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REVIEW

Circadian mechanism disruption 
is associated with dysregulation of inflammatory 
and immune responses: a systematic review
Nazmin Fatima1, Gyanendra Kumar Sonkar1*    and Sangeeta Singh2 

Abstract 

The circadian rhythms are regulated by the circadian clock which is under the control of suprachiasmatic nucleus of 
hypothalamus. The central and peripheral clocks on different tissue together synchronize to form circadian system. 
Factors disrupt the circadian rhythm, such as irregular eating patterns, sleep/wake time, night shift work and tem-
perature. Due to the misalignment of central clock components, it has been recognized as the pathophysiology of 
lifestyle-related diseases mediated by the inflammation such as diabetes, obesity, neurological disorder and hormo-
nal imbalance. Also we discuss the therapeutic effect of time-restricted feeding over diabetes and obesity caused 
by miscommunication between central and peripheral clock. The genetic and epigenetic changes involve due to 
the deregulation of circadian system. The aim of the present review is to discuss the circadian mechanisms that are 
involved in the complex interaction between host and external factors and its disruption is associated with deregula-
tion of inflammatory and immune responses. Hence, we need to understand the mechanism of functioning of our 
biological clocks so that it helps us treat health-related problems such as jet lags, sleep disorders due to night-time 
shift work, obesity and mental disturbances. We hope minimal cost behavioural and lifestyle changes can improve 
circadian rhythms and presumably provide a better health.
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1 � Background
Circadian rhythm is derived from the Latin word: circa 
means ‘approximate’ and dies means ‘day’. It is natu-
ral endogenous process of physiological, molecular and 
behavioural function throughout the day [1, 2]. Circadian 
rhythms are regulated by circadian clocks, which drive 
day–night oscillations with a free running period of 24 h 
[3]. The central and peripheral clocks on different tis-
sues together synchronize to form circadian system. The 
whole body controller is situated on the hypothalamus of 

suprachiasmatic nucleus (SCN) in mammals [4]. How-
ever, the SCN acts more as a “master synchronizer” than 
a true pacemaker. The peripheral tissues and cells show 
similar gene expression of circadian rhythm as seen in 
SCN circadian rhythm [5, 6].

The mechanism of circadian rhythm is regu-
lated by the transcription–translation feedback loop; 
CLOCK:BMAL1 are heterodimerized and bind to the 
promoted site of E-box to initiate the transcription of 
Per and Cry gene. These genes are translated and form 
PER:CRY heterodimer complex which inhibit the self-
induced CLOCK:BMAL1 transcription [7]

Many factors affect the central clock and peripheral 
clock such as sleep/wake time, exercise, eating habits, 
light exposure and temperature. Eating habit is one of the 
factors that influence our metabolic process. Taking more 
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than three meals in a day or prolonged eating is associ-
ated with metabolic syndrome. Restriction of diet in fixed 
time of period in a day that robust our circadian rhythm 
[8, 9]. TRF reduces body weight, improves lipid profile, 
increases insulin sensitivity, reduces glucose level, and 
decreases the oxidative stress and inflammatory mark-
ers [10–12]. Therefore, time-restricted feeding (TRF) is a 
therapeutic strategy for the treatment of metabolic disor-
ders, such as obesity and diabetes [13].

The circadian clock disruption of pancreas-specific 
causes impaired glucose tolerance leading to increased 
glucose level in blood (hyperglycaemia), thereby result-
ing in decreased secretion of insulin [14]. In adipose tis-
sue, the circadian clock disruption causes the reduction 
or abnormal secretion of fatty acid from adipocytes lead-
ing to obesity. This abnormal secretion from the adipose 
tissues regulates appetite centre of hypothalamus, which 
increases feeding throughout the day [15].

