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Abstract 

Background:  Experimentally brought to light by Russell and hypothetically explained by Korteweg–de Vries, the 
KDV equation has drawn the attention of several mathematicians and physicists because of its extreme substantial 
structure in describing nonlinear evolution equations governing the propagation of weakly dispersive and nonlinear 
waves. Due to the prevalent nature and application of solitary waves in nonlinear dynamics, we discuss the soliton 
solution and application of the fractional-order Korteweg–de Vries (KDV) equation using a new analytical approach 
named the “Modified initial guess homotopy perturbation.”

Results:  We established the proposed technique by coupling a power series function of arbitrary order with the 
renown homotopy perturbation method. The convergence of the method is proved using the Banach fixed point 
theorem. The methodology was demonstrated with a generalized KDV equation, and we applied it to solve linear 
and nonlinear fractional-order Korteweg–de Vries equations, which are in Caputo sense. The method’s applicability 
and effectiveness were established as a feasible series of arbitrary orders that accelerate quickly to the exact solution 
at an integer order and are obtained as solutions. Numerical simulations were conducted to investigate the effect of 
Caputo fractional-order derivatives in the dispersion and propagation of water waves by varying the order α on the 
[0, 1] interval. Comparative analysis of the simulation results, which were presented graphically and discussed, reveals 
that the degree of freedom of the Caputo fractional-order derivative is vital to controlling the magnitude of environ-
mental hazards associated with water waves when adjusted.

Conclusion:  The proposed method is recommended for obtaining convergent series solutions to fractional-order 
partial differential equations. We suggested that applied mathematicians and physicists investigate this work to better 
understand the impact of the degree of freedom posed by Caputo fractional-order derivatives in wave dispersion and 
propagation, as physical applications can help divert wave-related environmental hazards.
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1 � Background
When waves advance into the region of shallow water, 
they tend to be affected by the ocean bottom. This leads 
to the disruption of free water in orbital motion, and 

the water molecules in the orbital motion can no longer 
return to their initial position. In turn, environmental 
hazards such as coastal erosion and the tsunami wave 
described in [19] are caused by this phenomenon, which 
often leads to loss of land and damage to the properties of 
people living in coastal regions [43]. Sailors do simulate 
the consequences of shallow water waves as it increases 
the realism of the virtual ocean scene and also supplies 
accurate parameters to the ship maneuvering model [3]. 
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The intensity of a water wave can be measured by its dis-
persion. This dispersion is either caused by the interac-
tion of the wave with the transmitting medium or by the 
geometry and physical constraints [32]. Different mathe-
matical models have been developed to study the impact, 
significance, and ways of controlling water waves. Among 
these models are the Boussinesq wave model and the 
shallow water wave model in [37] and [41], respectively.

Of interest is the dispersive partial differential equation 
named the Korteweg–de Vries (KDV) equation [26]. It 
governs weakly and nonlinearly interacting radio waves 
above 1 km in wavelength with a frequency of 300 kHz 
traveling in canals of shallow water [28]. The general form 
of this equation can be found in [8, 31]. The homogenous 
Korteweg–de Vries equation [7, 36], which described the 
mathematical model of solitary water waves in a shallow 
water domain, was coined by Kruskal and Zabusky [2, 9, 
17]. Unlike the shallow water equation (which does not 
take into account the frequency of wave dispersion) and 
the Boussinesq wave equation (where the use of wave 
reflections is limited), the Korteweg–de Vries equation 
can be applied to waves propagating in a single direction 
that have both frequency and amplitude of dispersion. 
A recent study in [14] discussed the behavior of differ-
ent types of traveling waves in the solution of relativistic 
wave equations associated with the notable Schrödinger 
equation.

Although the analytic solution of this problem is often 
not feasible to obtain, an analytic study on the solution of 
a third-order dispersive partial differential equation was 
conducted in [13]. The Laplace–Adomian decomposition 
method (LADM) was applied in [27] to obtain the ana-
lytical solutions of third-order dispersive fractional par-
tial differential equations. The fractional derivatives are 
in Caputo sense, and the approximate solution obtained 
converges directly to the exact solutions. Some semi-
analytic techniques have also been employed to solve 
this well-known equation, one of which is in [39], where 
the Laplace–Adomian decomposition method (LADM), 
differential transform method (DTM), homotopy per-
turbation method (HPM), and homotopy perturbation 
transform method (HPTM) were applied to obtain the 
solution of linearized dispersive KDV equations. Other 
numerical techniques, such as the variational iteration 
method (VIM) proposed by [33], were applied in [6] to 
solve the higher-order nonlinear KDV equation, and its 
modification was applied in [7] to obtain the analytical 
solution of this equation.

Lately, fractional calculus has been an area of inter-
est for modern researchers. This is due to the higher 
degree of freedom and more realistic behavior exhib-
ited by physical problems governed by it. There exists a 
diverse set of fractional operators; these consist of the 

Riemann–Liouville [44], Caputo [11], Caputo–Fabrizio 
[42], and Antagana–Baleanu [12] operators. These opera-
tors are often used as generalized tools for investigat-
ing diverse phenomena with a non-local kernel, such as 
fractal and chaotic phenomena with long-range mem-
ory. The strength and limitations of these concepts can 
be found in [44]. Several authors have proposed potent 
mathematical models capable of simulating chaotic and 
fractal systems. An example is a study presented in [29] 
where the numerical solutions and synchronization of a 
variable-order fractional chaotic system were conducted. 
A research study on the robust study of listeriosis disease 
was carried out in [38]. Their study implemented the use 
of fractal fractional operators to conduct their analysis. 
Their results show that these operators are productive for 
the purpose of their study.

