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Abstract 

Background:  Exploration of marine macroalgae poly-saccharide-based nanomaterials is emerging in the nanotech-
nology field, such as wound dressing, water treatment, environmental engineering, biosensor, and food technology.

Main body:  In this article, the current innovation and encroachments of marine macroalgae polysaccharide-based 
nanoparticles (NPs), and their promising opportunities, for future prospect in different industries are briefly reviewed. 
The extraction and advancement of various natural sources from marine polysaccharides, including carrageenan, aga-
rose, fucoidan, and ulvan, are highlighted in order to provide a wide range of impacts on the nanofood technology. 
Further, seaweed or marine macroalgae is an unexploited natural source of polysaccharides, which involves numer-
ous different phytonutrients in the outermost layer of the cell and is rich in sulphated polysaccharides (SP), SP-based 
nanomaterial which has an enhanced potential value in the nanotechnology field.

Conclusion:  At the end of this article, the promising prospect of SP-based NPs and their applications in the food sec-
tor is briefly addressed.
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1 � Background
Over the last few years, there has been increasing atten-
tiveness in the pursuit of new functional and bioactive 
compounds, especially polysaccharides, from marine 
genesis for wide application in various medical and food 
industries [1, 2]. The earth is occupied with approxi-
mately 70% of water (aqua) bulks consisting of diversified 
aquatic species (spp.), for instance, benthos, planktons, 
and nektons. The aqua covered nearly one-half of the 
overall existing worldwide diversity [3]. Marine plants 
such as seaweeds called macroalgae are abundant gene-
ses of sulphate-containing polysaccharides mostly, which 

people consumed as their regular daily diet [2, 4]. The 
marine species persist in free-floating in the water or 
bound with the rock forms furthermore in the sands or 
lands. Some aquatic plants are grown below the littoral 
zone which is not exposed to sunlight and air but present 
in dark photosynthesis reactions to prepare their foods 
[5–7]. In traditional experts, marine plants were used to 
control various diseases, especially in agriculture pesti-
cides [7].

Seaweed or marine SP-based nanomaterials have an 
excessive promise for application in nano-biotechnology, 
biomedical engineering, and modern medicine mainly 
used as wound dressing, tissue engineering, gene deliv-
ery, and drug delivery [8, 9]. Now a day, marine SP-based 
nanomaterials have fascinated consideration as one of 
the most essential examinations, mainly in, chemical 
and biomedical research because of their low cost, abun-
dance, nontoxicity, biodegradability, and biocompatibility 
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[10]. In recent years, marine bio-nano-particles of poly-
mers, metal oxides, or metals, liposomes, dendrimers, 
or micelles are keenly being used for various diseases 
such as bacteriological infection and tumour side [11]. 
Marine poly-sugars are easily converted into nanomateri-
als, nanotubes, nanofibres, micro-particles, membranes, 
gel, sponge forms, scaffolds, and beads, which are used 
for food application, nano-biotechnology, and biomedical 
applications [12, 13].

Marine seaweed or macroalgae is an unfathomed natu-
ral source of polysaccharides, which consists of numer-
ous different phytonutrients whose cells are enriched 
with sulphate poly-sugar. In seaweed algae, cells consist 
of specific macromolecules or carbohydrates called sul-
phated polysaccharides (SP) condensing sulphate moi-
eties in their structural poly-sugar backbone [14, 15]. 
The outermost layer of marine macroalgae is consists of 
a negative charge due to the presence of cross-linkage 
sulphate ion groups with multifaceted molecules of poly-
saccharide. The cell wall constituted of seaweed algae is 
mostly hemicellulose and cellulose with high contents of 
carbohydrate macromolecules [15, 16]. The high constit-
uents of sulphate poly-sugar present in marine macroal-
gae, but also commonly in some mammals such as fish’s 
outermost layers and a few saline condition plants, while 
it is absent in terrestrial plants [15, 17].

The current review is focused on the brief descriptions 
of sulphate polysaccharide, and SP-based nanomaterials 
with a side of biological and commercial applications.