In jet lag and shift workers, the desynchronization of 
environment clock and tissue-specific circadian clock 
cause sleep disturbance and various metabolic disorders. 
This is because of miscommunication between feeding 
time and cellular metabolic process, which is directly 

linked with circadian rhythm [16]. For example, in pan-
creatic tissue, the loss of circadian gene, such as brain 
and muscle aryl hydrocarbon receptor nuclear transloca-
tor-like (Bmal1), results in decreased secretion of insulin, 
which leads to diabetes [17]. Circadian clock regulates 
many metabolic rhythms including glucose and lipid 
metabolism, and their disruption could promote diabe-
tes, obesity and chronic heart disease (CHD) in many 
organisms [18–20]. The objective of our review is to cre-
ate the awareness about the effect of circadian clock on 
the metabolic process and to deliver the message about 
the circadian clock management that improves the qual-
ity of life.

1.1 � Method
We did all-inclusive literature search following PRISMA 
[Preferred Reporting Items for Systematic Reviews and 
Meta-Analysis] guide (Fig.  1). A systematic electronic 
database search with NCBI, MEDLINE, Scopus, Google 
Scholar, PubMed and Web of Science databases was done 
to retrieve relevant research and review articles in Eng-
lish language only. All articles identified underwent a 
review to assess relevance against the eligibility criteria. 

Fig. 1  PRISMA flowchart of the systematic review
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This review process occurred in stages, which initially 
involved screening the article titles. We screened the 
articles using keywords like circadian rhythm, suprachi-
asmatic nucleus, BMAL1, CLOCK, PER, CRY genetics, 
epigenetics, time restricted feeding, temperature, diabe-
tes, obesity and neurological disorders combined using 
Boolean operators AND and OR. This review article, 
which is submitted here as part of project, was approved 
by the ethical committee of the institution with reference 
no. 123/IAEC/2019 and project funded by ICMR, New 
Delhi.

2 � Genetics and epigenetic basis of circadian 
rhythm

2.1 � Genetics
Long-term changes in metabolism are directly linked to 
the chronological changes, such as alteration in glucose 
homeostasis, which are closely correlated to the clock 
gene function. In animal studies, a wide range of distur-
bance in metabolic process includes the deregulation 
of glucose metabolism that alters the insulin secretion 
resulting in impaired gluconeogenesis, obesity and meta-
bolic syndrome [21, 22]. Alternative studies of genetically 
modified or transgenic mice model noticed the frequent 
change, due to alteration in clock gene function, resulting 
in abnormal metabolic phenotype [23].

These similar findings have been reported in many 
human genetic studies as well. The metabolic disorders 
like T2DM, obesity and metabolic syndrome have been 
associated with clock gene polymorphism and their asso-
ciated haplotypes. Although these above studies reveal 
that the circadian rhythm gene and metabolism are func-
tionally linked, and they are unable to differentiate the 
tissue-specific clock to overall phenotype. Due to this 
problem, there is a need for tissue-specific studies, creat-
ing local gene disruption by preparing BMAL1 knock-out 
model. Loss of function of BMAL1 in peripheral tissue 
is directly linked with change in glucose homeostasis, 
which leads to diabetes [24, 25].

Heterodimer formation of CLOCK and BMAL1 takes 
place to initiate transcription factor of core clock gene 
in mammals. This heterodimer binds rhythmically to the 
E-box of Period (Per1, Per2, Per3), Cryptochrome (Cry1 
and Cry2), Rev-erb (Rev-erbα and Rev-erbβ) and Ror 
(Rorα, Rorβ and Rorγ) to initiate transcription. Trans-
lated PER/CRY repressive complex block the CLOCK: 
BMAL1-mediated transcription first on-DNA and then 
off-DNA [18, 19]. BMAL1 expression is regulated by the 
REV-ERBs and RORs through the repression and activa-
tion of its transcription, which promotes sturdiness of cir-
cadian oscillations [26, 27]. On rhythmic transcriptional 
activation of core clock components, CLOCK:BMAL1 
regulates the expression of clock-controlled genes to 

generate the variations. Thus, it regulates the function of 
circadian rhythm system [28, 29].

