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Abstract 

Background The COVID-19 pandemic has put the world’s survival in jeopardy. Although the virus has been con-
tained in certain parts of the world after causing so much grief, the risk of it emerging in the future should not be 
overlooked because its existence cannot be shown to be completely eradicated.

Results This study investigates the impact of vaccination, therapeutic actions, and compliance rate of individuals 
to physical limitations in a newly developed SEIQR mathematical model of COVID-19. A qualitative investigation was 
conducted on the mathematical model, which included validating its positivity, existence, uniqueness, and bound-
edness. The disease-free and endemic equilibria were found, and the basic reproduction number was derived and 
utilized to examine the mathematical model’s local and global stability. The mathematical model’s sensitivity index 
was calculated equally, and the homotopy perturbation method was utilized to derive the estimated result of each 
compartment of the model. Numerical simulation carried out using Maple 18 software reveals that the COVID-19 
virus’s prevalence might be lowered if the actions proposed in this study are applied.

Conclusion It is the collective responsibility of all individuals to fight for the survival of the human race against 
COVID-19. We urged that all persons, including the government, researchers, and health-care personnel, use the find-
ings of this research to remove the presence of the dangerous COVID-19 virus.
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1  Background
COVID-19 infection has spread to every continent. New 
coronavirus hotspots were detected in Wuhan, China, in 
December 2019. When numerous people were admitted 

to the hospital in late December 2019, it was clear that 
the pandemic had begun. By mid-July 2020, the virus had 
infected over 213 countries, causing 15,969,465 infec-
tions and 643,390 fatalities [1]. The WHO discovered that 
the virus may be breathed in through normal breathing, 
resulting in new infections. COVID-19 has a 2 to 14 days 
of incubation period, with about 97.5 percent of infected 
individuals presenting symptoms 11 days after infection 
[2–4].
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Several researchers and scientists have published sig-
nificant and successful research works to aid in the eradi-
cation and control of COVID-19. Among these is the 
study reported in [5], in which the fear impact of media 
is divided into two categories, namely the fear of infec-
tion toll and the fear of death toll, and investigated using 
a proposed mathematical model. Additionally, the influ-
ence of the convex incidence rate on multiple COVID-
19 transmissions was explored in [6]. According to their 
findings, the double exposure of vulnerable individuals 
can result in projected occurrences of COVID-19 infec-
tion in the general population. A novel assessment of the 
COVID-19 transmission dynamics was reported in [7]. 
The model looked at the effects of the convex incidence 
rate. To stabilize the pace of disease reduction in their 
system, a variety of strategies were utilized. Eventually, 
the dynamics of the disease are greatly impacted as huge 
drops in infection rates are observed when the rate of 
immigration and population mixing in the afflicted area 
are taken into account.

Vaccination, therapy, and human compliance to restric-
tion of physical interactions are crucial in avoiding ill-
ness development associated with COVID-19. Several 
researchers have developed mathematical models to 
solely evaluate the impact of each of these factors in erad-
icating the spread of COVID-19. The results of a two-
stage COVID-19 vaccination research were published in 
[8]. According to their findings, well-implemented immu-
nization programs can prevent the spread of COVID-
19. In [9], research was done on the SEIRS model for 
COVID-19 that captured saturation incidence and treat-
ment response for the global study. In their investigation, 
they came to the conclusion that, even if treatment can 
reduce the spread of COVID-19, lowering the effective 
contact rate is the best way for people and the govern-
ment to do so. Additionally, a mathematical model that 
can evaluate the effect of mask use on the general pop-
ulace was proposed in [10], and a SIR COVID-19 pan-
demic model was investigated using statistical methods 
in [11].

The course of diseases may usually be accurately and 
realistically predicted by performing a numerical simu-
lation of epidemic models. To forecast the COVID-19 
virus’s future existence, a mathematical model of the 
virus was built, investigated, and simulated in [12] using 
actual data from Pakistan. Researchers in [13] looked at 
the logistic growth model that might be used to estimate 
the scope of the COVID-19 epidemic. In [14], a math-
ematical analysis of a stochastic model for coronavirus 
propagation was reported. A collocation approach based 
on Legendre polynomials was used to achieve the numer-
ical solution of this system, and simulations were used to 
review the results and pandemic model findings, and a 

recent research presented in [15] features the simulation 
of  fractional-order Caputo’s derivative on a coronavirus 
disease model using the  Laplace–Adomian decomposi-
tion method.

Since these mathematical models are typically nonlin-
ear, strong numerical techniques, such as the homotopy 
perturbation approach offered by [16], are often required 
to compute their approximate solution. This homotopy 
perturbation approach was used by researchers in [17] to 
solve an epidemic model of EIAV infection. Their find-
ings demonstrate how effective the method is at resolv-
ing coupled nonlinear differential equations. This same 
method has also been applied by [18], where the effect of 
the disease transmission coefficient on a disease-induced 
death seizure epidemic model was simulated.

As of date, no research has yet been published that 
addresses how to restrict the spread of COVID-19 
while simultaneously taking therapeutic interventions, 
immunization, and human cooperation to limit physi-
cal interaction into account. The reasons for including 
these factors in our research are discussed in [8, 19, 20]. 
Using extracted COVID-19 data in the literature and 
real-life data obtained from the Nigeria Centre for Dis-
ease Control (NCDC) [21], we shall conduct theoretical 
and numerical analysis on a newly proposed mathemati-
cal model of COVID-19 transmission dynamics, which is 
a modification of the mathematical model in [22], where 
the dynamics of COVID-19 in relation to isolation class 
was studied.

2  Methods
2.1  Model design
The predicted dynamics of COVID-19 transmission 
in the population are shown in the schematic diagram 
below.

This diagram might be read and expressed mathemati-
cally such that
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2.2  Descriptions
Equation  (1) represents a deterministic mathemati-
cal model of COVID-19; the population of the model is 
divided into five classes, namely the susceptible class S(t) , 
exposed class E(t) , infected class I(t) , quarantine class 
Q(t) and recovered class R(t) . The therapeutic response 
action T for the sick person I is a piecewise linear func-
tion defined in [19]. It varies on the interval 0 ≤ r < 1 
and is related to the prevalence of infected individuals. 
Another control parameter under study is “c.” It combines 
curfews, social distancing, and other physical contact 
restriction measures which are examined on the model 
to possibly limit the rise of the effective contact rate 
between the susceptible and infected populations. The 
immunization of vulnerable persons is represented by 
parameter ρ . We theoretically assume that all susceptible 
people, including the current and newly recruited mem-
bers of the class, are administered the vaccine in order to 
assess its influence on the prevalence of the disease.