Water waves are one of the many non-localized physi-
cal phenomena described by natural processes found 
around us. The sequencing pattern of the motion caused 
by water waves is often associated with fractals [16]. 
Research presented in [25] shows that modeling of these 
patterns cannot be carried out with ordinary classi-
cal derivatives that are localized. They claimed that the 
long-established differentiation technique (integer-order 
derivatives) is local and that using it to describe physical 
phenomena with unbounded disparities would be inap-
propriate because the impact of a larger neighborhood 
could not be ignored. They discussed that a fractional 
derivative is a global operator, whose properties thrive on 
examining the impacts of a larger neighborhood ignored 
by the local operator as it creates the likelihood of sev-
eral possibilities for backward and forward motion of 
waves. They concluded that a non-localized derivative 
such as the Caputo fractional-order derivative should be 
employed in the modeling of water waves. The properties 
and application of these non-localized derivatives were 
applied in [15], where hybrid Caputo fractional modeling 
for thermostats with hybrid boundary value conditions 
was carried out. Investigation of a new version of HIV 
mathematical model using a new approach to fractional 
derivatives (Caputo–Fabrizio) was applied in [45]. This 
Caputo–Fabrizio fractional derivative was also applied 
in [1] to a mathematical theoretical study for the Rubella 
disease model, as they stated that fractional derivatives, 
such as Caputo and Riemann derivatives, have their own 
limitations because their kernel is singular and they can-
not be applied to describe the memory effect of the phys-
ical system applicable to their problem.

To obtain the solutions of the fractional-order 
Korteweg–de Vries equation, researchers in [18] suc-
cessfully applied the fractional differential trans-
form method (FDTM) and modified differential 
transform method (MDTM) to obtain the solution of 
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the third-order dispersive partial differential equation. 
In [20], the Laplace–Adomian decomposition method 
was applied to obtain the solution of the fractional-
order model of measles, and in [21], this same method 
was applied to obtain the numerical solution of the 
fractional-order smoking model.

In this paper, an initial guess technique applied in [4, 
5, 40] is modified to be of arbitrary order in a Caputo 
sense. We coupled it with the homotopy perturbation 
method introduced in [22, 23, 34, 35] to suit the com-
putation of an approximate solution of the fractional-
order Korteweg–de Vries equation of the form:

subject to the initial condition:

u(x, t) is a function of real variables which denotes the 
wave elongation at space x and time t, respectively. 
u(x, t)ux(x, t) is the nonlinear term, uxxx(x, t) represents 
the direction of the wave dispersion, and ξ , γ are arbi-
trary constants put in place to obtain a uniformly propa-
gating wave solution.

2 � Methods
2.1 � Preliminaries
Here, we state some fundamental properties of frac-
tional calculus applicable in this paper.

Definition 1  A real function φ(t), t > 0, is said to be in 
the space Cµ , µ ∈ R if there exist a real number m > µ 
such that φ(t) = tmφ1(t). where φ1(t) ∈ C(0,∞), and it is 
said to be in the space Cn

µ
 if and only if φ(n) ∈ Cµ, n ∈ N .

Definition 2  The Riemann–Liouville fractional inte-
gration of order η ≥ 0 for a real positive function 
φ(t) ∈ Cµ , µ ≥ −1 t > 0 is defined as:

The following properties hold for fractional integral 
operator Iη for φ(t) ∈ Cµ , µ ≥ −1 η,α ≥ 0 and β ≥ −1:

1.	 IηIαφ(t) = Iη+α
φ(t),

2.	 IηIαφ(t) = IαIβφ(t),

3.	 Iηtβ = Ŵ(β+1)
Ŵ(η+β+1)

tη+β .

(1)
uαt (x, t)+ ξu(x, t)ux(x, t)+ γuxxx(x, t) = 0, 0 < α ≤ 1

(2)u(x, 0) = φ(x).

Iηφ(t) =
1

Ŵ(η)

t∫

0

(t − x)η−1
φ(x)dx.

Definition 3  The Caputo fractional derivative of a posi-
tive real function φ(t) ∈ Cµ is mathematically expressed 
as

The fractional integration of Caputo derivative for 
n− 1 < η ≤ n, n ∈ N , φ ∈ cn−1, µ ≥ −1 is:

2.2 � Homotopy perturbation method
The fundamental scheme of He’s homotopy perturbation 
method can be illustrated by considering the general non-
linear differential equation of the form:

subject to the boundary condition:

The general differential operator is denoted by D and the 
boundary operator by β . f (ω) is an analytic function, and Ŵ 
is the boundary operator in the domain � . The operator D 
is separable into two parts:

The functions ℓ and η represent the linear and nonlinear 
operator, respectively. Substituting Eq. (5) into Eq. (3) yields

A homotopy can be constructed for Eq. (6):

simplifying Eq. (7) yields

where p is an embedded parameter which undergoes 
deformation process of changing from 0 to 1: When 
p = 0,

and at p = 1,

D
η
φ(t) =

1

Ŵ(n− η)

t

0

(t − x)
n−η−1

φ
(n)

(x)dx,

n− 1 < η ≤ n, n ∈ N .

IηDη
φ(t) = φ(t)−

n−1∑
k=0

φ
(k)

(0)
tk

k!
.

(3)D(u)− f (ω) = 0, ωε�.

(4)β(u,un) = 0, ωεŴ.

(5)Dα
(u) = ℓ(u)+ η(u).

(6)ℓ(u)+ η(u)− f (ω) = 0.

(7)
H(v, p) = (1− p)[ℓ(v)− ℓ(u0)]+ p[D(v)− f (ω)] = 0;

(8)
H(v, p) = ℓ(v)− ℓ(u0)+ pℓ[v0]+ p[η(v)− f (ω)] = 0.

(9)H(v, 0) = ℓ(v)− ℓ(u0) = 0,

(10)H(v, 1) = D(v)− f (ω) = 0.
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A power series solution can be assumed for Eqs. (9) and 
(10):

and the approximate solution of Eq. (3) is:

The convergence of this series has been proven in [34]. 
Substituting Eq. (11) into Eq. (8) and equating coefficients 
of equal powers of p,

The approximate result of each iteration is obtained by 
solving Eq. (13).