2 � Main body
2.1 � Marine macroalgae source of sulphated 

polysaccharide
In the base of pigments that assist in photosynthesis 
reactions, aquatic macroalgae are classified into three 
main groups, such as red, green, and brown, which are 
mentioned as Phaeophyceae, Chlorophyceae, and Redio-
phyceae. Some sulphate poly-sugar is carrageenan from 
red algae, ulvans from green algae, and fucoidans in 
brown algae. The classified marine algae red, brown, and 
green species’ total poly-sugar contents range from 4 to 
76%, whereas green macroalgae lonely yields almost 65% 
of dry weight [18–20]. The extraction of marine macroal-
gae was classified into two main categories; these algae 
are further divided into subcategories, which are shown 
in Fig. 1.

However, nowadays food scientists are pursuing better-
quality approaches for manufacturing, packing, stuffing, 
and distributing or dispensing safe, healthy (in a good 
physical shape), tasty, and delicious food products for 
a varied group of consumers [21, 22]. Novel processing 
techniques, containing antioxidants or aroma, encapsula-
tion, controlled collections of products, such as dynamic, 

preserving, well stuffing, or packing yields and enhanced 
utilizing properties of health benefits which is improved 
food quality and self-life of items [23, 24].

Recently, sulphate polysaccharides-based nanomate-
rial of marine macroalgae have been extensively studied 
due to their enormous nano-technological, biomedical, 
and food industrial functions having use in oceanic food 
contents, such as beneficial use in biopolymers Khedri 
et al. [25], biorefineries, Balina et al. [26], bioremediation 
Wu et al. [27], pollution controls Son et al. [28], manure 
Kiraci [29], weather forecasts, Piñeiro-Corbeira et  al. 
[30], medicine, anti-tumour, anti-viral, anti-coagulant, 
anti-inflammatory, Mouritsen et  al. [31], the industrial 
sector it’s used to edible, cheap, nontoxic, food packing 
or biodegradable packing, and easy culturing properties 
[32].

3 � Constituent of macroalgae
Marine seaweeds consist of various contents of biomol-
ecules in their cell and are classified based on pigments 
such as red algae, green algae, brown algae, and their sub-
species. In marine algae, carbohydrates, proteins, lipids, 
and dry matter of the cell composition are mostly present  
[33, 34], as given in Table 1.

4 � Marine polysaccharide‑based nanomaterials
Seaweeds or aquatic macroalgae SP-based nanomateri-
als have received significant attention from nanoscience 
researchers currently, due to their exclusive physico-
chemical properties as well as simple, inexpensive, sta-
ble, nontoxic, safe, hydrophilic, highly biodegradable, 
and good biocompatibility [35, 36]. These features are of 
distinctive attention in the field of nano-biotechnology 
and have an exclusive prospect as biomaterials. Cur-
rently, numerous scientists have studied polysaccharides 
SP-based nanomaterials for biomedical applications, for 
instance, wound dressing, cancer treatment, tissue engi-
neering, drug delivery, gene delivery, and antimicrobial 
activities [35, 37, 38].

4.1 � Rediophyceae: sulphate polysaccharides carrageenan 
and agar of red algae

The outermost layer of red macroalgae consists of micro-
fibrils (β-1, 3-xylans and cellulose) and a thin matrix, 
these matrices are comprises 38% of sulphate poly-sugar 
in the form of carrageen [39]. The higher level refined 
yield of carrageenan was extracted from Kappalvarzii 
sp., whose refined production ranges from 20.4 to 28.4% 
[40]. The average relative molecular weight of carra-
geenan exists of 100  kDa or more, carrageenan is con-
tained approximately 15–40% of ester sulphate contents, 
and other units such as d-galactose and 3,6-anhydrous-
galactose are cross-linked by a- 1,3 and b- 1,4-glycosidic 
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linkage from red algae carrageenan. Carrageenan is 
classified into subgroups based on the solubility level in 
potassium chloride (Kcl), such as, λ, ĸ, ɩ, ɛ, and µ where 
sulphate groups consist of 22–35% [39–41].