For biological reasons, physical contact between the 
classes of vulnerable and sick individuals should be limited 
to reduce the disease transmission coefficient. Therefore, it 
makes sense to create a function f (β , c) in such a way that:

As such 
 (i) f (β , 0) = β , i.e., without physical restraint, inter-

action between the classes will continue and the 
viral coefficient will spread progressively and infec-
tion will persist in the system.

 (ii) f (β , 1) = 0 , i.e., the model’s classes won’t interact 
and disease transmission in the system will stop.

 (iii) From (ii), it is valid that β = 0 when f (β , 1) = 0 . 
Thus, if there is no infected individual in the sys-
tem, there is no requirement to prohibit physical 
contact among the populace.

(1)

dS(t)

dt
= �− β(1− c)S(t)I(t)− (µ+ ρ)S(t),

dE(t)

dt
= β(1− c)S(t)I(t)− (µ+ γ + π)E(t),

dI(t)

dt
= πE(t)− (σ + µ)I(t)− TI(t),

dQ(t)

dt
= γE(t)+ σ I(t)− (θ + µ)Q(t),

dR(t)

dt
= θQ(t)− µR(t)+ ρS(t)+ TI(t).

f (β , c) = β(1− c).

Since the therapeutic action T  on infected individual 
I(t) I is rI(t) , the system of Eq. (1) becomes:

Other factors involved in the dynamics of the disease 
transmission are described in Tables 1 and 2.

2.3  Qualitative analysis
2.3.1  Existence and uniqueness
A Lipchitz criterion will be employed to ensure that the 
solution exists and is unique. Thus from Eq. (2), let:

Following the criterion, we obtain the system’s partial 
derivatives.

The partial derivatives of F1 = �− (µ+ ρ)S − β

(1− c)SI with respect to the classes yield:

Similarly, for F2 = (1− c)βSI − (π + µ+ γ )E, we 
obtain:

For F3 = πE − (δ + µ+ r)I,

(2)

dS(t)

dt
= �− β(1− c)S(t)I(t)− (µ+ ρ)S(t),

dE(t)

dt
= β(1− c)S(t)I(t)− (µ+ γ + π)E(t),

dI(t)

dt
= πE(t)− (σ + µ+ r)I(t),

dQ(t)

dt
= γE(t)+ σ I(t)− (θ + µ)Q(t),

dR(t)

dt
= θQ(t)− µR(t)+ ρS(t)+ rI(t).

(3)

F1 = �− (µ+ ρ)S − β(1− c)SI ,

F2 = (1− c)βSI − (π + µ+ γ )E,

F3 = πE − (δ + µ+ r)I ,

F4 = γE + δI − (µ+ θ)Q,

F5 = θQ − µR+ ρS + rI .
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For F4 = γE + δI − (µ+ θ)Q,

∣

∣

∣

∣
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∂E

∣

∣

∣

∣

= |π | < ∞,

∣

∣

∣

∣

∂F3

∂I

∣

∣

∣

∣

= |−(µ+ r + δ)| < ∞,

∣

∣

∣

∣

∂B3

∂Q

∣

∣

∣

∣

= |0| < ∞,

∣

∣

∣

∣

∂B3

∂R

∣

∣

∣

∣

= |0| < ∞.

For F5 = θQ − µR+ ρS + rI,

The partial derivatives of these functions exist and are 
continuous and bounded; therefore, Eq. (3) exists and has 
a unique solution in ℜ5.

2.3.2  Nonnegativity of invariant region
The invariant area establishes the viable region for 
the solution of an epidemiological model, often 
known as the limit or range for the solution of the 
model. Any solution outside of this range is neither 
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Table 1 Description of parameters

Variable Description

S(t) Time-dependent number of susceptible humans

E(t) Time-dependent number of exposed humans

I(t) Time-dependent number of infected humans

Q(t) Time-dependent number of isolated humans

R(t) Time-dependent number of recovered humans

Incorporated parameters Description

c Rate at which humans embrace curfew, use of face 
mask, hand sanitizer and social distancing

r Therapeutic action rate on COVID-19-infected patient

ρ Vaccination rate of susceptible COVID-19 individuals

Parameters Description

� Recruitment rate of Individuals

β Successful contact rate

π Progression rate from exposed to infected

σ Progression rate from infected to isolated class

γ Progression rate from exposed to isolated class

θ Recovery rate of isolated individual

µ Natural death rate

Table 2 Values of model’s parameter and references

Parameters Value References

� 750 day−1 [32]

β 0.0000124 day−1 [33]

π 0.0000124 day−1 [33]

σ 0.010939586 day−1 [33]

γ 4.013000000 × 10−8 day−1 [34]

θ 0.0766169 day−1 [33]

µ 0.001466848 day−1 [33]

c 0 –

r 0 –

ρ 0 –
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epidemiologically sound nor relevant to biology. For 
t ≥ 0 , it is presumed that all of the variables and 
parameters are positive. As a result, we demonstrate 
that the area where the model solution of this model 
lies remains positively invariant for any t ≥ 0.

Let the total human population be 
N (t) = S(t)+ E(t)+ I(t)+ Q(t)+ R(t) . Since the 
human population varies throughout time, 

which yields

Theorem  1 The resulting solutions provided analyti-
cally for Eq. (1) are feasible in � for all t ≥ 0.

Proof Let D = {S,E, I ,Q,R} ∈ ℜ5 contain the solution 
of (1) for {S(t),E(t), I(t),Q(t),R(t) ≥ 0} and assume that 
the population is devoid of infection, then E, I, and Q are 
set to zero, such that

 and

Separating the variables and integrating both sides of 
Eq. (2) yields

such that

Thus, solving for the total human population N in (6),

This implies that the suggested model in (2) may be 
investigated in the viable zone.

dN

dt
=

dS

dt
+

dE

dt
+

dI

dt
+

dQ

dt
+

dR

dt
,

(4)
dN

dt
= �− µ(S + E + I + Q + R).

dN

dt
= �− µN

(5)
dN

dt
≤ �− µN .

(6)−
1

µ
lin(�− µN ) ≤ t,

lin(�− µN ) ≤ −µt.