It is interesting to know about the mechanism through 
which CLOCK: BMAL1 controls the expression of its 
core clock genes and target genes. Studies show that the 
rhythmic binding of CLOCK:BMAL 1 heterodimer to 
the promoter site of core clock gene DNA is required for 
the rhythmic transcription [24, 26, 30]. Recently, it has 
been shown that rhythmic binding of CLOCK: BMAL1 
heterodimer to DNA initiates the removal of nucleo-
some, thereby generating a chromatin landscape that 
is favourable for the binding of second transcription 
factors at its enhancers [31]. Hence, this heterodimer 
promotes transcription of core clock gene by recruit-
ing transcriptional co-activators, mediator complex and 
RNA polymerase II [16, 32]. The core clock gene acti-
vated by the CLOCK:BMAL1-mediated transcription 
mechanism is still unclear. Indeed, most of the clock 
target genes CLOCK:BMAL1 is expressed rhythmi-
cally, and a large fraction of the rhythmically expressed 
target genes are transcribed at night, in antiphase to 
maximal CLOCK:BMAL1 DNA binding [30]. These evi-
dences suggest that different mechanisms are involved in 
CLOCK:BMAL1 regulation of transcription of core clock 
genes, which differ from the regulation of other clock-
controlled genes. The circadian clock adds additional 
mechanisms for the activation of rhythmic gene expres-
sion. The binding of heterodimer CLOCK:BMAL1 to the 
DNA during transcription is capable for the uncoiling of 
chromatin and initiates transcription, whereas it is insuf-
ficient to produce transcriptionally active enhancers. The 
CLOCK:BMAL1 heterodimer generates a flexible chro-
matin landscape to rhythmically prime its enhancers for 
the recruitment of other transcription factors, rather 
than directly promoting transcription activation [33].

2.2 � Epigenetic
The epigenetic changes influence the expression of gene 
without alteration in the nucleotide sequence leading to 
phenotypic change only. These epigenetic modifications 
include DNA methylation and modification of histone 
that amend the local chromatin and effect DNA accessi-
bility and gene transcription (Table 1) [34]. DNA meth-
yltransferase (DNMT) enzyme involves in methylation 
of DNA CpG sites of nucleotide, which is an important 
mechanism of transcriptional repression [35]. However, 
the DNA methylation performance remains ambigu-
ous and disputed. To counter this, ten–eleven translo-
case (TET) enzymes catalyse DNA demethylation [36]. 
Another epigenetic modification includes acetylation 
and deacetylation of histone protein, which is catalysed 
by the histone acetyltransferases (HATs) and deacety-
lase (HDACs), respectively. HATs promote unfolding of 
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chromatin during transcription, whereas HDACs are 
responsible for the chromatin condensation and hence 
represses transcription [25]. The repressors of gene tran-
scription can access the acetylated open-chromatin struc-
ture [37]. Epigenetic modifications are unable to alter the 
DNA sequence and are not stable and undergo changes 
towards the exogenous stimuli such as light, diet [38], 
temperature [39, 40], social interaction [41] and mater-
nal effect [42]. A recent study in mice model revealed 
that the time-restricted feeding (TRF) intervention 
decreased the HDAC activity and enhanced the histone 
acetylation [43]. During the light phase, CLOCK:BMAL1 
binds to the DNA to initiate the chromatin modification 
by histone-modifying enzymes to the promoter region 
of core clock gene. The histone-modifying enzymes such 
as HATs and HMTs catalyse the acetylation and meth-
ylation, respectively. Histone acetyltransferase mediates 
the acetylation of histone lysine at positions H3K9 and 
H3K27 and methylation at H3K4 by histone methyltrans-
ferase. The feedback inhibition of clock gene through the 
binding of PER:CRY heterodimer to the DNA-bound 
CLOCK: BMAL1 complex is carried out by the additional 
recruitment of histone demethylases and deacetylases.