The ester sulphate contains in subgroups of car-
rageenan such as Kappa carrageenan 25–30% and 
28–35% of 3,6-AG contents, Iota carrageenan contain-
ing 28–30% ester sulphate and 25–30% of 3,6-AG con-
tents, and Lambda λ carrageenan contains 32–39% of 

ester sulphate range and 3,6-AG contents is not pre-
sents in lambda λ carrageenan [40]. The sums of ester 
sulphate are inverse proportion to the temperature 
stability, gel strength, and solubility such as enhanced 
ester sulphate level than less mechanical properties of 
sulphate polysaccharides [42]. The carrageenan and 
agarose NPs obtain from marine macroalgae, synthesis, 
characterization, and applied in the food industry as 
shown in Fig. 2.

Fig. 1  a Whole diagram illustration of the origin of polysaccharides from algae, b synthesis of nanoparticles, c characterization of 
polysaccharides-based NPs, d and its application in different fields

Table 1  Different constituents of marine algae (Kim et al. [33])

Contents Brown algae Green algae Red algae

Species Undaria pinnatifida, Laminaria, Hizikia fusiform, Sargas-
sum fulvellum

Enteromorpha, Codium fragile Porphyta 
tenera, Gelidium 
amansii

Lipids% 1–5 1–5 1–5

Protein% 38–51 10–15 7–15

Cellulose% 5–9 5 3–16

Dry matters% 5–10 20 30–40

Carbohydrates% 45–60 48–55 53–70
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4.2 � Carrageenan Nanoparticles
The carrageenan and tri-polyphosphate nanoparti-
cles (NPs) with nano range size, strong positive (+ ive) 
surface, and stable mostly used in mucosal delivery of 
macromolecules Rodrigues, Torres et  al. [43]. Maciel 
et  al. [44] and Saluri et  al. [45] stated the effect of 
metallic nanomaterials on gastrointestinal (GI) release 
from altered ĸ-carrageenan hydrogels; they have also 
find out the effect of genipin cross-linkage and loaded 
nanoparticles on drug delivery; Fig.  2 shows carra-
geenan nanoparticles preparation and use in differ-
ent fields. The novel synthesis of carrageenan and CS 
nanoparticles is more suitable for biomedical fields, 
especially drug delivery systems [46, 47]. The produc-
tion of such nanomaterials of carrageenan in hydro-
philic conditions, performing of experiment with very 
mild technique, to avoid the usage of organic solvents 
and another aggressive environment. The carrageenan-
based NPs were stated as suitable carriers that can offer 
continuous control for drug delivery. The carrageenan 
NPs showed high safety, good biocompatibility, low 
toxicity, and against fibroblast cell lines [44, 47, 48].

4.3 � Agarose Nanoparticles
Rediophyceae or red marine algae’s outermost layer 
(cell wall) presents in a compound called agar which is 
responsible for constructing their cell structure [12]. 
Agar is a combination of two polysaccharides, namely 
agaropectin the non-gelling part resides in sulphated 
galactan, containing sulphuric esters, D-glucuronic acid, 
and agarose is the gelling portion which is involved in 
D galactose and 3,6-anhydro-l-galactose sugar; they are 
bonded with each other by α and β bonds [49]. The main 
source of agar is Gracilaria and Gelidium spp. which are 
commonly present on the rocks beside shorelines, agar is 
obtained at 100–130 °C temperature and pressure with a 
pH range of 5.0–6.0 [12, 49].

Furthermore, agarose is normally used for its gel-
forming features to synthesize semiconductor and metal 
NPs. Agarose nanomaterials have shown antibacterial 
activity besides E. coli. Moreover, the agarose compound 
films can be rapidly rehabilitated to carbon–metal com-
plex composites by carbonizing the films in the nitrogen 
atmosphere [50, 51]. Manivasagan and Oh [52] and Sun 
et al. [53] described the usage of agarose-stabilized gold 

Fig. 2  a Complete diagram sketch of the derivation of polysaccharide from Rediophyceae/red algae, synthesis of agarose and carrageenan NPs, b 
characterization of carrageenan and agarose NPs with different parameters, c and its application in food industries
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nanoparticles for the detection of micromolar nucleo-
sides concentration of DNA, the agarose-stabilized gold 
NPs yield detection by spectroscopic. The agarose nano-
particles are used in industrial nano-biotechnology and 
biomedical especially chip biosensing applications.