� = µN + e−µt .

(7)As t → ∞wehaveN ≤
�

µ
.

� =

{(

S,E, I ,Q,R ∈ ℜ5 : N ≤
�

µ

)}

2.3.3  Nonnegativity of Solution

Theorem  2 Given S > 0,V > 0,E > 0,Q > 0,R > 0 , 
then the solutions 

{(

S,E, I ,Q,R ∈ ℜ5 : N ≤ �
µ

)}

 are 
positive invariant for t ≥ 0.

Proof From Eq. (1),

Separating the variables,

Integrating both sides and applying the initial conditions,

S(t) ≥ S0e
−(µ+ρ+βI+βCI)t ≥ 0 . This indicates that 

S(t) > 0 for all t ≥ 0.

Following the same procedure, we demonstrate the posi-
tivity of the other classes.

Thus, {(S(t),E(t), I(t),Q(t),R(t) > 0, ∀t ≥ 0 in S(t),

E(t), I(t),Q(t),R(t) ∈ ℜ5; and N ≤ �
µ

)}

.

The solutions are positive, and this completes the proof.

After satisfying all of the fundamental requirements 
for an epidemiology model, we conclude that the sug-
gested model is appropriate for studying the dynamics of 
COVID-19 in the general population.

2.4  Analysis of equilibrium states
2.4.1  Disease‑free equilibrium (DFE)
By setting the right side of (2) equal to zero, we may deter-
mine the equilibrium point devoid of sickness, i.e.,

We get the following results by solving the equations that 
emerge from substituting the disease-related classes E, I, 
and Q to zero:

dS(t)

dt
≥ (µ+ ρ + βI − βcI) S(t).

dS(t)

S(t)
≥ (µ+ ρ + βI − βCI)dt.

E(t) ≥ E0e
−(µ+π+γ )t ≥ 0.

I(t) ≥ I0e
−(µ+δ+r)t ≥ 0.

Q(t) ≥ Q0e
−(µ+θ)t ≥ 0.

R(t) ≥ R0e
−µt ≥ 0.

(8)
dS

dt
=

dE

dt
=

dI

dt
=

dQ

dt
=

dR

dt
= 0.
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Equation (9) represents the disease-free states of the pro-
posed model.

2.4.2  Endemic equilibrium state
Endemic equilibrium, also known as a nonzero equilibrium 
condition, occurs when a disease persists in a population. 
Contrary to the disease-free state, E = I = Q = 0.

For brevity of terms, we let:

Thus, the endemic equilibrium state yields

2.4.3  Basic reproduction number
As defined in [23], the estimated number of secondary 
cases that can be directly caused by a single case in a pop-
ulation that has reached the peak of an illness is known as 
the basic reproduction number R0.

To compute the basic reproduction number ( R0 ), we 
take into account the following two disease-manifested 
compartments.

Let W1 = βSI(1− c)− (µ+ π + γ )E and W2 = πE

−(µ+ r + σ)I .

(9)

(S0,E0, I0,Q,0 R0) =

(

�

(µ+ ρ)
, 0, 0, 0,

�ρ

µ(µ+ ρ)

)

.

f = β(1− c), g = µ+ r, h = σ + µ+ r and j = θµ.

(10)S∗ =
h
(

π + g
)

f π
,

(11)E∗ =
�f π − µhπ − µhg

f π
(

π + g
) ,

(12)I∗ =
�f π − µhπ − µhg

hf
(

π + g
) ,

(13)Q∗ =

(

�π f − µπh− µhg
)

(σπ + hγ )

hf
(

π + g
) ,

(14)
R∗ =







�

ρh2j − µh
�

θσ + rj
�

+ f�
�

θσ + rj
�

�

π2 + h
��

−θγµ+ 2ρjg
��

h

−gµ
�

θσ + rj
�

+ θγ�f
�

π +

�

gh2
�

jgρ − θγµ







�

hf (π + g
�

jµπ
.

(15)

dE

dt
= βSI(1− c)− (µ+ π + γ )E,

dI

dt
= πE − (µ+ r + σ)I .















R0 is the spectral radius of the matrix G = F × V−1 
where F  is a matrix constructed with the rate of develop-
ment of new infection in the model and V  comprises the 
infection’s input and outflow in the compartment.

Thus,

such that

Evaluating F using disease-free equilibrium (DFE) 
yields:

Constructing V ,

Thus,

Computing G = F × V−1,

Computing the eigenvalues, the spectral radius is

Substituting S0 = �
(µ+ρ)

,
the basic reproductive ratio is obtained as 

R0 =
π(1−c)βS0
(µ+σ+r) .

2.4.4  Local stability analysis of disease‑free equilibrium
While investigating the stability of the model’s equilibria, 
the following results are demonstrated:

(16)F =

[

∂W1

∂E
∂W1

∂I

∂W 2

∂E
∂W2

∂I

]

,

(17)F =

[

(1− c)βS0 0

0 0

]

.

(18)FDFE =

[

(1−c)β�
(ρ+µ)

0

0 0

]

.

V+ =

[

0 0

−π (σ + µ+ r)

]

and V− =

[

−(µ+ γ + π) 0

0 0

]

.

(19)

V =

[

π + µ+ γ 0

−π π + µ+ r

]

and V−1 =

[

1
π+µ+γ

0
π

π+µ+γ
1

π+µ+r

]

.

(20)
[

(1−c)β�
(π+µ+γ )(ρ+µ)

0

0 0

]

.

(21)R0 =
(1− c)β�

(π + µ+ γ )(ρ + µ)
.
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Lemma 1 The model’s disease-free equilibrium is locally 
asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof Consider the Jacobian of Eq.  (2), which is given 
by:

Substituting I0, S0 into J (X),

The eigenvalues are then calculated, and the results are 
as follows:

We infer that the disease-free equilibrium exists since the 
eigenvalues are all negative.