2.3 � Modified initial guess homotopy perturbation method 
(MIGHPM)

In view of the proposed modified initial guess homotopy 
perturbation method, a power series correctional func-
tional of arbitrary order can be constructed for Eq. (1):

Substituting the initial condition u(x, 0) = φ(x) into 
Eq. (14),

From Eq.  (15), �1tα = u1(x, t), �2t
2α = u2(x, t), and so 

on.
As an assumed solution of Eq. (1), Eq.  (15) must satisfy 

Eq. (1) with unique values of �1, �2, �3, · · · �n. Thus to eval-
uate these values, the following derivatives are obtained:

(11)
v(x, t) = v0(x, t)+ pv1(x, t)+ p2v2(x, t)+ · · · pnvn(x, t),

(12)

Lim
p→1

v(x, t) = v0(x, t)+ v1(x, t)+ v2(x, t)+ · · · vn(x, t).

(13)

p0 : v0 − f (ω) = 0,

p1 : v1 −H(v0) = 0,
...

pn : vn −H(v0, v1, v2, v3, . . . , vn−1) = 0.





(14)u(x, t) = u(x, 0)+
∞∑
n=1

�nt
nα , 0 < α ≤ 1.

(15)u(x, t) = φ(x)+ �1t
α + �2t

2α + · · · .

(16)

ut(x, t) = �1Ŵ(α + 1)+ �2
Ŵ(2α + 1)

Ŵ(α + 1)
t
α + · · · , ux(x, t)

= φ′(x), and uxxx(x, t) = φ′′′(x),

such that evaluation of Eq. (1) using Eq. (16) yields:

At t = 0 , Eq. (17) becomes,

And solving for �1 yields:

Since u1(x, t) = �1t
α , the first approximation is:

Subsequent approximations can be obtained by con-
structing a homotopy for Eq. (1):

Simplifying Eq. (21) yields:

Substituting Eq.  (11) into Eq.  (22) and equating coeffi-
cients of equal powers of pn, n ≥ 2,

The coefficient of p2 is evaluated using Eq.  (20), and 
the Riemann–Liouville fractional integral operator Iα 
is applied to obtain the second approximation u2(x, t) . 
Subsequent approximations u3(x, t),u4(x, t), . . . are  
likewise computed.

Theorem  1  Let there be a contractive nonlinear 
mapping τ : ℵ → Y  defined on two Banach spaces 
ℵ , Y ∀ m, n ∈ ℵ then �τ (m)− τ (n)�Y ≤ ε�m− n�ℵ , 
0 < ε < 1 such that the sequence ms+1 = τ

n
(m0) = τ (m0) 

for some m0 ∈ ℵ which converges to a unique fixed point τ 
[30].

(17)

(
�1Ŵ(α + 1)+ �2

Ŵ(2α + 1)

Ŵ(α + 1)
t
α + · · ·

)

+ ξ

(
φ(x)+ �1t

α + �2t
2α + · · ·

)
φ′(x)

+ γφ′′′(x) = 0.

(18)�1Ŵ(α + 1)+ ξφ(x)φ′(x)+ γφ′′′(x) = 0.

(19)�1 =
−
(
ξφ(x)φ′

(x)+ γφ′′′(x)
)

Ŵ(α + 1)
.

(20)u1(x, t) =
−(ξφ(x)φ′(x)+ γφ′′′(x))

Ŵ(α + 1)
tα .

(21)

(1− p)
[
uαt (x, t)

]
+ p

[
uαt (x, t)+ ξu(x, t)ux(x, t)+ γuxxx(x, t)

]

= 0, 0 < α ≤ 1.

(22)uαt (x, t)+ p[ξu(x, t)ux(x, t)+ γuxxx(x, t)] = 0.

(23)

p2 : ∂
αu2(x,t)
∂tα + ξ

�
u0(x, t)

∂u1(x,t)
∂x + u1(x, t)

∂u0(x,t)
∂x

�
+ γ

∂
3u0(x,t)
∂x3

= 0,

p3 ∂
αu3(x,t)
∂tα + ξ

�
u0(x, t)

∂u2(x,t)
∂x + u1(x, t)

∂u1(x,t)
∂x + u2(x, t)

∂u0(x,t)
∂x

�
+ γ

∂
3u1(x,t)
∂x3

= 0.

...
... · · ·

...
...



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Proof  Consider the Picard sequence ms+1 = τ (ms) ⊆ Y  
we want to show that ms is convergent in Y  for  
all r ≥ s �ms −mr� ≤ �ms −ms+1� + �ms+1 −ms+2�
+�ms+2 −ms+3� + · · · + �ms−1 −mr�.

We define the proof by applying mathematical induction 
on the contractive property of (C):

�ms −ms+1� ≤ ε
s�m0 −m1� . By implication, 

lim
r→∞

�ms −mr� ≤ ε
s

1+ε
�m0 −m1� = 0 as s → ∞.

This proves that (ms) is convergent in Y  and through 
completeness of Y  , we can find ω ∈ Y  : lim

s→∞
(ms) = ω ∈ Y  . 

Clearly, the continuity of τ is ensured by the contraction 
(C). Thus, ω = lim

s→∞
ms+1 = mr.

3 � Application and results
3.1 � Example 1
Consider the dispersive KDV equation

subject to the initial condition:

By modified initial guess homotopy perturbation 
method,

Equation (24) is evaluated using the following derivatives 
in Eq. (27)

such that at t = 0,

Therefore,

(24)∂
α
µ(x, t)

∂tα
− 6µ(x, t)

∂µ(x, t)

∂x
+

∂
3
µ(x, t)

∂x3
= 0,

(25)µ(x, 0) =
x − 2

12
.

(26)µ(x, t) = µ(x, 0)+ �1t
α + · · · .

(27)

∂
α
µ(x, t)

∂tα
= �1Ŵ(α + 1),

∂µ(x, t)

∂x
=

1

12
,
∂
3
µ(x, t)

∂x3
= 0,

(28)�1 =
(x − 2)

24Ŵ(α + 1)
.

(29)µ1(x, t) =
(x − 2)

24Ŵ(α + 1)
tα .