4.4 � Phaeophyceae: sulphate polysaccharide fucoidan NPs
The fucoidan was produced by sea cucumbers and sea 
urchins, the more bioactive property and higher yield of 
fucoidan were obtained by brown algae. The molecular 
weight range of fucoidan is from 20 to 200 kDa and sul-
phate polysaccharide present in the cell wall at approxi-
mately 40% w/v dry weight. Fucoidan was obtained by 
various species such as Turbinaria ornate, T. ornate, T. 
decurrens, Sargassum ilicifolium, S. wightii, S. myriocys-
tum, S. marginatum, Padina boergesenii, P. gymnospora, 
and Dictyota dichotoma. The brown seaweeds cell wall is 
compressed of cellulose, sulphate fucan, and align in the 
ratio of 1:1:3… [54, 55]. Jang et al. [56] and Lira et al. [57] 
described the synthesis and characterization of fucoidan 
coated poly-(isobutyl cynoacrylate) NPs.

Nanomaterials were synthesized by anionic emul-
sion polymerization and by redox radical emulsion 
polymerization with fucoidan as a novel coating bio-
material; fucoidan nanoparticles were synthesized on a 
nanoscale, as shown in Fig. 3. Leung et al. [58] and Rao 
et al. [59] stated the biosynthesis of silver nanoparticles 
(Ag NPs) by carboxy-methylated curdlan or fucoidan 
as stabilizing and reducing agents. Fucoidan bioactive 
molecule was extracted from marine brown algae Cla-
dosiphon okamuranus which is coated or loaded by NPs 
using liposomes as nano-carriers. The fucoidan NPs 
are used against osteosarcoma and anti-cancer activity 
which have effective results [60, 61].

The synthesis of fucoidan nanoparticles by acetyla-
tion of fucoidan which is slightly modified by hydro-
phobic region, it’s mostly used in cancer treatment, 
especially for chemotherapeutic agent-loaded nanopar-
ticles. Doxorubicin was used as a model chemothera-
peutic agent, and the biomedical application acetylated 
fucoidan nanoparticles were used for drug delivery pur-
poses (Fig.  2). The characterization of fucoidan nano-
particles used by various techniques such as SEM, EDX, 
XRD, TEM, NMR, UV, by their morphology and drug 
release properties [62, 63].

Fig. 3  a Extraction of sulphate poly-sugar from marine macroalgae to make SP-based fucoidan NPs, b characterization of fucoidan NPs with various 
aspects, c and its application with different fields
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4.5 � Chlorophyceae: sulphate polysaccharides ulvan 
nanofibres

Ulvan or green seaweed is the family of sulphate poly-
saccharide (SP), sulphate poly-sugar contents existing 
in the cell wall of green macroalgae as 9–36% in the 
form of Ulvan. Ulvan is a polyanionic heteropolysac-
charide involved in enormous quantities of rhamnose 
and glucuronic acid. In the green algae, the cell wall 
consists of various quantities of monosaccharides for 
instance iduronic acid 5%, xylose 9.6%, glucuronic acid 
22.5%, and rhamnose 45% these monosaccharides are 
linked to gathering a form of α- and β- (1, 4) glycosidic 
linkage to make disaccharides units. Different kinds of 
di-sugar, ulvan are classified into four main types, for 
instance, A3s, B3s, U3s, and U2s, 3  s. The outermost 
layer of marine algae has various functions and biologi-
cal properties and is classified into different subgroups 
of species [64, 65], which are illustrated in Table  2 in 
detail. Currently, ulvan extraction from marine macro-
green algae, Ulv rigida, has been used for the synthe-
sis of nanofibres as shown in Fig.  4; these nanofibres 
present a unique character in such a way that they are 
highly used in different fields such as wound dressing, 
gene delivery, tissue engineering, and drug delivery 
purpose.

