I: PHE-187
I: PHE-189

H LEU-238 H: LEU-240; I: GLN-180
I: LEU-183

H: LYS-234; I: LEU-183
H: GLU-235

I: VAL-145
I: LEU-183
I: PHE-187

M LEU-94 M: ALA-90
M: SER-91
M: PHE-92

M: ALA-90
M: SER-91
M: LYS-96
M: LEU-163

M: LEU-163; I: ARG-281
M: LEU-166; I: TRP-461

M LEU-163 M: SER-161
M: LEU-165

M: LEU-94; I: TRP-461
M: SER-161
M: LEU-166

M: LEU-94; I: CYS-426
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interactions and hydrophobic interactions) was observed, 
which speculatively led to the reported reduction in 
the experimental and predicted binding affinity of the 
mutants.

4 � Discussion
Being a busy environment, thousands of molecules con-
stantly interact in the cell and through information 
exchange define the cellular metabolic state. Among all 
cellular homeostasis contributors, proteins are both the 
most active and most abundant [55]; therefore, under-
standing their interactions and delineating their infor-
mation-sharing mechanism is essential for a detailed 
comprehension of cellular functionality. This further 
provides the first approach toward rational therapeutic 
agent development against many incapacitating or deadly 
diseases [56]. Despite the advances in structure deter-
mination through experimental methods, most of the 
known protein–protein interactions still have no atomic 
structure. NMR spectroscopy and X-ray crystallogra-
phy, both of which are high-resolution techniques strug-
gle with high-throughput demand, while low-resolution 
methods like small-angle X-ray scattering and Cryo-
electron microscopy provide excessively coarse data. The 
development of molecular docking or computational 
structure prediction was first aimed at complementing 

experimental results but has since developed into a lively 
and independent research field [57].

Elucidating the organization and structural architec-
ture of the CCAN is crucial for the understanding of 
the functionality and assembly of the kinetochore. The 
CENP-H, CENP-I, CENP-K and CENP-M, among other 
subunits of the CCAN, have previously been reported to 
form a stable complex based on reconstitution experi-
ments and proteomic analyses [23, 58]. Our study for the 
first time presents a computationally modeled high-qual-
ity structure of the human CENP-HIKM complex (Fig. 4) 
alongside a detailed report of the inter- and intra-residue 
interactions. Previously reported computational model 
of the hsCENP-I suggests that it assumes a fold in form 
of an α-solenoid which shares a resemblance with the 
folding of β-importin [59, 60]. The hsCENP-I N-terminal 
domain (composed of residues 57–281) was also reported 
to be sufficient enough for the binding of the hsCENP-H 
and hsCENP-K while the hsCENP-M sufficiently binds to 
the C-terminal domain. Contiguity between CENP-H, -I, 
and -K was hypothesized on the basis of proteomic anal-
ysis involving precipitates from phenotypic similarities as 
a result of individual subunit depletion, from two-hybrid 
interaction data and from cell lysates [61]. Additional 
analyses suggest that the revealed complex interaction is 
a representation of the evolutionarily conserved assem-
bling mechanism of the CENP-HIK complex [14].

Table 9  Interatomic interactions for the mutant hypothetical hsCENP-HIKM complex

The first and second columns show the mutated chains and residues of interest, while the remaining columns represent the observed interaction types (van der Waals, 
hydrogen bond and hydrophobic interactions, respectively). Specific chains and residues that interact with the mutant residues are presented in the corresponding 
columns for each interaction type

Chain(s) Residue(s) VDW H-bond Hydrophobic

H ALA-219 H: PHE-216
H: GLN-217
H: LEU-221
H: SER-223

H: VAL-215
H: PHE-216
H: SER-223

K: PHE-183
K: PHE-188

H ALA-225 H: ILE-220 H: ILE-220 H: ILE-220

H ALA-233 H: GLU-235 H: ASP-230
H: ILE-236
H: VAL-237

H: TRP-227
H: ASP-230

H ALA-234 H: ASP-230; I: LEU-183
H: ALA-232
H: VAL-237
H: LEU-238

H: TRP-227; I: LEU-183
H: ASP-230
H: PRO-231
H: LEU-238

I: PHE-189

H ALA-238 H: GLU-235
H: LYS-242

H: LYS-234
H: GLU-235
H: VAL-237

I: LEU-183
I: PHE-187

M ALA-94 M: ALA-90
M: SER-91
M: PHE-92
M: LYS-96
M: LEU-166

M: ALA-90
M: SER-91
M: LYS-96
M: LEU-163

M: LEU-163; I: TRP-461
M: LEU-166

M GLU-163 M: SER-161
M: LEU-165
M: LEU-166

M: LEU-94; I: TRP-461
M: SER-161
M: LEU-166

M: LEU-94
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Structures of biologically essential proteins are con-
sistently in high demand, especially the large proteins 
and those that are members of complex systems. It is, 
however, not always feasible, for numerous reasons, 
to experimentally generate high-resolution structures 
using NMR, cryo-electron microscopy or X-ray crystal-
lography. Among the numerous challenges are the poor 
diffraction of crystals, high aggregation and low stabil-
ity of proteins [62]. In silico molecular modeling in this 
situation can provide a high-quality alternative for exper-
imental research. One of the most challenging compu-
tational biology problems has been shown to be the de 
novo structure prediction of proteins only from amino 
acid sequences [33]. Recent advances in the field have 
revealed that some accurately predicted long-range con-
tacts may permit correct topology-level structural mod-
eling [63] and that the DCA (direct evolutionary coupling 
analysis) for most multiple sequence alignments may 
generate an appreciable amount of long-range native 
contacts for protein–protein interactions and proteins 
with a large number of homologous sequences [64, 65]. 
We have therefore employed the contact-assisted fold-
ing of proteins and contact prediction in the modeling 
of each subunit of the hsCENP-HIK 3D structure (Fig. 1, 
Additional file 1: Figures S2 and S3).