Constructing a homotopy for Eq. (24),

simplifying Eq. (30),

We can assume a series solution of the form:

Substituting Eq. (32) into Eq. (31) and equating coeffi-
cients of equal powers of pn, n ≥ 2;

Evaluating Eq. (33) using µ0(x, t) &µ1(x, t),

Applying operator Iα to both sides of Eq. (35),

Repeating the iterative process,

and so on. The subsequent terms can be evaluated using 
MATHEMATICA 12 software package.

The approximate solution of Eq.  (24) is therefore 
obtained as:

(30)
(1− p)

∂
α
µ(x, t)

∂tα
+ p

(
∂
α
µ(x, t)

∂tα

−µ(x, t)
∂µ(x, t)

∂x
+

∂
3
µ(x, t)

∂x3

)
= 0;

(31)

∂
α
µ(x, t)

∂tα
+ p

(
−6µ(x, t)

∂µ(x, t)

∂x
+

∂
3
µ(x, t)

∂x3

)
= 0.

(32)
µ(x, t) = µ0(x, t)+ pµ1(x, t)+ p2µ2(x, t)+ · · · pnµn(x, t).

(33)

p2 :
∂
α
µ2(x, t)

∂tα
− 6

(
µ0(x, t)

∂µ1(x, t)

∂x
+ µ1(x, t)

∂µ0(x, t)

∂x

)

+
∂
3
µ0(x, t)

∂x3
= 0,

(34)

p3 :
∂
α
µ3(x, t)

∂tα
− 6

(
µ0(x, t)

∂µ2(x, t)

∂x
+ µ1(x, t)

∂µ1(x, t)

∂x

+µ2(x, t)
∂µ0(x, t)

∂x

)
+

∂
3
µ1(x, t)

∂x3
= 0.

(35)

∂
α
µ2(x, t)

∂tα
−

(x − 2)

24Ŵ(α + 1)
tα = 0 ⇒

∂
α
µ2(x, t)

∂tα
=

(x − 2)

24Ŵ(α + 1)
tα .

(36)µ2(x, t) =
(x − 2)

24Ŵ(2α + 1)
t2α .

(37)

µ3(x, t) =

(
(x − 2)4(Ŵ(1+ α))

2 + Ŵ(1+ 2α)

96(Ŵ(1+ α))
2
Ŵ(1+ 3α)

t3α

)
,

(38)µ4(x, t) =

(
(x − 2)4(Ŵ(1+ α))

2
Ŵ(1+ 2α)+ (Ŵ(1+ 2α))2 + 2Ŵ(1+ α)Ŵ(1+ 3α)

96(Ŵ(1+ α))
2
Ŵ(1+ 2α)Ŵ(1+ 4α)

t4α

)
,
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Fig. 1  A traveling solitary translatory wave, which preserves its form by not interacting with any local disturbances. The directions of wave 
propagation in space and time coordinate (x , t) at different degrees of freedom on the interval 0 ≤ α ≤ 1 were presented in A–E. E particularly 
reflects that the translatory wave tends to converge to the exact direction of the wave propagation presented in F at an integer order
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When α = 1,

And the closed form of the solution is

 (Fig. 1, Table 1).

(39)µn(x, t) =

x − 2

12
+

(x − 2)

24Ŵ(α + 1)
tα +

(x − 2)

24Ŵ(2α + 1)
t2α +

(x − 2)4(Ŵ(1+ α))
2 + Ŵ(1+ 2α)

96(Ŵ(1+ α))
2
Ŵ(1+ 3α)

t3α

(x − 2)4(Ŵ(1+ α))
2
Ŵ(1+ 2α)+ (Ŵ(1+ 2α))2 + 2Ŵ(1+ α)Ŵ(1+ 3α)

96(Ŵ(1+ α))
2
Ŵ(1+ 2α)Ŵ(1+ 4α)

t4α



.

µn(x, t) =
(x − 2)

12
+

(x − 2)t

24
+

(x − 2)t2

48

+
(x − 2)t3

96
+

(x − 2)t4

192
+ · · · .

lim
n→∞

µn(x, t) =
x − 2

12− 6t

3.2 � Convergence of Solution
Following the theorem of nonlinear mapping X , the con-
vergence of modified initial guess homotopy perturba-
tion method strictly relies on contraction X.

Thus, �µ0 − µe� =
∥∥∥ x−2

12
− x−2

12−6t

∥∥∥ = 1
12

∥∥∥ (x−2)t
(t−2)

∥∥∥ . For 
1
2
< κ , 0 < κ < 1,

�µ1 − µe� = �µ0 + µ1 − µe� =
∥∥∥∥
1

24

(x − 2)t2

(t − 2)

∥∥∥∥ ≤ κ�µ0 − µe�,

Table 1  Numerical results of problem one at an exact value α = 1

t Value of (x) Numerical solution Exact solution Abs error

t = 0 0  − 0.16667  − 0.16667 0

0.1  − 0.1583333334  − 0.1583333333 1× 10−10

0.2  − 0.1500000000  − 0.1500000000 0

0.3  − 0.1416666667  − 0.1416666667 0

0.4  − 0.1333333334  − 0.1333333333 1× 10−10

0.5  − 0.1250000000  − 0.1250000000 0

t = 0.2 0  − 0.1851833335  − 0.1851851852 0.0000018517

0.1  − 0.1759241666  − 0.1759259259 0.0000017593

0.2  − 0.1666650000  − 0.1666666667 0.0000016667

0.3  − 0.1574058335  − 0.1574074074 0.0000015739

0.4  − 0.1481466666  − 0.1481481481 0.0000014815

0.5  − 0.1388875000  − 0.1388888889 0.0000013889

t = 0.4 0  − 0.2082666667  − 0.2083333334 0.0000666667

0.1  − 0.1978533334  − 0.1979166667 0.0000633333

0.2  − 0.1874400000  − 0.1875000001 0.0000600001

0.3  − 0.1770266667  − 0.1770833334 0.0000566667

0.4  − 0.1666133334  − 0.1666666667 0.0000533333

0.5  − 0.1562000000  − 0.1562500000 0.0000500000

t = 0.6 0  − 0.2375166667  − 0.2380952380 0.0005785713

0.1  − 0.2256408334  − 0.2261904761 0.0005496427

0.2  − 0.2137650000  − 0.2142857142 0.0005207142

0.3  − 0.2018891667  − 0.2023809523 0.0004917856

0.4  − 0.1900133334  − 0.1904761904 0. 0,004,628,570

0.5  − 0.1781375000  − 0.1785714285 0.0004339285

t = 0.8 0  − 0.2749333335  − 0.2777777778 0.0028444443

0.1  − 0.2611866666  − 0.2638888889 0.0027022223

0.2  − 0.2474400000  − 0.2500000000 0.0025600000

0.3  − 0.2336933335  − 0.2361111111 0.0024177776

0.4  − 0.2199466666  − 0.2222222222 0.0022755556

0.5  − 0.2062000000  − 0.2083333334 0.0021333334
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�µ2 − µe� = �µ0 + µ1 + µ2 − µe�

=
∥∥∥∥
1

48

(x − 2)t3

(t − 2)

∥∥∥∥ ≤ κ
2�µ0 − µe�,

�µ3 − µe� = �µ0 + µ1 + µ2 + µ3 − µe�

=
∥∥∥∥
1

96

(x − 2)t4

(t − 2)

∥∥∥∥ ≤ κ
3�µ0 − µe�,

�µn − µe� = �(µ0 + µ1 + µ2 + · · ·µ2)− µe�

=
∥∥∥∥

1

12 · 2n
(x − 2)t4

(t − 2)

∥∥∥∥ ≤ κ
n�µ0 − µe�.

Clearly, lim
n→∞

κ
n = 0 ; therefore, lim

n→∞
�µn − µe� ≤ κ

n

�µ0 − µe� = 0 . Thus, modified initial guess homotopy 
perturbation method agrees that µe = lim

n→∞
µn(x, t)

= x−2
12−6t

 which is the exact solution of the problem.

3.3 � Problem 2
Consider the following linear homogenous KDV equation

subject to the condition:

(40)
∂
α
µ(x, t)

∂tα
+ 7

∂µ(x, t)

∂x
+ 6

∂µ(x, t)

∂x3
= 0,

(41)µ(x, 0) = cos(x).

Table shows the approximate solution, exact solution, and absolute errors computed at a time-varying level of x . We observed that the approximate result deviates 
from the exact solutions as the value increases. For example, the absolute error observed when t = 0 is of order ×10−10 ; at t = 1 the absolute error is in order of 
×10−3 to ×10−2 ; and at t = 1.8 the absolute error is in order of ×10−1.

Table 1  (continued)

t Value of (x) Numerical solution Exact solution Abs error

t = 1.0 0  − 0.3229166667  − 0.3333333334 0.0104166667

0.1  − 0.3067708334  − 0.3166666667 0.0098958333

0.2  − 0.2906250000  − 0.3000000001 0.0093750001

0.3  − 0.2744791667  − 0.2833333334 0.0088541667

0.4  − 0.2583333334  − 0.2666666667 0.0083333333

0.5  − 0.2421875000  − 0.2500000000 0.0078125000

t = 1.2 0  − 0.3842666667  − 0.4166666666 0.0323999999

0.1  − 0.3650533334  − 0.3958333333 0.0307799999

0.2  − 0.3458400000  − 0.3749999999 0.0291599999

0.3  − 0.3266266667  − 0.3541666666 0.0275399999

0.4  − 0.3074133334  − 0.3333333333 0.0259199999

0.5  − 0.2882000000  − 0.3125000000 0.0243000000

t = 1.4 0  − 0.4621833335  − 0.5555555556 0.0933722221

0.1  − 0.4390741666  − 0.5277777778 0.0887036112

0.2  − 0.4159650000  − 0.5000000000 0.0840350000

0.3  − 0.3928558335  − 0.4722222223 0.0793663888

0.4  − 0.3697466666  − 0.4444444445 0.0746977779

0.5  − 0.3466375000  − 0.4166666667 0.0700291667

t = 1.6 0  − 0.5602666667  − 0.8333333334 0.2730666667

0.1  − 0.5322533334  − 0.7916666667 0.2594133333

0.2  − 0.5042400000  − 0.7500000001 0.2457600001

0.3  − 0.4762266667  − 0.7083333334 0.2321066667

0.4  − 0.4482133334  − 0.6666666667 0.2184533333

0.5  − 0.4202000000  − 0.6250000000 0.2048000000

t = 1.8 0  − 0.6825166667  − 1.666666667 0.9841500003

0.1  − 0.6483908334  − 1.583333333 0.9349424996

0.2  − 0.6142650000  − 1.500000000 0.8857350000

0.3  − 0.5801391667  − 1.416666667 0.8365275003

0.4  − 0.5460133334  − 1.333333333 0.7873199996

0.5  − 0.5118875000  − 1.250000000 0.7381125000
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By modified initial guess homotopy perturbation 
method, we can construct

substituting Eq. (41) into Eq. (42),

Equation  (40) is evaluated using the following deriva-
tives in Eq. (44),

such that

Solving for �1 in Eq. (45),

Since µ1(x, t) = �1t
α , therefore

To obtain further approximations, we construct a 
homotopy for Eq. (40):

simplifying Eq. (48),

We assume a series solution of the form:

(42)µ(x, t) = µ0(x, 0)+ �1t
α + · · · ;

(43)µ(x, t) = cos(x)+ �1t
α + · · · .

(44)

∂
α
µ(x, t)

∂tα
=�1Ŵ(α + 1),

∂µ(x, t)

∂x
= − sin(x),

∂
3
µ(x, t)

∂x3
= sin(x),

(45)�1Ŵ(α + 1)+ 7(− sin x)+ 6(sin x) = 0.

(46)�1 =
sin(x)

Ŵ(α + 1)
.

(47)µ1(x, t) =
sin(x)

Ŵ(α + 1)
tα .

(48)

(1− p)

[
∂
α
µ(x, t)

∂tα

]
+ p

[
∂
α
µ(x, t)

∂tα
+ 7

∂µ(x, t)

∂x
+ 6

∂µ(x, t)

∂x3

]
= 0;

(49)
∂
α
µ(x, t)

∂tα
= p

[
−7

∂µ(x, t)

∂x
+ 6

∂µ(x, t)

∂x3

]
.