Ulvan is an interesting candidate for nanofibres syn-
thesis and has been magnificently introduced into 
industrial nano-biotechnology (Toskas et  al. [66] and 
Weiner et  al. [67]) for the isolation of polysaccharide 
from marine green algae which is rich in ulvan bioac-
tive molecules that examine the spinnability prop-
erty; this ulvan was fabricated to make nanofibres, 
which have exclusive application in physiochemical, 

biological, and biomedical fields, for instance, cancer 
treatment, wound dressing, gene delivery, tissue engi-
neering, and drug delivery.

5 � Features and industrial usages of marine 
macroalgae polysaccharide degrading enzyme

The trickiest thing in the processing step with the extrac-
tion of valuable components of intercellular polysac-
charide from seaweed, because all compounds are 
compacted and filled in the cell it is so challenging to 
do, and even if those substances are extracted, it needs a 
lot of costs [77, 78]. Now a day, food scientists are inter-
ested to find out new functional components derived 
from high-value seaweed algae. The optimization steps 
are must need for conceivable extraction methods and 
low molecular weight of marine macroalgae poly-sugar. 
Hence, an analysis of the procedure of attracting the 
functionality of marine macroalgae polysaccharides 
has been actively conducted. The various components 
obtained, such as polymannuronate, alginic, and low 
molecular weight polyguluronate, which are responsible 
for different biological control functions are remarkable 
[79, 80], as presented in Table 3.

6 � Application of sulphate polysaccharides in food 
industries

Sulphate poly-sugar is significantly exploited in the 
food industries due to its viscosity-enhancing assets, 
stabilizing, emulsifying, and gelling. Considering it 
enhances and stabilizes the food structure, they are 
widely active in food preparations for instance jams, 
jellies, and ice creams, further use in milk products as 
a flavour. Red algae, carrageenan sulphated galactans is 

Table 2  Sulphate polysaccharide (SP)-based nanomaterial and their functions and biological properties

SP macroalgae Sub-form of SP Pigments of the macroalgae SP functional properties Biological properties References

Carrageenan NPs ĸ, j, i, e, and µ Red-phycocyanin, phyco-
erythrin

Gelling binding
Thickening
Emulsion
Viscosity controller
Suspending agents

Lipid barrier properties, anti-
cancer, anti-inflammatory, 
anti-coagulant, antioxidant, 
and antimicrobials

[68–70]

Agar NPs – Red-phycocyanin, phyco-
erthrin

Excellent gelling
Emulsifying agent
Thickening
Clarifying, Texturizing

Antioxidant, anti-tumour, 
anti-viral, anti-diabetic, anti-
coagulant, alpha-glucosidase 
inhibitor, and laxative proper-
ties

[71, 72]

Ulvan NPs A3s, B3s, U3s, U2s, 3s Green chlorophyll a and b, 
carotene

Adhesion, Caking
Viscosity and thickening, 
encapsulation, suspension

Anti-inflammatory, anti-septic, 
anti-viral, anti-cancer, and 
antimicrobial properties

[73, 74]

Fucoidan NPs F, L, U, G, GA Brown Fucoxanthin Gelling, Foaming
Suspension
Improving quality, Chemical 
reactivity
Controlling moisture

Immunoregulatory, anti-com-
plementary, anti-inflamma-
tory, anti-viral, anti-neoplastic, 
antioxidant, blood thinners, 
mucosal shielding agent

[75, 76]
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the prominent commercially beneficial, sulphate poly-
sugar used in fermentation industries for the prepa-
ration of various products. In food industries, SP is 
used for different purposes like adjustment of colloids, 

declining fate contents, an increase in shelf life, and so 
on [15, 85, 86]. The important and most preferable uses 
of macro marine algae are hydrocolloids, nutraceuti-
cals, and food packaging which are briefly discussed 
below.