3 � Time‑restricted feeding (TRF) and circadian 
rhythm

The TRF has many physiological consequences [44]. 
A study in mice revealed that the everyday TRF for 4 h 
enhanced the glucose regulation and reduced weight gain 
[45]. Another study conducted in mice model showed 
that TRF for 8  h a day prevents high-fat-diet (HFD)-
induced obesity [46], 9  h/day TRF results in reduced 
plasma glucose level and increased sensitivity and level 
of insulin in type 1 diabetes [47]. The circulatory level 
of glucose is lowered as well as the expression of PER 2 
clock gene of adipose is delayed due to 5-h meal delay 
effects. Therefore, feeding time of shift worker may help 
to reset the circadian system. The effect of TRF on obese 
mice model induced by high-fat diet normalized the gene 
expression of lipid metabolism in hepatic tissue [46]. In 
diurnal organisms, TRF controls the expression of many 
clock control genes in peripheral tissues. It protects from 
the adverse effect of obesity induced by high-fat diet and 
also regulates the transcription factors that play critical 
role during fasting time in gluconeogenesis and deposi-
tion of fat in hepatic cells and multiple markers of inflam-
mation are reduced. The complications were generated 

Table 1  Gene involved in metabolism and their mechanism of epigenetic modification

S. no. Metabolic process Gene Epigenetic modification Results References

1 Glucose homeostasis GLUT 4 Cell line DNA hypomethylation
Histone acetylation

Hypomethylation prevents the activation of 
its promoter

[109]

ADIPOQ Human DNA hypomethylation
Histone acetylation

Hypomethylation associated with high 
circulatory adiponectin level

[110]

INS (Insulin) Mouse and Human DNA hypermethylation
Histone acetylation

In both mouse and human hypermethyla-
tion at promoter site supress the activity of 
insulin gene

[111]

2 Inflammation IFNG Human DNA hypomethylation Hypomethylation leads to increases inflam-
mation, in shift workers, cardiovascular 
disease and cancer

[112]

INF Human DNA hypomethylation Hypomethylation associated with increased 
plasma TNF-α level in PUFA intake

[113]

3 Lipid storage FASN Rats DNA methylation Hypomethylation at promoter region asso-
ciated with obesity in HFD group

[114]

4 Adipogenesis PPARA​ Rats DNA methylation Methylation in promoter region of hepatic 
PPARα results in differential risk of disease

[115]

CEBP β Rats Histone acetylation
Histone methylation

Histone modification at promoter region 
alters its expression

[116]

5 Appetite regulation LEP Rats DNA hypermethylation Hypermethylation in CpG site 6–7 and 
29–30
Hypomethylation at CpG site os 15
20-day intake HFs diet shift to chow diet till 
10 weeks, reverse CpG site at 29–30

[117]

MC4R Human DNA hypermethylation CpGs 1–8—Hypermethylation (26%)
CpGs 9–16—Hypomethylation (52–100%)

[118]

NPY Human DNA hypomethylation Hypomethylation at promoter site increases 
the risk of obesity

[119]

POMC Human DNA hypomethylation
Histone acetylation

Hypomethylation associated with the 
weight loss maintenance

[119]
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by high-fat-diet-induced alteration in metabolic path-
ways, and generation of oxidative stress by reducing anti-
oxidants is reversed by TRF [48].

It is described in the literature that metabolic param-
eters, i.e. glucose homeostasis, change every day and 
every time in humans. In healthy people, glucose toler-
ance decreases in the afternoon causing a condition 
called “afternoon diabetes”. This metabolic pathway per-
sists in controlled conditions, through changes in insulin 
signalling mechanism, which is governed by the internal 
circadian clock system [49]. Similarly, in night the triacyl-
glycerol plasma level is elevated, if HFD has been taken 
in night as compared to the daytime meal, which is regu-
lated by circadian rhythm [50].