(50)
µ(x, t) = µ0(x, t)+ pµ1(x, t)+ p2µ2(x, t)+ · · · pnµn(x, t).

Substituting Eq. (50) into Eq. (49) and comparing coef-
ficients of equal powers of pn, n ≥ 2,

Evaluating Eq.  (51) using µ0(x, t) &µ1(x, t) and apply-
ing Iα to both sides,

and

such that

Evaluating Eq.  (53) using µ0(x, t) ,µ1(x, t)&µ2(x, t) 
yields

applying operator Iα,

Subsequently the proceeding iterations are:

And the approximate result is

(51)
∂
α
µ2(x, t)

∂tα
= −7

∂µ1(x, t)

∂x
+ 6

∂µ1(x, t)

∂x3
,

(52)
∂
α
µ3(x, t)

∂tα
= −7

∂µ2(x, t)

∂x
+ 6

∂µ2(x, t)

∂x3
,

(53)
∂
α
µ4(x,t)
∂tα = −7

∂µ3(x,t)
∂x + 6

∂µ3(x,t)
∂x3

,

...
...

...

(54)
∂
α
µn(x, t)

∂tα
= −7

∂µn−1(x, t)

∂x
+ 6

∂µn−1(x, t)

∂x3
.

(55)
∂
α
µ2(x, t)

∂tα
= −

cos x

Ŵ(α + 1)
tα ,

(56)Iα
(
∂
α
µ2(x, t)

∂tα

)
= Iα

(
−

cos x

Ŵ(α + 1)
tα
)
,

(57)µ2(x, t) = −
cos x

Ŵ(2α + 1)
t2α .

(58)
∂
α
µ3(x, t)

∂tα
= −

sin x

Ŵ(2α + 1)
t2α;

(59)µ3(x, t) = −
sin x

Ŵ(3α + 1)
t3α .

(60)µ4(x, t) = cos x
Ŵ(4α+1)

t4α , µ5(x, t) = sin x
Ŵ(5α+1)

t5α , µ6(x, t) = − cos x
Ŵ(6α+1)

t6α ,

µ7(x, t) = − sin
Ŵ(7α+1)

t7α , µ8(x, t) = cos x
Ŵ(8α+1)

t8α , µ9(x, t) = sin x
Ŵ(9α+1)

t9α .
· · ·

}

(61)µn(x, t) =
cos x +

sin x

Ŵ(α + 1)
tα −

cos x

Ŵ(2α + 1)
t2α −

sin x

Ŵ(3α + 1)
t3α +

cos x

Ŵ(4α + 1)
t4α

+
sin x

Ŵ(5α + 1)
t5α −

cos x

Ŵ(6α + 1)
t6α +

cos x

Ŵ(8α + 1)
t8α +

sin x

Ŵ(7α + 1)
t7α −

sin x

Ŵ(9α + 1)
t9α + · · · .






Page 10 of 17Alaje et al. Beni-Suef Univ J Basic Appl Sci          (2022) 11:139 

such that

When α = 1,

The modified method agrees that

By convergence, the exact solution is

In closed form (Fig. 2, Table 2),

3.4 � Problem 3
Consider the following nonlinear homogenous KDV 
equation

subject to the initial condition

By modified initial guess homotopy perturbation 
method,

Evaluating Eq. (65) using Eq. (68),

(62)µn(x, t) =
cos x

�
1− t2α

Ŵ(2α+1)
+ t4α

Ŵ(4α+1)
− t6α

Ŵ(6α+1)
+ t8α

Ŵ(8α+1)
+ · · ·

�

+ sin x
�

tα

Ŵ(α+1)
− t3α

Ŵ(3α+1)
+ t5α

Ŵ(5α+1)
− sin t7α

Ŵ(7α+1)
+ · · ·

�




(63)

µn(x, t) = cos x

(
1−

t2

2
+

t4

4!
−

t6

6!
+

t8

8!
+ · · ·

)

+ sin x

(
t −

t3

3!
+

t5

5!
−

t7

7!
+ · · ·

)

(64)lim
n→∞n

µ(x, t) = µ(x, t).

µ(x, t) = cos x cos t + sin x sin t.

µ(x, t) = cos(x − t).

(65)∂
α
µ(x, t)

∂tα
+ ξu(x, t)

∂µ(x, t)

∂x
+

∂
3
µ(x, t)

∂x3
= 0,

(66)µ(x, 0) = x.

(67)µ(x, t) = µ(x, 0)+ �1t
α + · · · ,

(68)

∂
α
µ(x, t)

∂tα
= �1Ŵ(α + 1),

∂µ(x, t)

∂x
= 1,

∂
3
µ(x, t)

∂x3
= 0.

Fig. 2  A traveling transverse wave which occurrence can be in the form of surface ripples on water. A–H show the different types of disturbance 
caused by the wave as 0 ≤ α ≤ 1 . In E, it could be observed that proper crests are formed as α → 1. This means that the frequency of the 
disturbance will peak at an integer order. Figure G shows the behavioral pattern of the wave amplitude at different levels of α . The amplitude is 
periodically accelerated as α increases, and the highest amplitude is recorded as a unit for the wavelength considered. In H, the efficiency of the 
modified initial guess technique is proved as it produces an approximate result that converges to the exact solution

(See figure on next page.)

Thus,

Constructing a homotopy for Eq. (65),

Simplifying Eq. (72),

Substituting Eq. (50) into Eq. (73) and comparing coef-
ficients of equal powers of pn, n ≥ 2.

Evaluating Eq. (74) using µ0(x, t)&µ1(x, t),

(69)�1Ŵ(α + 1)+ ξ

(
x + �tα

)
= 0.

(70)At t = 0, �1 =
−ξx

Ŵ(α + 1)
.