2.4.5  Global stability at disease‑free equilibrium

Lemma 2 Applying the Lyapunov function approach to 
the global stability of the disease-free equilibrium state of 
the model,

(22)J (X0) =











−(µ+ ρ)+ (1− c)βI0 0 − (1− c)βS0 0 0

(1− c)βI0 −(µ+ σ + γ ) (1− c)βS0 0 0

0 π −(µ+ σ + r) 0 0

0 γ σ −(µ+ θ) 0

0 0 r θ −µ











(23)J (X0) =













−(µ+ ρ)− � 0
− (1−c)β
(µ+ρ)

0 0

0 −(µ+ σ + γ ) − � (1− c)βS 0 0

0 π −(µ+ σ + r) − � 0 0

0 γ σ −(µ+ θ) − � 0

0 0 r θ −µ − �













�1 = −(µ+ ρ), �2 = −(π + µ+ γ ),

�3 = 0 − (π + σ + r) ,

�4 = −(µ+ θ)− µ, �5 = −µ .

V (S,E, I ,Q,R) = C1E + C2I ,

dV

dt
= C1

•

E+C2

•

I ,

dV

dt
= C1((1− c)βSI − (π + µ+ γ )E)+ C2(πE − (σ + µ+ r)I) ,

dV

dt
= (C2π − C1(π + µ+ γ ))E + (C1((1− c)βS − (σ + µ+ r)C2))I ≤ C2πE − C1(π + µ+ γ )+ C1(1− c)βSI

− C2(πE − (σ + µ+ r)I) ≤ C2πE − C1(π + µ+ γ )E +
C1(1− c)πβI

(ρ + µ)
− (σ + µ+ r)C2I ,

Suppose

Since R0 =
π(1−c)β�

(µ+σ+r)(µ+ρ)
,

Then we have R0I − I = (R0 − 1)I .

Therefore, V ′
≤ (π + µ+ γ )(R0 − 1)I.

It is critical to note that V ′
= 0 only when E = 0 . Substi-

tuting E = 0 in the model equation yields �
(µ+ρ)

 . Accord-
ing to LaSalle’s invariance principle, the disease-free equi-
librium  E0 is globally asymptotically stable if R0 < 1.

2.5  Sensitivity Analysis
We used the sensitivity index analysis to assess the resil-
ience of the model parameter based on the fundamen-
tal reproduction number. The sensitivity indices of each 
parameter can be computed with the following formula:

C1 =
1

(π + µ+ γ )
and C2 =

πβ(1− c)

(π + µ+ γ )(ρ + µ)(σ + µ+ r)
.

(24)χ
β
R0

=
∂R0

∂β
×

β

R0

.
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According to the findings, the three control variables 
yield low sensitivity indices. They are negative, but given 
how close to unity they are, it is hard to underestimate their 
effectiveness in lowering the basic reproduction number 
(Table 3).

2.6  Homotopy perturbation method
One of the aims of this research is to do numerical simula-
tions on the mathematical model. To do so, we must first 
establish an approximation solution to the mathematical 
model. In pursuit of this, we explore the methods of apply-
ing the homotopy perturbation. The method’s analysis is 
explained more below. Hence, consider the following dif-
ferential equation:

Subject to the boundary condition

Operator � denotes the differential operator, the bound-
ary operator is � , k(r) is an analytic function, the bound-
ary of the domain � is denoted by � , and ωn is the normal 
vector derivative drawn externally from � . We can split the 
operator �(ω) into two parts such that

(25)�(ω) = k(r), r ∈ �.

(26)�(ω,ωn) = 0 r ∈ �.

(27)�(ω) = LT (ω)+ NT (ω).

The operator LT (ω), NT (ω) denotes the linear and 
nonlinear term, respectively, such that Eq. (25) implies

We can construct a homotopy for (28) so that

where p is an embedding parameter which can undergo 
a deformation process of changing from [0, 1]. Equa-
tion (29) is further simplified to obtain:

as p → 0, Eq. (30) gives:

And when p → 1,

We can naturally assume the solution (28) as a power 
series such that

Such that evaluating (30) using (33), and comparing 
coefficients of equal powers of p.

The values of f0(t), f1(t), f2(t) are obtained by solving 
the resulting ordinary differential equations. Thus, the 
approximate solution of (25) is:

2.7  Numerical simulation
In this part, we use the homotopy perturbation approach 
to conduct the numerical simulation that produces the 
SEIQR epidemic model’s approximate solution. Con-
structing a homotopy for (1),

(28)LT (ω)+ NT (ω) = k(r), r ∈ �.

(29)
H(f , p) = (1− p)[LT (f )− LT (ω0)]+ p[�(f )− k(r)] = 0,

(30)
H(f , p) = LT (f )− LT (ω0)+ p[LT (ω0)] + p[NT (ω0)− k(r)] = 0,

(31)H(f , 0) = LT (f )− LT (ω0) = 0.

(32)H(f , 1) = �(f )− k(r) = 0.

(33)f (t) = f0(t)+ pf1(t)+ p2f2(t)+ · · · pnfn(t).

(34)f (t) = lim
p→1

fn(t) = f0(t)+ f1(t)+ f2(t)+ · · ·

(35)

(1− p)
dS(t)

dt
+ p

(

dS(t)

dt
+�− β(1− c)S(t)I(t)− (µ+ ρ)S(t)

)

= 0,

(1− p)
dE(t)

dt
+ p

(

dE(t)

dt
+ β(1− c)S(t)I(t)− (µ+ γ + π)E(t)

)

= 0,

(1− p)
dI(t)

dt
+ p

(

dI(t)

dt
+ πE(t)− (σ + µ+ r)I(t)

)

= 0,

(1− p)
dQ(t)

dt
+ p

(

dQ(t)

dt
+ γE(t)+ σ I(t)− (θ + µ)Q(t)

)

= 0,

(1− p)
dR(t)

dt
+ p

(

dR(t)

dt
θQ(t)− µR(t)+ ρS(t)+ rI(t)

)

= 0.

Table 3 Sensitivity indices of R0 = 0.01409544898 to model’s 
parameters

Parameter Flexibility index

π 1

� 1

β 1

c − 1

ρ − 0.99

µ −7.52× 10−7

σ − 0.03105469684

r − 0.99689452992
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The approximate solution of (1) can be assumed as:

Substituting (36) into (35) and comparing coefficients 
of equal powers of p,

Solving (37) yields

Similarly, comparing the coefficients of p1,

Evaluating (39) using (38), and then solving the result-
ing system of equations, produces

(36)

S(t) = s0(t)+ ps1(t)+ p2s2(t)+ . . . pnsn(t)

E(t) = e0(t)+ pe1(t)+ p2e2(t)+ . . . pnsn(t)

I(t) = i0(t)+ pi1(t)+ p2i2(t)+ . . . pnsn(t)

Q(t) = q0(t)+ pq1(t)+ p2q2(t)+ . . . pnsn(t)

R(t) = r0(t)+ pr1(t)+ p2r2(t)+ . . . pnsn(t)

(37)
p0 :

•

i0(t) = 0,
•
e0(t) = 0,

•

i0(t) = 0 ,
•
q0(t) = 0,

•
r0(t) = 0.