Animal studies have shown the beneficial effect of TRF 
leading to improvement in the quality of life and provided 
protection against obesity and metabolic disorders due 
to consumption of high-fat diet [44]. Studies in rodents 
have proved that timely eating is a powerful tool for syn-
chronizing peripheral clock. When animals are kept in a 
12-h light/dark cycle, the restricted feeding time disrupts 
the internal synchronization of clocks [51]. In addition, 
the role of clocks in individual peripheral tissues provides 
a physiological insight to explain the temporal differences 
in postprandial responses. Hence, the meal time is very 
important as changing the life pattern may protect from 
various diseases and improve life quality and increases 
life span.

4 � Temperature effects on circadian rhythm
Temperature also influences circadian clock, because of 
ubiquity of temperature regulatory mechanism and also 
potential target for therapeutics. All circadian rhythms 
are temperature-compensated. This important property 
allows the clock to maintain a stable period of oscilla-
tion regardless of the ambient temperature. The change 
in circadian rhythm with environmental condition is not 
reliable. Due to variation in the temperature of poikilo-
thermic organisms, the oscillation of circadian rhythm is 
desynchronized. In hibernating animals, there is lack of 
day activity during hibernation period, and the internal 
body temperature of such animals undergoes circadian 
fluctuations with amplitudes of approximately 1  °C and 
5 °C depending on the species [52].

In our biological system, the heat shock mechanism 
controls the effect of increasing temperature in our meta-
bolic process and circadian clock. Many heat shock fac-
tors/proteins (HSF/HSP) such as HSF1, HSF2 and HSF4 
initiate the transcription on increasing temperature. The 
heat shock element present in the promoter site of the 
stress response gene is transcribed by the binding of ini-
tiation HSF [53]. HSP genes contain heat shock elements 
(HSEs), and once translated, these proteins, chaperone, 

sequester the HSP from further transcription [54]. The 
Per2 gene expressions are reducing or lose their function 
on the exposure of high temperature [55]. Along with 
being a temperature sensor for phase setting, evidence 
proves that the circadian clock and heat shock factors 
are closely related. Although the levels of HSF have not 
been found to have circadian oscillation,  their binding 
to target motifs certainly does in spite of the absence of 
temperature cycles [56]. HSEs located on the promoter 
region of Per2 gene are conserved among various spe-
cies and expression of HSP gene synchronizes with the 
Per2 gene [55]. Finally, the temperature affects circadian 
rhythm through the heat shock response that exhibits 
both phase and period influence on the circadian clock.

5 � Hormonal effects on circadian rhythm
In vertebrates, the photoperiod message is delivered 
by hormone melatonin, which is secreted during night/
dark [57]. The secretion of melatonin is regulated by the 
light and dark cycle. This mechanism is present in SCN 
of hypothalamus [58, 59]. The data from other studies 
showed that permanent light period affects the signifi-
cant decrease in melatonin and increase during perma-
nent dark in healthy animals. During afternoon, leptin 
plasma concentration starts increasing and reaches its 
peak between midnight and approximately 2:30 a.m. with 
considerable inter individual variations [60]. The evi-
dence shows that photoperiod influences the circulatory 
level of leptin and changes in circadian rhythm change 
the plasma leptin concentration. Many studies con-
ducted on secretion of leptin and melatonin in healthy 
subjects showed that there is significant negative corre-
lation [61, 62]. Contrary to it, a study conducted by the 
Cardoso et al. showed that melatonin had a positive role 
in the production of insulin-stimulated leptin in adipose 
tissue of rats. In this mechanism, melatonin binds to Gi 
protein-coupled MT1 (melatonin transporter 1) mem-
brane receptor and potentiates the phosphorylation of 
insulin receptors and Akt (Protein Kinase B) [63]. Mela-
tonin performs its action by binding to MT1 and MT2 
membrane receptors found on the cell membrane which 
is coupled with G-protein. After binding, it initiates the 
signal transduction mechanisms. In human beings, these 
mechanisms have been found in many organs such as 
brain, heart, hepatic tissue, kidney, intestine, genital 
organs, adipocytes and skin (Fig. 2) [64–66].