Fig. 4  a Extraction of ulvan from chlorophyceae marine green algae to make ulvan nanofibres, b characterization of ulvan nanofibres with different 
techniques, c and its application with various sectors

Table 3  Major sources of macroalgae that are responsible for degrading enzyme

Macroalgae Major sugar constituents Degrading enzyme Sources References

Brown algae Alginate: d-glucuronic acid plus d-mannu-
ronic

Alginate lyase Pseudomonas sp. Alginovibrio aquatilis, 
Azotobacter

[81, 82]

Fucoidan: sulphated l-fructose, galactose, 
xylose, glucuronic acid

Endo and Exo 1, 3-β-glucanase Neurospora crassa, Thermotoga neapolitana, 
Candida albicans

Laminaran: beta 1, 3-glucan, beta 1, 
6-glucan

Laminarinase Trichoderma viride

Green algae Cellulose, xylane, mannose Cellulase Penicillium sp., Nectria catalinensis [81, 83]

Xylanases Bacillus sp., Aspergillus niger

Red algae Agar: agarose plus agarofectin Arylsufatase Klebsiella pneumonia, Salmonella typhimuri-
umm, Pseudomonase sp.

[81, 84]

α-Agarase Thalassomonas sp. Vibrio sp.

Carrageenan: d-galactose-sulphated 
galatan

β-Agarase Pseudomonas sp, Bacillus sp, Streptomyces 
sp, Vibrio sp.

Carrageenase Pseudomonas alcaligenes@Cytophaga 
drobachiensis
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6.1 � Hydrocolloids properties
The term hydrocolloid has come from the Greek words 
hydro means aqua and kola means gum. They are mostly 
presented in hydrophilic poly-sugar long chains having 
OH groups responsible for operative water binding and 
help to gel formations. The constituents which form vis-
cous dispersions and gelatinous, as soon as they are dis-
persed in aqua are terms as hydrocolloids. The marine 
macroalgae extraction of sulphate polysaccharides such 
as brown and red species like agar, and carrageenan are 
commercially available hydrocolloids. They assist as sta-
bilizers, thickeners, emulsifiers, and fillers in cosmetics, 
pharmaceuticals, foods, and numerous other industries, 
with unbelievably distinctive physicochemical properties 
[87–89]. Their main functions and properties are enlisted 
in Table 2.

The oldest demoralized commercial hydrocolloid has 
been used as agar since the sixteenth century. Agar is 
the first hydrocolloid endorsed by the Drug Adminis-
tration as generally recognized as safe (GRAS) and food 
that utilized it as nutrition supplements additives. The 
red macroalgae species such as Gracilaria and Gelidium 
production of admirable quality agar, because they have 
the best gelling feature with a resistance to high tem-
peratures. Agar has inclusive application in the process-
ing (fermentation) of food items for instance milkshakes, 
nutritional milk drinks, jellies, dry food powder, jams, 
pastry fillings, soups, spreads, chocolate milk, organic 
products, brew, creams, flavours, sauces mixes, bever-
ages, puddings, garnishes, poultry products, canned food, 
pet nourishment, tofu, frozen yogurt, and ice cream. The 
seaweed algae agar utilized in the food industries (bak-
ing) has more dominant properties than other hydrocol-
loid macroalgae. Besides all these food properties, agar is 
used in microbial and biotechnological laboratories for 
large-scale preparation for culture media for microorgan-
ism growth [90–92].

6.2 � Food packing and nutraceutical properties
Sulphated polysaccharide (SP) such as ulvan, carra-
geenan, fucoidan, and agar are biopolymers they have 
reasonable significance in pharmaceutical, biomedical, 
microbiology, nourishment, and biotechnological fields 
somewhere it is utilized as exemplifying specialists, bal-
ancing out, and gelling. SP biopolymers molecules can 
create both non-edible as well as edible wraps or film, 
covers, and bags with improved restriction properties by 
avoiding the exchange of oxygen (O2), enhancer, mois-
ture, and lipid content existent in food products, the dif-
ferent substances exist in mixed nutrition and microbial 
culture mediums [93–95]. They could be combined with 
commercial biopolymers for instance butyrate, polyhy-
droxy, polyolefins, polylactic acid with nanomaterials 