(38)
s0(t) = s0, e0(t) = e0, i0(t) = i0, q0(t) = q0, r0(t) = r0

(39)

dS1(t)

dt
= �− β(1− c)S0(t)I0(t)− (µ+ ρ)S0(t),

dE1(t)

dt
= β(1− c)S0(t)I0(t)− (µ+ γ + π)E0(t),

dI1(t)

dt
= πE0(t)− (σ + µ+ r)I0(t),

dQ1(t)

dt
= γE0(t)+ σ I0(t)− (θ + µ)Q1(t),

dR1(t)

dt
= θQ0(t)− µR0(t)+ ρS0(t)+ rI0(t).

The coefficients of p2 equally yield:

The second approximations are obtained by solving 
these equations.

This continues till the desired number of iteration is 
computed. For the purpose of this research, we performed 
three iterations. Due to cumbersome number of terms, we 
present the iteration code instead of the computed results.

>ic := {s[2](t), e[0](t) = e[0], e[1](t) = (-Pi*e[0]+ 
b e t a * s [ 0 ] * i [ 0 ] - e [ 0 ] * m u - e [ 0 ] * g a m m a -
beta*c*s[0]*i[0])*t, e[2](t) = (1/2)*t^2*(-beta^2*c^2*i 
[0]^2*s[0]-3*beta*i[0]*mu*s[0]-beta*i[0]*rho*s[
0]+2*beta^2*i[0]^2*c*s[0]-beta*c*i[0]*Lambda-
b e t a * s [ 0 ] * P i * i [ 0 ] - g a m m a * b e t a * s [ 0 ] * i [ 0 ] -
b e t a * s [ 0 ] * s i g m a * i [ 0 ]+ e [ 0 ] * g a m m a ^ 2+ e [ 0

(40)

S1(t) = (�− β(1− c)s0i0 − (µ+ ρ)s0)t.

E1(t) = (β(1− c)s0i0 − (µ+ γ + π)e0)t.

I1(t) = (πe0 − (σ + µ+ r)i0)t.

Q1(t) = (γ e0 + σ i0 − (θ + µ)q)t.

R1(t) = (θq0 − µr0 + ρs0 + ri0)t.

dS2(t)

dt
= �− β(1− c)S1(t)I1(t)− (µ+ ρ)S1(t),

dE2(t)

dt
= β(1− c)S1(t)I1(t)− (µ+ γ + π)E1(t),

dI2(t)

dt
= πE1(t)− (σ + µ+ r)I1(t),

dQ2(t)

dt
= γE1(t)+ σ I1(t)− (θ + µ)Q1(t),

dR2(t)

dt
= θQ1(t)− µR1(t)+ ρS1(t)+ rI1(t).

S2(t) =
t2

2







−3βci0µs0 − 2βci0ρs0 + βcs0πe0 + βcs0i0σ − βcs0ri0 − µ�

+e0µ
2 −�ρ + ρ2s0 + 3µi0s0 + 2βi0ρs0 − 2β2i20s0 + βci0�

+β2c2i20s0 − βs0πe0 + βs0σ i0 + βs0ri0 − βi0�+ β2i20s0 + 2µρs0.







E2(t) = −
t2

2













µ2e0 + π2e0 + γ 2e0 + 2µe0π + 2e0γπ + 2e0γµ− 3βi0µs0 − βiρs0

+2β2i20cs0 − βci0�+ β2c2i20s0 − βs0ri0 + βS0σ i0 − βs0ri0 + βs20πe
2
0 − βπs0i0

+γβs0i0 + βπcs0i0 + γβcs0i0 + 3βcs0µi0 + βcs0ρi0 + βcs0σ i0 + βcs0ri0 − βcs0πe0

+βi0�− β2i20s0.













I2(t) = +
t2

2

�

e0π
2 − πβs0i0 + 2e0µπ + e0πγ + πβcs0i0 + σπe0 − i0σ

2 − 2i0rσ − 2i0µσ

−2i0µr − i0µ
2 + rπe0 − i0r

2.

�

q2(t) = +
t2

2

�

−σ 2i0 + σπe0 − 2σµi0 + βNs0γ e0 − γ 2e0 + γβNs0i0

−πγ e0 − 2µγ e0 + µ2q0 + 2q0θµ− θσ i0 − θγ e0 + θ2q0.

�

r2(t) =
t2

2

�

−2µρs0 + r0µ
2 − 2i0r − 2q0θµ+ θγ e0 − q0θ

2 + i0θσ

+�ρ − ρ2s0 + βci0s0ρ − βi0s0ρ + rπe0 − i0rσ − i0r
2.