Melatonin also enhances the antioxidant potential 
of cells by stimulating the synthesis of enzymes such as 
superoxide dismutase (SOD), glutathione peroxidase 
(GPx), glutathione reductase (GRd) and augmenting 
glutathione levels. Melatonin protects, whereas leptin 
elevates the generation of reactive oxygen species (ROS) 
(Fig. 3) [67, 68].
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In healthy animals, the photoperiod is responsible 
for the significant drop of antioxidant enzymes and it 
shows opposite effect in the dark in which it increases 

in circulation. Thus, light affects adversely on healthy 
animals by decreasing the level of antioxidant and ele-
vates the lipoperoxide level, whereas it shows opposite 
effect during dark period. It is reported that ROS which 
is responsible for the disruption of lipid membrane 
initiates the activation of pro-inflammatory cytokine 
genes (TNF-α, IL-1, IL-6) by the stimulation of tran-
scription factor NF-kB [69, 70].

The light enters in the brain via a monosynaptic path-
way from intrinsically photosensitive retinal ganglion 
cells in the inner retina to the SCN [71]. In turn, from 
the SCN the light travels through the multi-synaptic 
router to the pineal gland. The photoperiodic informa-
tion circulates from the pineal gland to the organs and 
regulates day/night cycle [72]. In dark/night, the pineal 
gland synthesizes melatonin, also known as sleep hor-
mone and improves sleeping tendency. Photoperiodic 
information travels through the expression of recep-
tors, which synchronously contributes to the circadian 
rhythm in peripheral tissue and central tissue [73].

Fig. 2  Correlation between circadian rhythm and metabolism. a In SCN, circadian clock composed of interlocking feedback loops consists of 
transcription activators and repressors. b In peripheral tissue, the activation of metabolic pathway by melatonin secretion. cAMP—cyclic AMP, 
PKA—Protein kinase A, AKT—Protein kinase B, S6K1-S6 protein kinase 1, SERBP—sterol regulatory element binding protein

Fig. 3  Protective effect of Melatonin
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6 � Molecular mechanism
In mammals, the molecular mechanism of biological 
clock is governed by feedback loops of transcriptional–-
-translational processes (Fig. 2). The primary loop of cir-
cadian rhythm consists of two proteins, namely BMAL1 
and CLOCK, which stimulate the transcriptional activity 
of clock control genes—Per1, Per2, Per3 and Cry1, Cry2. 
After appropriate temporal delay caused by post-transla-
tional modifications, these PER and CRY proteins form 
heterodimer, which enter into the nucleus and prevent 
their own transcription process through feedback inhibi-
tion. The CLOCK and BMAL1 protein interaction inhibit 
the transcription. The primary loops of these ‘clock 
genes’ are involved in many interactions between their 
translated proteins and key biochemical mechanism that 
regulates intracellular metabolism [23, 74]. In turn, the 
circadian gene/protein expression is regulated by most of 
the nuclear factors. It forms a feedback loop and links the 
biological clock to the cell metabolism. In the peripheral 
tissue, the rhythmic expression of 50% nuclear receptors 

is derived from the transcription factors of circadian 
rhythm protein [23].

7 � Circadian rhythms and its effect on health:
Table  2 shows the effect of circadian rhythm in various 
metabolic diseases. Circadian clock regulates metabolic 
rhythms of glucose and lipid metabolism and their dis-
ruption could promote diabetes and other related com-
plications [75, 76].