Significant improvement has been made toward the 
generation of potential protein–protein interaction net-
works with the use of mass spectrometry, yeast two-
hybrid assays [66] and high-throughput proteomics 
studies [67]. X-ray crystallography-obtained atomic-level 
details are frequently required for the mechanistic inter-
pretation of observed interactions [68]. However, the 
occurrence of most biologically relevant interactions is 
in transient protein complexes, which makes the experi-
mental determination of their structures largely difficult, 
even when the structures of the interacting partners are 
known. Computational docking approaches have there-
fore been designed for the structural prediction of pro-
tein complexes with an accuracy similar to that provided 
by X-ray crystallography [69, 70]. A substantial amount 
of models with well-defined atomic positions are usu-
ally generated after protein–protein docking protocols, 
but the currently available scoring functions possess low 
predictive accuracy for reliable discrimination of models, 
and most often, models closest to the native structure are 
not easily detected solely through computational tools 
[70]. However, our near-native model selection in this 
study was guided by the architectural similarity of each 
generated model with the fungal and yeast orthologs of 
the protein complex, previously reported to be evolution-
arily conserved (Fig. 3).

The main cellular functions such as DNA replication, 
transcription, translation, protein folding and turnover 

are directed by large macromolecular complexes such 
as proteasomes, chaperonins, ribosomes and polymer-
ases. The mechanism of action of these macromolecules 
is often dynamic and requires collective and large con-
formational changes [71]. Normal mode analysis is an 
approach that can be used for the description of the 
accessible flexible states of a protein around an equilib-
rium position based on small oscillation physics. When 
a macromolecule in a minimum energy conformation 
is perturbed slightly, a force is activated to restore the 
system back to its state of equilibrium [72]. There is 
always an equal division of vibrational energy in the sys-
tem so that all vibrational modes have equal energy and 
the average amplitude of oscillation for any given mode 
scales as the inverse of its frequency. Thus, higher fre-
quency modes with energetically greater displacement 
typically describe fast but small local amplitude move-
ment relatively involving fewer atoms, while lower fre-
quency modes describe slow displacements and changes 
in conformation on a large scale with the involvement of 
a larger number of atoms [73]. Coarse-grained models 
merged with normal mode analysis have proven to be a 
popular and powerful substitute for the collective motion 
simulation of macromolecular complexes at extended 
timescales. In addition to the conformational sampling 
and motion dynamics visualization (Additional file  1: 
Figure S7 and Additional file  2: S8), the normal mode 
analysis result also suggests that the hypothetical protein 
model assumes a stable conformation (Fig. 5). Although 
the molecular dynamics simulation analysis (Figs. 6 and 
7) showed that the CENP-I component of the sub-com-
plex displayed a high degree of instability, based on the 
consistency in the stability profile of the other compo-
nents of the sub-complex (CENP-H, CENP-K and CENP-
M), we hypothesize that their interaction with CENP-I 
generally increases its stability profile, hence stabilizing 
the entire complex as demonstrated via the normal mode 
analysis.

An essential prerequisite for a regular biological func-
tion is the ability of a protein to establish inordinately 
selective interactions with its macromolecular partner. 
Sequence mutations that change protein interactions 
may lead to a complete functional abolishment or result 
in a significant perturbation [74]. A feasible method to 
evaluate the mutational effect on the binding affinity of 
proteins is to experimentally quantify it. However, while 
site-directed mutagenesis methodologies are fast and 
inexpensive, FRET (fluorescence resonance energy trans-
fer), isothermal titration calorimetry, surface plasmon 
resonance and other methods used for binding affinity 
measurements can be costly and time-consuming [75]. 
We have therefore directed computational approaches 
toward the prediction of binding affinity changes upon 
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mutation (Tables  2, 3, 4, 5, 6 and 7 Additional file  3: 
Tables S1–S6), which has shown great consistency with 
results from earlier reported experimental mutagenesis 
studies. Our interatomic interaction visualization study 
also provided insights into the molecular nature of the 
studied interactions and likewise the comprehension of 
the functional and structural impact of each mutation 
(Tables 8 and 9, Additional file 1: Figures S11–S13).

5 � Conclusion
With the aid of extensive computational approaches 
and following experimentally validated site-directed 
mutagenesis from literature reports, we have designed 
a hypothetical model of the hsCENP-HIKM complex. 
Structurally refined models of each subunit were indi-
vidually docked to generate a hypothetical complex 
which was subjected to several in silico protocols such 
as the normal mode analysis, in silico mutagenesis, bind-
ing free energy prediction upon mutation, and analysis of 
the non-covalent interactions, in an attempt to validate 
the model reliability. Knowledge of the hsCENP-HIKM 
architecture and the surface residues at the interaction 
site as presented in this study may provide more insight 
into the mechanisms of abnormal interactions in disease 
states, through the comprehension of simple molecular 
recognition mechanisms. Such information may present 
future therapeutic potentials for the rational develop-
ment of drugs that regulate or mimic the effects of pro-
tein–protein interactions.
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