(nanocrystals and nanoparticles) resulting in the creation 
of biocomposite nanofood packing, they also have other 
properties of biodegradable ability and toxic free nature. 
The sulphated polysaccharide together with nano-formu-
lations such as various metal nanomaterials silver, iron 
oxide, and magnesium oxide which is enhanced antimi-
crobial activity even at small ppm. Sulphated poly-sugar 
is used to confine the function of foodborne pathogens, 
for instance, Escherichia coli, Salmonella enterica, Ente-
rococcus faecalis, and Listeria monocytogenes. Now a 
day highly appreciated biodegradable packing is due 
to reducing the daily usage of pollution and plastics, in 
such a way sulphated poly-sugar SP biopolymers have 
preferred in biofood packing [96–98]. Overall sketch of 
extraction of SP and its usage in food industries is shown 
in Fig. 5.

Nutraceuticals are the deliquesced form of the words 
food and pharmaceutical highly significant nutrition and 
its additives with benefits for food, industrial microbial, 
or biotechnological and biomedical fields. Nowadays, 
nutraceutical properties of food are attracted signifi-
cant desire in the suitable application of health benefits, 
recently numerous research has disclosed the pharma-
cological assistances of sulphate polysaccharide achieved 
from seaweed macroalgae spp. [99, 100]. The brown- and 
red-coloured seaweed sp. have augmented nutrient con-
tent and well quality employed as nutritious supplements 
beside the regular diet because they are a rich source of 
soluble fibbers comprising more supplements of a bio-
molecule. The major constituents of sulphate are dem-
onstrated in Table  1, while minor constituents include 
vitamins, fatty acids, terpenoids, minerals, polyphenols, 
lipoproteins, polyether, carotenoids, etc. The sulphate 
sugar (SP) is enriched with omega 3 fatty acids (unsatu-
rated omega), e.g. palmitic myristic acid, arachidonic 
acid, and linoleic, which are saturated fatty acids. The red 
macroalgae contain negative charge sulphate polysaccha-
ride which is used for different purposes in daily life for 
instance anti-viral, anticoagulation, antimicrobial, anti-
inflammatory, antioxidant, anti-cancer, and anti-tumours 
applications [101–103].

7 � Emerging application of marine macroalgae 
polysaccharides

Explorations on marine macroalgae polysaccharide-
based bio-products are responsible for a foundation 
for evolving new strategies and advanced processes for 
developing sustainable products. Studies have been 
innovative from the addition of new methods for inves-
tigating glycan structure and envisaging how it interacts 
with various microbiomes of the human gut. Currently, 
advanced scientific technologies should provide a virtu-
ous understanding of how bacteria selectively consume 
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glycan in complex bacteriological communities [104, 
105]. Furthermore, glycomics, chemical probes, unravel 
sequence database, associating CAZyme, and computa-
tional analysis will be important to unlock next-genera-
tion compositional approaches and make a sensational 
innovative frontier for microbiome function [104, 106]. 
Several enzymes like 1, 3-β glucanase, chitinase, peroxi-
dase, and phenylalanine ammonia-lyase were definitely 
improved by polysaccharides treatment from algae in 
tomato leaves through P. tricornutum polysaccharides 
have revealed admirable improvement (i.e. 238.26) amid 
confirmed marine macroalgae polysaccharides. The 
extraction of polysaccharides from marine sources is 
currently tested for AgO NPs fabrication as well as plant 
growth stimulations. AgO NPs positively trialled for anti-
bacterial effects. Yet, as far as we know, there are recently 
no examines on recombinant technology of marine mac-
roalgae to increase polysaccharide production [104, 107].

8 � Market prospective and scope
Marine macroalgae-based market perspective falls 
in numerous food classifications such as polysaccha-
rides, natural pigments, carotenoids, fatty acid deriva-
tives, and single-cell proteins. Further, the small scale 