7.1 � Diabetes and obesity
The impairment in sugar uptake leads to reduced insu-
lin sensitivity and hyperglycemia [17]. It is feasible that 
starting from decreased postprandial glucose tolerance 
at night, the dysregulation of sugar intake may lead to 
increased use of fatty acid from triglyceride stores in 
hepatic and adipose tissue [77]. Many human and animal 
studies revealed that the imbalance absorption between 
carbohydrate and triglyceride leads to dyslipidaemia 
and hypertriglyceridemia. This modification in uptake 

Table 2  Effect of circadian rhythm in associated diseases

KO knock-out mice, SNP single nucleotide polymorphism, TRF time restricted feeding

S. no. Study Gene studied Animal Outcome References

1 KO CLOCK Mice Hypertension [120]

2 KO CLOCK Mice Mild diabetes insipidus [121]

3 KO Per1 Mice Lower blood pressure [122]

4 Double KO Cry1/2 Mice Hypertension [123]

5 KO BMAL1 Mice Reduced blood pressure [124]

6 Mutant CLOCK Mice Obesity and hyperlipidemia [19]

7 Triple KO Period 1/2/3 Mice Obesity [125]

8 KO BMAL1 Mice Obesity and hyperlipidemia [126]

9 KO REV-ERB-γ Mice Increased adiposity and deregulated fatty acid/glucose 
utilization

[127]

10 Double KO REV-ERB-α/ β Mice Deregulation lipid metabolism [128]

11 KO BMAL1 and CLOCK Mice Diabetic with reduced plasma insulin levels [12]

12 SNPs Bmal1 Human Gestational diabetes mellitus [129]

13 KO BMAL1 Mice Reduced plasma insulin levels [130]

14 KO Pancreas-specific BMAL1 Mice Hyperglycaemia [12]

15 KO Cry1/2 Mice Hyperglycemia [131]

16 Adrenalectomy Per1 Mice Reduce glucocorticoid signalling [132]

17 KO Per1 Mice Higher plasma and pineal melatonin [133]

18 Melatonin intervention - Human pros-
tate cancer 
cells

Increased expression of Per1 and CLOCK, decreased BMAL1 [134]

19 Mutant Per2 Mice TLR9 upregulated in spleen [135]

20 KO Cry1/2 Mice Upregulation (NF)-κB [136]

21 KO BMAL1 Mice Decreased fertility and implantation defects [137]

22 KO CLOCK Mice Decreased fertility [138]

23 TRF (10 h/day for 
12 weeks) intervention

– Human Reduced body weight, visceral fat, lowered blood pressure 
and decreased HbA1c

[139]
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of calorie and its storage decreases the energy balance 
imposed by sleep debt [78].

Studies have revealed changes in the circadian rhythm 
between obese and lean subjects. A worldwide study 
reported that the adverse effect of obesity on biological 
clock reduces the molecular and physiological rhythm, 
which largely depends on the target molecule [44]. The 
routine biological rhythm also exists in the level of many 
hormones such as adipokine, melatonin and leptin, which 
follow the circadian clocks that are likely to be driven by 
endogenous circadian physiology [79, 80]. Early reports 
indicated that in the obese subjects the concentration of 
leptin decreased rhythmically, but this work has not been 
found in recent studies [81]. Furthermore, some endo-
crine rhythms such as in insulin sensitive obese the cir-
culating melatonin exhibits increased amplitude in obese 
insulin-sensitive men [82]. At the molecular level, a study 
in mice reported that obesity reduces clock gene expres-
sion, resulting in the alteration in clock gene rhythm or 
consumption of fatty diet [83, 84]. Obesity is the major 
factor for developing cardiovascular disease, dyslipidae-
mia and hypertension [85]. It has recently been reported 
that changes in daily rhythm in high-fat-diet-induced 
obese animal model may reject acute effects of the die-
tary intervention without any long-term changes in 
energy balance [86]. Only few studies have been reported 
in humans for routine profile of gene expression in obe-
sity. However, in one of the study using human glu-
teal subcutaneous fat, there were no differences in gene 
expression level between lean versus obese individuals 
[87]. As a part of the strategies proposed for reducing 
energy intake and for increasing energy output [88], meal 
intervention at time and frequency could exert a signifi-
cant influence on weight loss [89–91]. Thus, the risk of 
metabolic syndrome is a major cause by the wrong time 
sleep/wake and eating.