�
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] * P i ^ 2+ b e t a * s [ 0 ] * P i * e [ 0 ]+ 2 * e [ 0 ] * m u * P i -
beta^2*i[0]^2*s[0]+e[0]*mu^2-beta*s[0]*r*i[0]+be
ta*i[0]*Lambda+2*e[0]*gamma*mu+2*e[0]*gamm
a*Pi-Pi*beta*c*s[0]*e[0]+beta*c*s[0]*sigma*i[0]+P
i*beta*c*s[0]*i[0]+gamma*beta*c*s[0]*i[0]+3*beta
*c*i[0]*mu*s[0]+beta*c*i[0]*rho*s[0]+beta*c*s[0]
*r*i[0]), i[0](t) = i[0], i[1](t) = (Pi*e[0]-sigma*i[0]-
i[0]*r-i[0]*mu)*t, i[2](t) = -(1/2)*t^2*(e[0]*Pi^2-
b e t a * s [ 0 ] * P i * i [ 0 ]+ 2 * e [ 0 ] * mu * P i+ e [ 0 ] * g a m
ma*Pi+ Pi *b e t a*c*s [0 ] * i [0 ]+ s ig ma*P i *e [0 ] -
i[0]*sigma^2-2*i[0]*r*sigma-2*i[0]*mu*sigma-
2* i [0]*r*mu-i [0]*mu^2+ r*Pi*e[0]- i [0]*r^2) , 
q[0](t) = q[0], q[1](t) = (e[0]*gamma-
q[0]*theta-mu*q[0]+sigma*i[0])*t, q[2](t) = 
-(1/2)*t^2*(2*e[0]*gamma*mu-2*q[0]*theta*mu-
mu^2*q[0]+2*i[0]*mu*sigma+e[0]*gamma*Pi-
g a m m a * b e t a * s [ 0 ] * i [ 0 ]+ e [ 0 ] * g a m m a ^ 2+ g a
mma*b eta*c*s [0]* i [0]- s igma*Pi*e[0]+ i [0 ] *s
i g m a ^ 2+ i [ 0 ] * r * s i g m a+ th e t a * g a m m a * e [ 0 ] -
q[0]*theta^2+theta*sigma*i[0]), r[0](t) = r[0], 
r[1](t) = (rho*s[0]-mu*r[0]+i[0]*r+q[0]*theta)*t, 
r[2](t) = (1/2)*t^2*(-2*mu*rho*s[0]+r[0]*mu^2-
2*i[0]*r*mu-2*q[0]*theta*mu+theta*gamma*e[0]-
q [ 0 ] * t h e t a ^ 2 + t h e t a * s i g m a * i [ 0 ] + L a m b d
a * r h o - r h o ^ 2 * s [ 0 ] + b e t a * c * i [ 0 ] * r h o * s [ 0 ] -
beta*i[0]*rho*s[0]+r*Pi*e[0]-i[0]*r*sigma-i[0]*r^2), 
s[0](t) = s[0], s[1](t) = (Lambda-mu*s[0]-
rho*s[0]+beta*c*s[0]*i[0]-beta*s[0]*i[0])*t}
>S3: =dsolve({eval(diff(s[3](t), t)-mu*s[2](t)+beta*s[0]
(t)*i[2](t)-beta*c*s[1](t)*i[1](t)+rho*s[2](t)-beta*c*s[0]

(t)*i[2](t) beta*c*s[2](t)*i[0](t)+beta*s[2](t)*i[0]
(t)+beta*s[1](t)*i[1](t), ic), s[3](0) = 0});
>E3: =dsolve({eval(diff(e[3](t), t)-beta*s[1](t)*i[1]
(t)+beta*c*s[1](t)*i[1](t)+beta*c*s[2](t)*i[0](t)-
beta*s[2](t)*i[0](t)+gamma*e[2](t)+beta*c*s[0](t)*i[2]
(t)-beta*s[0](t)*i[2](t)+mu*e[2](t)+Pi*e[2](t), ic), e[3]
(0) = 0});
> Iota3 := dsolve({eval(diff(i[3](t), t)+mu*i[2](t)-
Pi*e[2](t)+sigma*i[2](t)+ +r*i[2](t), ic), i[3](0) = 0});
> Q3 := dsolve({eval(diff(q[3](t), t)+mu*q[2]
(t)+theta*q[2](t)-sigma*i[2](t)-gamma*e[2](t), ic), q[3]
(0) = 0});
> R3:= dsolve({eval(-rho*s[2](t)+mu*r[2](t)-r*i[2]
(t)+diff(r[3](t), t)-theta*q[2](t), ic), r[3](0) = 0});

3  Results
The solution for each class is obtained by taking the sum of 
its obtained approximations such that: 

S(t) =
3
∑

n=0

sn(t), E(t) =
3
∑

n=0

en(t), I(t) =
3
∑

n=0

in(t), Q(t)

=

3
∑

n=0

qn(t) , R(t) =
3
∑

n=0

rn(t).

Additionally, the outcome is assessed to project the 
dynamics of the disease using actual data from the Nigeria 
Center for Disease Control (NCDC) report from December 
1, 2020. E(0) = 2003, I(0) = 416, Q(0) = 404, R(0) = 115 
as initial conditions. The validity of the mathematical 
model is established by testing it on a real-life population of 
Ikeja, Lagos Nigeria, defined as S(0) = 470200 [24]:

S(t) := 470200+





−3238.700958

−470200ρ

+2425.479680c



t +































38.05527610

+7227.401916ρ

+470200ρ2

−47.86324479c

−4850.959360cρ

−2425.479680cr

+12.51159438c2

+2425.479680r































t2

2
−







































75.28685478r - 7276.439040cρr

−112.8216379cr - 7276.439040ρ2c

−2425.479680cr2+37.53478314c2r

+7276.439040ρr - 147.4585344cρ

−1.232160531c + 120.5280693ρ

+.6791905779 + 11216.10287ρ2

−0.06453980844c3+37.53478314ρc2

+2425.479680r2+.6264982021c2

+470200ρ3







































t3

6
+· · ·

E(t) := 2003+

�

2418.797179

−2425.479680c

�

t +



























−2425.479680

+2425.479680cr

+2425.479680cρ2

+47.89152133c

−2425.479680ρ

−35.35763249

−12.51159438c2



























t2

2
−

































−75.31513133r+ 4850.959360cρr

+112.8499145cr+ 2425.479680ρ2c

−37.53478314cr2−4850.959360ρr

−0.6706342282 - 91.55984549cρ

+1.232812862c−66.53665672ρ

+2425.479680ρ2 + 0.06453980844c3

−25.02318876ρc2−2425.479680r2

−0.6266440639c2

































t3

6
+· · ·
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3.1  Convergence of HPM
The convergence of the homotopy perturbation 
approach strictly depends on the contraction of the 
approximation solution to the exact solution [25].

Theorem  3 Let there exist a mapping k : m → n 
defined on two Banach spaces m , n for all s, t ∈ m then 
∥

∥k(s)− k(t)
∥

∥

n
≤ δ�s − t�m , 0 < δ < 1 such that the 

I(t) :=416+

�

−1.814844532

- 416r

�

t

−















−0.03612056076

+0.02817922292c

+3.652959917r

−416r2















t2

2

+















−0.08044055730r+ 0.05635844584cr

−0.0005703853552− 416r3 + 0.02817922292cρ

−0.0006809149044c - 0.02817922292ρ

−5.491075303r2−0.0001453597035c2















t3

6
+ · · ·

Q(t) :=404+(−31.84119399)t

−









−2.543544130

+0.00009733449956c

+.4550867776r









t2

2

+













0.04027916659r+ 0.00009733449956cr

+0.00009733449956cρ−0.00002112395177c

−0.2032966070 - 0.00009733449956ρ

−.455086777r2 − 5.020902824x10−7
c
2













t3

6
+ · · ·

R(t) := 115+

�

470200ρ + 416r

+30.57089998

�

t -















−4801.922236ρ

−2.541209224

−3.197873140r

470200ρ2−416r2

+2425.479680cρ















t2

2
−



























−0.01188483329r+ 2425.479680cρr

+0.02817922292cr+ 4850.95936ρ2c

+55.92696542cρ + 0.000007457467618c

−54.01968915ρ + 8790.623194ρ2

−12.51159438ρc2 − 5.035988525r2

−0.2033269399 - 470200ρ3 - 416r3

+2425.479680ρr



























t3

6
+· · ·

sequence sr+1 = kn(s0) = τ (s0) for some s0 ∈ m which 
converges to a unique fixed point k [25].