(71)µ1(x, t) =
−ξx

Ŵ(α + 1)
tα

(72)
(1− p)

∂
α
µ(x, t)

∂tα
+ p

(
∂
α
µ(x, t)

∂tα

+ξµ(x, t)
∂µ(x, t)

∂x
+

∂
3
µ(x, t)

∂x3

)
= 0.

(73)

∂
αu(x, t)

∂tα
+ p

(
ξu(x, t)

∂u(x, t)

∂x
+

∂
3u(x, t)

∂x3

)
= 0.

(74)
p2 :

∂
α
µ2(x, t)

∂tα
+ ξ

(
µ0(x, t)

∂µ1(x, t)

∂x

+µ1(x, t)
∂µ0(x, t)

∂x

)
+

∂
3
µ0(x, t)

∂x3
= 0,

(75)

p3 :
∂
α
µ3(x, t)

∂tα
+ ξ

(
µ0(x, t)

∂µ2(x, t)

∂x
+ µ1(x, t)

∂µ1(x, t)

∂x

+µ2(x, t)
∂µ0(x, t)

∂x

)
+

∂
3
µ1(x, t)

∂x3
= 0,
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Fig. 2  (See legend on previous page.)
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Applying operator Iα to Eq. (76),

Subsequently,

(76)

∂
α
µ2(x, t)

∂tα
−

2ξ2x

Ŵ(α + 1)
tα = 0 ⇒

∂
α
µ2(x, t)

∂tα
=

2ξ2x

Ŵ(α + 1)
tα .

(77)µ2(x, t) =
2ξ2x

Ŵ(α + 2)
tα+1.

(78)

µ3(x, t) = −
(

ξ
3xŴ(1+ 2α)

(Ŵ(1+ α))
2
Ŵ(1+ 3α)

t3α +
4ξ3x

Ŵ(2+ 2α)
t1+2α

)

and so on. The approximate solution is:

When α = 1 , the integer solution is:

The modified method agrees that

(79)

µn(x, t) =x −
−ξx

Ŵ(α + 1)
t
α +

2ξ2x

Ŵ(α + 2)
t
α+1

−
(

ξ
3xŴ(1+ 2α)

(Ŵ(1+ α))
2
Ŵ(1+ 3α)

t
3α +

4ξ3x

Ŵ(2+ 2α)
t
1+2α

)
+ · · ·

(80)µn(x, t) = x − txξ + t2ξ2x − t3ξ3x + · · · .

Table 2  Numerical results of problem two at an exact value α = 1

Table shows that the absolute error drastically increases as t  increases. When t = 0 , the absolute error is zero; when t = 1 , the error ranges from ×10−11 to ×10−10 ; 
when t = 2 , the error increases to an order which ranges from ×10−8 to ×10−9 ; and at t = 3 , the absolute error alternate between ×10−6 to ×10−6.

t Value of (x) Numerical solution Exact solution Abs error

t = 0 0 1 1 0

2  − 0.4161468365  − 0.4161468365 0

4  − 0.6536436209  − 0.6536436209 0

6 0.9601702867 0.9601702867 0

8  − 0.1455000338  − 0.1455000338 0

10  − 0.8390715291  − 0.8390715291 0

t = 1 0 0.5403023059 0.5403023059 3.186028260 × 10−11

2 0.5403023057 0.5403023059 2× 10−10

4  − 0.9899924967  − 0.9899924966 1× 10−10

6 0.2836621855 0.2836621855 0

8 0.7539022544 0.7539022543 1× 10−10

10  − 0.9111302620 0.9111302619 1× 10−10

t = 2 0  − 0.4161468396  − 0.4161468365 3.05285761300× 10−9

2 1.000000023 1 2.3 × 10−8

4  − 0.4161468534  − 0.4161468365 1.69 × 10−8

6  − 0.6536436313  − 0.6536436209 1.04 × 10−8

8 0.9601703110 0.9601702867 2.43 × 10−8

10  − 0.1455000450  − 0.1455000338 1.12 × 10−8

t = 3 0  − 0.9899944948  − 0.9899924966 1.9982× 10−6

2 0.5403127921 0.5403023059 104862× 10−5

4 0.5402955751 0.5403023059 6.7308× 10−6

6  − 0.9899973839 0.9899924966 4.8873× 10−6

8 0.2836729814 0.2836621855 1.07959× 10−5

10 0.7538981557 0.7539022543 4.0986× 10−6

(See figure on next page.)
Fig. 3  A comprehensive clarification of the interference caused by wave propagation in the given domain of shallow water with a depth of 7 m 
and a width of 0.1 m. B–H depict the swirling direction of the wave as the degree of freedom increases. It was observed that the fluid tends to 
undergo less turbulence when hit by the wave at a lower level of α . G interprets the convergence of fractional order to integer order, and H is 
employed to show the accuracy of the method applied. To a great extent, it was observed that the approximate solution agrees with the exact 
solution
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Fig. 3  (See legend on previous page.)
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therefore, the closed form of Eq. (64) is obtained as:

which is the exact solution.

3.5 � Application to oceanography
The mathematical model of shallow water waves in 
dimensional form described in [24] to clarify the dis-
turbance caused by waves in the ocean bottom is:

µ(x, t) = lim
n→∞

µn(x, t);

(81)µ(x, t) =
x

1+ ξ t
,

They applied the transformation R(θ ,ϕ) =

−
√

16gh
7
6

3
√
6

µ(x, t) to reduce Eq.  (82) to canonical KDV 
equation presented as:

Let the initial condition be:

(82)
h2

6
∂R3

θ
+

3

2
√
gh

R∂Rθ + ∂Rϕ = 0.

(83)∂
α
µ(x, t)

∂tα
− 6µ(x, t)

∂µ(x, t)

∂x
+

∂
3
µ(x, t)

∂x3
= 0.

(84)µ(x, 0) = x.