7.2 � Neurological disorders
Ageing is a major risk factor for generating the neuro-
logical disorders such as Parkinson’s disease (PD), Alz-
heimer’s disease (AD) and stroke [92]. In each disorder, 
neuron death and degeneration occur by the involvement 
of mitochondrial function, oxidative damage, impaired 
lysosome function and dysregulation of cellular cal-
cium homeostasis [93]. The evidence proved by animal 
experimental models of various neurological disorders/
neurodegenerative diseases, prepared by the interven-
tion of neurotoxins resulting in degeneration of one or 
many neurons. For example, in PD the animal model was 
prepared by the induction of MPTP dose, 6-hydroxy-
dopamine and rotenone. These drugs are responsible of 
neuron degeneration by inhibiting mitochondrial com-
plex I. In the 1990s, studies were initiated to test the 

general hypothesis that, ageing is the major risk factor 
for developing neurological disorders; it may be reduced 
or reversed aging process due to the intermittent fasting 
(IF). Studies prove that the (IF) protects against these dis-
orders in animal models [94]. A study revealed that when 
animals are kept on alternate day fasting (ADF) for few 
months before the intervention of Kainic memory defi-
cit improved [95]. It was also noticed that if mice model 
kept for few months on ADF acid, the neurons of the hip-
pocampal region are resistant to degeneration and their 
learning capacity and are resistant to the MPTP, the indi-
cation of the improvement in PD model by preventing 
the degeneration of dopaminergic neurons [96].

7.3 � Inflammation and immune response
Circadian rhythm disruption causes the metabolic disor-
ders leading to diabetes and obesity, and is also respon-
sible for the alteration in immune system [97]. Immune 
system plays a key role in the defence mechanism of an 
organism and maintains the tissue homeostasis. Weak 
response of immunity causes infection, inflammation 
and develops autoimmune diseases [98]. Clinical studies 
revealed that the inflammatory markers have tendency to 
alter the clock gene expression. In T2DM, the IL6 expres-
sion decreases the PER1, CRY1 and BMAL1 expression, 
whereas this circadian gene shows negative correlation 
with TNF-α [98, 99]. Central clock controls the metabo-
lism, physiology and temperature of the peripheral clock 
[100, 101]. Circadian rhythm-associated diseases caused 
by the inflammation are cardiovascular disease [102], 
hypertension, chronic kidney disease [103], osteoporo-
sis [104], chronic obstructive pulmonary disease [105], 
intestinal disease [106], diabetes [107] and obesity [108]. 
The disrupted circadian clock associated with the periph-
eral clock generates tissue-specific diseases, mediated by 
the inflammation (Fig. 4).

8 � Conclusions
The circadian system of all organisms contains a core 
oscillator, away by which this clock can be set by the 
environment and output behaviours or processes whose 
phases are determined by the core clock. We conclude 
that the TRF is the potential intervention on the chronic 
disrupted circadian rhythm and correlated with the 
alteration in biological function leading to metabolic 
syndrome. The therapeutic strategies can be developed 
and implemented by changing the feeding pattern. There 
is a need of clinical trial study for a large scale to deter-
mine the sustainability and efficacy of TRF intervention. 
For future prospective, it is important for the clini-
cians to advice the dietary interventions for the general 
population. Studies are required using knockout model 
to understand the exact mechanism of specific gene. 
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Further, the researchers have to develop various studies 
in combination of in vitro and in vivo experiments.
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