Proof We consider a Picard sequence sr+1 = k(sr) ⊆ n 
to prove the theorem. It is required to show that sr is con-
vergent in n for all r ≥ ν such that �sr − sv� ≤ �sr − sr+1�

+�sr+1 − sr+2� + +�sr+2 − sr+3� + · · · +�sr−1 − sv� . 
The proof is defined by applying mathematical induction 
on the contractive property of contraction c such that 
�sr − sr+1� ≤ δr�s0 − s1� . This implies lim

v→∞
�sr − sv�

≤ δr

1+δ
�s0 − s1� = 0 as r → ∞.

This proves that (sr) is convergent in n and through com-
pleteness of n , we can find ω ∈ n : lim

r→∞
(sr) = ω ∈ n . 

Clearly, contraction C ensures the continuity of k . Thus, 
ω = lim

r→∞
sr+1 = sv.

Lemma 3 The proposed mathematical model’s conver-
gence of sr to sv cannot be asserted since no exact solution 
to the model exists.

Table 4 Third-order maximum truncation error for t ∈ [0, 1]

t Se3(t) Ee3(t) Ie3(t) Qe3(t) Re3(t)

0 0 0 0 0 0

0.2 0.0009055874376 0.0008941789712 7.605138070 × 10−7 0.0002710621426 0.0002711025866

0.4 0.007244699501 0.007153431770 0.000006084110456 0.002168497141 0.002168820693

0.6 0.02445086082 0.02414283222 0.00002053387279 0.007318677851 0.007319769839

0.8 0.05795759601 0.05722745416 0.00004867288365 0.01734797713 0.01735056554

1.0 0.1131984297 0.1117723714 0.00009506422587 0.03388276783 0.03388782333

Table 5 Error range of each class at t ∈ [0, 1]

Se3(t) 0 ≤ Er ≤ 10−1

Ee3(t) 0 ≤ Er ≤ 10−1

Ie3(t) 0 ≤ Er ≤ 10−5

Qe3(t) 0 ≤ Er ≤ 10−2

Re3(t) 0 ≤ Er ≤ 10−2
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Proof The rate of convergence of sr depends on the fol-
lowing conditions as suggested by He [16, 26]:

 (i) The nth-order derivative of f (t) with respect to t in 
(33) must be small as parameter p may be relatively 
large as p → 1

 (ii) ii. 
∥

∥ℓ−1∂f (t)
/

∂v
∥

∥ < 1 so that the series converge.

This rate is examined in the following section.

3.2  Error analysis
In numerical computations of series solutions, error 
analysis is crucial. In this section, we utilize the con-

vergence requirements from Lemma 1 to perform an 
error analysis on the approximate results of each com-
partment of the model using Maclaurin’s estimation of 

maximum truncation error at predefined baseline val-
ues of the parameters given in Table 2.

Definition The truncation error of an nth-order 
Maclaurin’s polynomial of a function f (t) with n+ 1 
derivatives on the interval |t| ≤ r and in the interval 
∣

∣f n+1(t)
∣

∣ ≤ M has the following bound as maximum 
error En(t) = max

t∈[0,r]

[

M
(n+1)!

· |t|
n+1

]

.

To compute the third-order maximum truncation error 
of the model’s class series results on the interval [0, 1] , we 
construct the following functions:

The error analysis of the approximate series results 
demonstrates that the model is validated for actual 
data simulation since the error generated by the 

Se3(t) = max
t∈[0,1]

[

d3S(t)

dt3
·
|t|3

3!

]

,Ee3(t) = max
t∈[0,1]

[

d3E(t)

dt3
·
|t|3

3!

]

, Ie3(t) = max
t∈[0,1]

[

d3I(t)

dt3
·
|t|3

3!

]

Qe3(t) = max
t∈[0,1]

[

d3Q(t)

dt3
·
|t|3

3!

]

,Re3(t) = max
t∈[0,1]

[

d3R(t)

dt3
·
|t|3

3!

]

Fig. 1 Normalized local sensitivity index of R0 on each parameter
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Fig. 2 Effects of human submission to physical limitation on the susceptible class

Fig. 3 Effect of human submission to physical limitation on the exposed class
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Fig. 4 Effects of human submission to physical limitation on the infected class

Fig. 5 Therapeutic effects on the infected class
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Fig. 6 Therapeutic effects on the recovered class

Fig. 7 Vaccination effects on the susceptible class



Page 16 of 20Kolawole et al. Beni-Suef Univ J Basic Appl Sci           (2023) 12:10 

Fig. 8 Vaccination effects on the exposed class

Fig. 9 Vaccination effects on the infected class
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Fig. 10 Vaccination effects on the recovered class

Fig. 11 Comparison plots of real-life COVID-19 data and the model’s simulation result
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third-order approximation is negligible. We observed 
that the maximum error is recorded in the susceptible 
and exposed compartments. This happens because the 
two classes contain nonlinear variables (Tables  4 and 
5; Fig. 1).

3.3  Numerical simulation
In this section, we execute numerical simulations of the 
mathematical model to rigorously investigate the influ-
ence of the incorporated parameters  ρ, c &r on the 
interval [0, 1) to ensure the effectiveness of the regula-
tory factors integrated in the research. Figures  2, 3, 
4, 5, 6, 7, 8, 9, and 10 depict the simulation process’s 
outcomes graphically. Figure  12 reveals the various 
responses of the exposed and infected human popula-
tion to combine the influence of the incorporated con-
trol parameters.