Table 3  Numerical results of problem three at an exact value α = 1

As occurred in the first two problems, the data in Table 3 indicate that the absolute error progressively becomes worse as the value of t increases. It was discovered 
that the error initially increases from 0 to an order that significantly increases from ×10−2 to ×10−1.

t Value of (x) Numerical solution Exact solution Abs error

t = 0  − 0.04 2.668682966 2.668682966 0

 − 0.02 1.334341483 1.334341483 0

0 0 0 0

0.02  − 1.334341483  − 1.334341483 0

0.04  − 2.668682966  − 2.668682966 0

t = 0.02  − 0.04 3.031965441 3.032594279 0.000628838

 − 0.02 1.515982720 1.516297139 0.000314419

0 0 0 0

0.02  − 1.515982720  − 1.516297139 0.000314419

0.04  − 3.031965441  − 3.032594279 0.000628838

t = 0.04  − 0.04 3.499774890 3.511424956 0.011650066

 − 0.02 1.749887445 1.755712478 0.005825033

0 0 0 0

0.02  − 1.749887445  − 1.755712478 0.005825033

0.04  − 3.499774890  − 3.511424956 0.011650066

t = 0.06  − 0.04 4.099780218 4.169817134 0.070036916

 − 0.02 2.049890109 2.084908567 0.035018458

0 0 0 0

0.02  − 2.049890109  − 2.084908567 0.035018458

0.04  − 4.099780218  − 4.169817134 0.070036916

t = 0.08  − 0.04 4.859650332 5.132082627 0.272432295

 − 0.02 2.429825166 2.566041313 0.136216147

0 0 0 0

0.02  − 2.429825166  − 2.566041313 0.136216147

0.04  − 4.859650332  − 5.132082627 0.272432295

t = 0.10  − 0.04 5.807054134 6.671707415 0.864653281

 − 0.02 2.903527067 3.335853708 0.432326641

0 0 0 0

0.02  − 2.903527067  − 3.335853708 0.432326641

0.04  − 5.807054134  − 6.671707415 0.864653281
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Then, Eq.  (83) becomes a particular case of Eq.  (65) 
when ξ = −6,

such that

and

3.6 � Numerical simulation
Here, we conduct a numerical simulation of the distur-
bance caused by water waves in the domain of shallow 
water described by R(x, t) = {(x, t)|−0.05 ≤ x ≤ 0.05 ,

0 < t < 0.42} . Equation  (86) is substituted into the 

transformation R(θ ,ϕ) = −
√

16gh
7
6

3
√
6

µ(x, t) to obtain the 
theoretical solution of Eq. (82).

Also, Eq.  (85) is substituted into R(θ ,ϕ) such that 
the following numerical solution is obtained (Fig.  3, 
Table 3)

3.7 � Theoretical perspective
Physical problems are well modeled with the aid of 
the Caputo derivative concept. This study reveals that 
its differentials are powerful tools for modeling linear 
and nonlinear systems where the order affects the out-
put of functional parameters they contain. The impact 
of wave interference on nature is determined by the 
amount of wave crest that forms, which is referred to 
as “Frequency.” The analysis conducted with the aid of 
the Caputo derivative employed in this research reveals 
that the crests formed by water waves are always maxi-
mum at an integer-order derivative. This integer order 
represents a situation in which a water wave is directly 
propagating in a region with no feasible obstructions. 
This direct propagation can result in ocean floor land-
slides and the redistribution of sand and sediment in 
coastal areas. This can potentially lead to environ-
mental hazards such as flooding and erosion, and the 
end results are often the loss of life and damage to the 
properties of people living in coastal regions. To avoid 
wind-generated waves, direct propagation of winds 
into the water should be kept to a minimum, which can 

(85)µn(x, t) = x + 6tx + 36t2x + 216t3x + · · · ,

(86)µ(x, t) =
x

1− 6t
.

(87)R(θ ,ϕ) = −
√
16gh

7
6

3
√
6

(
x

1− 6t

)

(88)−
√

16gh
7
6

3
√
6

(x + 6tx + 36t2x + 216t3x + · · · )

be accomplished by embracing environmental aiding 
techniques such as tree planting (which acts as a wind-
breaker). Other options for controlling water waves 
include the construction of groins along the shoreline, 
jetties along coastal lines, and breakwater barriers 
along the shoreline.

4 � Discussion
Unlike previous numerical methods, which required sev-
eral iterations and tedious computational work to achieve 
convergence, the proposed method is effective and faster 
and requires less computation time to obtain the approx-
imate solitons of the fractional-order KDV equation. In 
a similar but different study presented in [14], the effec-
tiveness of Caputo differentials was seen. It was applied 
as one of their operators to provide a computational 
approach for solving shallow water KDV equations. They 
achieved this by blending the Caputo derivative with 
a numerical technique that combines the q-homotopy 
analysis transform technique and the Laplace trans-
form method, although the objectives of their research 
extend to hiring two other fractional derivatives named 
“Caputo–Fabrizio” and “Atangana–Baleanu” to show 
their impact in generalizing mathematical models asso-
ciated with power law, non-locality, singularity, and 
non-singularity kernels. In this study, this same Caputo 
operator proved that it cannot be overridden when it 
comes to modeling non-localized phenomena. It shares 
an accurate insight into wave properties and behavior 
through numerical simulation. A major limitation of 
computing fractional-order derivatives is its restriction 
to a few symbolic software packages such as the Math-
ematica software package; hence, it is recommended that 
laptops with the minimum specifications: Disk Space: 
19  GB; System Memory (RAM): 4  GB+, are applied to 
ensure high computation speed [10].

5 � Conclusion
In this research, we proposed an analytical way of solv-
ing the fractional-order Korteweg–de Vries equation. 
The method was derived by coupling an initial guess 
technique with He’s homotopy perturbation method. The 
new method was applied to different KDV equations with 
Caputo fractional derivatives. The approximate solution 
obtained gives a series solution in fractional order, which 
accelerates rapidly to the exact solution at an integer 
order. A conceptual study of the fractional-order deriva-
tive in wave dispersion was carried out by simulating the 
approximate traveling wave solution and investigating the 
disturbance caused by waves in the shallow water domain 
using the MAPLE 18 software. The outcome, which was 
extensively discussed, reveals the significant impact of 
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Caputo’s fractional-order derivative in wave dispersion 
and propagation, and it also gives insight on ways of con-
trolling wave-associated hazards.
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