non-centralized manufacturing of microalgae products, 
consistent with established supplies, might be confin-
ing market invasion [104, 108]. Marine macroalgae-
based bio-products have industrialized over the years, 
more substantial value to the market. Marine macroal-
gae biomass is recently being sold for approximately € 
1000 t−1. Additionally, techno-economic exploration 
on the selling price of marine macroalgae polysaccha-
rides applications assessed for moisturizers, immune 
stimulants, plant growth stimulants, and biofuel pro-
duction, respectively. According to Eurostat data, the 
market for biopolymers bioactive compounds, of which 
marine algae-based merchandise are part, contains 
nearly €16.71 Billiton, and by this 2023, the global algae 
final products is estimated to be worth US $44.6 billion 
[109, 110]. A large number of aspects are finding out 
the structure of polysaccharides with macroalgae spp, 
via geographical location, harvest season, extraction, 
and purification approaches, difficult to commercial-
ize. One of the potential aspects, the enzyme is used to 
modify the compound’s structure important to accom-
plish bioactive compounds for the human being. So, it 
is significant to appreciate the structure and enzyme 
activity as well as marine macroalgae polysaccharides 
for their superior commercial prospects [111, 112].

Fig. 5  Marine macroalgae polysaccharides extraction and its application in food industries
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9 � Future aspects
In the future research can be attentive to the fabrica-
tion of NPs from marine macroalgae poly-sugar-based 
biomaterials, such as chitosan, carrageenan, fucoidan, 
agarose, and ulvan. Different seaweed/marine macroal-
gae sulphated polysaccharide have their application and 
intrinsic worth. The marine source algae, i.e. radiophy-
ceae, phaeophyceae, and chlorophyceae, are anionic poly-
saccharides and so easily synthesize NPs with cationic 
polymers such as ulvan, chitosan, and agarose, which 
indicates its perspective as food quality, processing, coat-
ing, and biocompatible drug delivery [113, 114]. The 
marine macroalgae polysaccharide NPs’ fabrications in 
this review were mostly based on radiophyceae, chloro-
phyceae, and phaeophyceae, (e.g. carrageenan, fucoidan, 
ulvan, and agarose). The main intention of the ulvan, 
fucoidan, agarose, and carrageenan is to produce stable 
polymeric NPs, which can be attained by the opposed 
charge interaction of polysaccharide. Synthesized NPs 
have been revealed to protect food items, coating, encap-
sulation, biocompatibility, and sustainably. Further-
more, the benefits of marine macroalgae polysaccharides 
include biodegradability, nontoxic, emulsification, and 
encapsulation [115, 116].

10 � Conclusion
The marine environment consists of numerous spe-
cies where oceanic phytoplanktons, for instance sea-
weeds, have their metabolic and structural alteration 
to withstand the precarious environment for existence 
purposes. Marine seaweed has extensive applications 
in different industries, especially on the food side to 
boost the nutrition, food quality, and retaining char-
acteristics of supplements and biomedical applica-
tions. The sulphate polysaccharide-based nanoparticles’ 
extraction from macroalgae is an extensive application 
in various fields of daily life, such as a synthetic poly-
mer, by-products in nutrition, cosmetics, medicine, 
gene delivery, drug delivery, cancer treatment, tissue 
engineering, wound dressing, water treatment, and 
biosensor. Hence, moreover nowadays, food scientists 
and researchers fully focused on SP sugar conventional 
synthetic and animal’s derived nutritional substances 
in food industries, enhancing health products and eco-
friendly. The isolated marine poly-sugar is inexpensive, 
nontoxic, abundant, biodegradable, biocompatible, 
and safe and has high stability. Seaweed polysaccha-
rides-based nanomaterials have great potential in the 
fabric, biomedicine, pharmaceutical, and food indus-
tries for the future. For the enhancement of marine 
macroalgae polysaccharide-based bio-economy, it is 

highly domineering to study the function-structural 
activities and their particular mechanisms for the 
advanced application of marine macroalgae polysac-
charides. However, cost-effective and efficient extrac-
tion and purification approaches pay the manner for 
viable growth of marine macroalgae poly-sugar-based 
industrial applications such as pharmaceutical, func-
tional food, and food safety, also nano-cellulose, biofu-
els, biostimulation as well as other innovative incipient 
applications. This article compiles the newest advances 
in marine macroalgae polysaccharides, which are used 
in industrial applications. It also scrutinized the grow-
ing market scope for marine macroalgae polysac-
charides-based nanomaterial products together with 
advanced products after defined health attributes.
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