3.4  Validity of the model
In this section, we assess the model’s validity by numeri-
cally projecting active infected cases for 30  days using 
the baseline parameters given in Table  2 and compar-
ing the outcome with a time series plot of daily data of 
COVID-19 reported by the Nigeria Centre for Disease 
Control between  December 1 and 31, 2020 [21]. The 
model’s validity is evidenced by the fact that it achieves its 
intended objective. The validation result of the proposed 
model in Fig.  11 demonstrates that the proliferation 
in active infected cases when the study’s incorporated 
measures are not used correlates with the time series plot 
of real COVID-19 data.

4  Discussion
The results of the numerical simulations are discussed in 
this section. The restriction on population-wide physi-
cal contact, extensive imposition of immunization, and 
the intense care given to the sick patients were all clearly 
examined and recorded to have increased the number of 
susceptible and recovered individuals in a COVID-19-en-
raged population. Remarkably, we observed that the find-
ings of this analysis are consistent with those of earlier 
research [9], which focused on the impact of piecewise 
linear therapy on a novel SEIRS model of coronavirus 
(COVID-19) illness. The maximal imposition of therapy 
is also included in our study,  and it was demonstrated 
that the count of  recovered individuals peaked when 
therapy is imposed at a maximum level. The simulation 
results shown in Figs. 5 and 6 revealed that the therapy 
parameter incorporated in our model exhibits similar 
responses in recovered and infected patients as obtained 
earlier in [9]. Hence, therapy is crucial in limiting the 
transmission of the COVID-19, and we propose that 
therapy-associated factors such as treatment and medi-
cations be effectively levied on infected people in order 
to increase the number of recovered COVID-19 patients. 
Figures 2, 3, and 4 examine the impact of physical limi-
tation compliance “c” on the SEIR class. In a similar but 
distinct study reported in [20], raising the probability of 
an individual’s positive reaction to the curfew and social 
distancing lowers the basic reproduction number below 
one, and this will slow the progression of the disease. Fig-
ure  2 also shows that limiting physical contact between 
susceptible and infected people significantly reduces the 
number of vulnerable people. It can be demonstrated 
that when the curfew parameter is set to the maximum, 

Fig. 12 Exposed and infected cases with control and without control
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there is no infection transmission between the two 
groups and no progression from susceptible to exposed 
and infected, indicating that system (1) will eventually 
approach asymptotically stable disease-free point. Fig-
ures 3 and 4 assert that restricting physical contact would 
substantially lower the number of exposed and sick per-
sons; hence, if the masses failed to comply with the rule 
of curfew, social distancing, etc., system (1)’s trajectory 
may approach the endemic point, and all individuals in 
the recovered class will be wiped out. Although increas-
ing the response rate of an individual’s body contact in a 
disease-manifested system cannot totally prevent the dis-
ease’s spread, it can reduce it to a bare minimum; hence, 
we explore the effect of vaccination in reducing infec-
tious disease transmission. Figures 7, 8, 9, and 10 depict 
the response rates of susceptible, exposed, infected, 
and recovered population systems to immunization. 
As revealed in an earlier study [8], immunizing vulner-
able individuals minimizes the number of exposed and 
sick people. Vaccination also showed significant effects 
in limiting infection propagation in the current study, as 
recovered individuals were observed to peak when vacci-
nation was fully provided. As a consequence, the disease 
will be eradicated by the proposed system. The collective 
impact of the three control mechanisms on the math-
ematical model is depicted in Fig.  12. In the absence of 
the three control factors in Fig. 12, it was observed that 
active cases of exposure and infections of COVID-19 
keep projecting. Contrarily, this increasing population 
of the two classes was observed to be drastically lowered 
to minimum when the control mechanisms are utilized. 
Also, the homotopy perturbation approach used in this 
work has been used to analytically solve and mathemati-
cally explore a suggested smoking model utilizing the 
Caputo–Fabrizio operator in [27]. The approach also 
effectively generated the solution of our proposed math-
ematical model  since it yielded a  stable  result which 
unconditionally describes  the dynamics of coronavi-
rus disease, as seen in our simulation results. If time is 
increased, as seen in several of the graphs, negative popu-
lation figures will be recorded. An identical dynamic was 
identified in [28], when the Laplace–Adomian decom-
position approach was used to analyze the effect of frac-
tional-order on a smoking model. Because of the small 
data sets employed, a short time interval was used to 
prevent a negative population of classes, which would be 
unrealistic; thus, we propose that for a longer time inter-
val, big values of the initial data should be used so that 
the concerned population remains positive. Furthermore, 
since there are several factors associated with the dynam-
ics of disease transmission during pandemic, short time 
intervals should be considered for authentic results due 
to different sensitivities of the model parameters to time.

5  Conclusions
Epidemic infections, such as COVID-19, cannot be 
totally eradicated by a single factor. The objectives of this 
research were achieved as the numerical simulation anal-
ysis unconditionally showed the dynamics of COVID-
19 spread under different control situations. We also 
showed that the combined application of vaccine, ther-
apy, and human compliance factors to COVID-19 curfew 
and social distancing rules has an appreciable effect in 
stopping the disease’s global existence. The mathematical 
model’s validity and error analysis showed that the model 
could be applied for further studies on coronavirus dis-
ease as it depicts the behavior of real-life COVID-19 
situations.

To eradicate the COVID-19 virus, we recommend that 
governments around the world give immunizations to 
their vulnerable populations on high range. Furthermore, 
hospitals should provide superior health-care facilities as 
well as advanced life-saving technology capable of treat-
ing sick people flawlessly. Furthermore, it is critical to 
underline that governments’ efforts to restrict the trans-
mission of the virus can only yield beneficial results if the 
populace has a receptive attitude toward avoiding disease 
contact. To constantly eliminate the disease’s existence, it 
is thus recommended that everyone obey curfew, isola-
tion, and the use of nose masks, among other things.

5.1  Recommendations
Although this study demonstrated the diverse reactions 
of an endangered population to therapy, physical contact 
limitation, and immunization in a COVID-19-exhibited 
environment, future research could incorporate intro-
duction of second-stage immunization strategy as well 
as incidence rate capturing fear of disease transmission. 
Also, fractional-order analysis of the current mathemati-
cal model employing fractional operators like Caputo 
[29], Caputo–Fabrizio [30], or Atangana–Baleanu [31] 
might also be useful in examining the disease’s dynamical 
trend on real data.
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