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The anti‑tumor drug 2‑hydroxyoleic acid 
regulates the oncogenic potassium channel 
Kv10.1
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Abstract 

Background  2-hydroxyoleic acid (2OHOA) is a synthetic fatty acid with antitumor properties that alters membrane 
composition and structure, which in turn influences the functioning of membrane proteins and cell signaling. In this 
study, we propose a novel antitumoral mechanism of 2OHOA accomplished through the regulation of Kv10.1 chan‑
nels. We evaluated the effects of 2OHOA on Kv10.1 channels expressed in HEK-293 cells by using electrophysiological 
techniques and a cell proliferation assay.

Results  2OHOA increased Kv10.1 channel currents in a voltage-dependent manner, shifted its conductance-voltage 
relationship towards negative potentials, and accelerated its activation kinetics. Moreover, 2OHOA reduced prolifera‑
tion of cells that exogenously (HEK-293) and endogenously (MCF-7) expressed Kv10.1 channels. It is worth noting that 
the antiproliferative effect of 2OHOA was maintained in HEK-293 cells expressing a non-conducting mutant of Kv10.1 
channel (Kv10.1-F456A), while it did not affect HEK-293 cells not expressing Kv10.1 channels, suggesting that 2OHOA 
interferes with a non-conducting function of Kv10.1 channels involved in cell proliferation. Finally, we found that 
2OHOA can act synergistically with astemizole, a Kv10.1 channel blocker, to decrease cell proliferation more efficiently.

Conclusion  Our data suggest that 2OHOA decreases cell proliferation, at least in part, by regulating Kv10.1 channels.
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1 � Background
2-hydroxyoleic acid (2OHOA) is a synthetic structural 
analogue of oleic acid [1]. Insertion of 2OHOA into the 
plasma membrane alters its structure and biophysical 
properties [2–4], which in turn influences the functioning 
of membrane proteins and cell signaling [5–9]. In  vitro 
and in  vivo studies have shown that 2OHOA displays 
antitumor properties in different cancer cell lines, but 
neither toxic nor antiproliferative effects on non-tumor 
cells [10, 11]. Several mechanisms have been proposed 

to explain the action of 2OHOA; for example, by modi-
fying the membrane microdomain organization, 2OHOA 
affects the recruitment and activity of G-proteins, protein 
kinase C (PKC) and adenylyl cyclases [7, 12, 13]. It has 
been demonstrated that 2OHOA increases the sphingo-
myelin content via sphingomyelin synthase activation [8, 
10, 14, 15]. Additionally, this drug induces endoplasmic 
reticulum stress, autophagy, cell cycle arrest, and uncou-
ple oxidative phosphorylation [6, 13, 16–18]. Hitherto, 
it is unknown whether the changes on the plasma mem-
brane properties induced by 2OHOA affect the function-
ing of transport proteins, like ion channels.

In this scenario, ion channels are transmembrane pro-
teins highly susceptible to alterations of the plasma mem-
brane. Increasing evidence supports the sensitivity of ion 
channels to the membrane environment [19, 20], whether 
by specific lipid-protein interactions or by changes in the 
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membrane biophysical properties, but most likely as a 
mixture of both [21].

KV10.1 is a voltage-gated potassium channel asso-
ciated to specific membrane microdomains and it is 
affected by strategies that disturb such domains [22]. 
This ion channel has been associated with oncogenesis 
and tumor progression [23, 24]. Remarkably, KV10.1 is 
ectopically expressed in over 70% of human non-central 
nervous systems cancers [25–27], whereas in healthy tis-
sue is mainly found in the central nervous system [28], 
but also at low levels in myoblasts, placenta, testis, and 
adrenal glands [25, 29, 30]. KV10.1 is involved in cell pro-
liferation and survival [31–33], angiogenesis [34], and 
cell migration and invasion [35, 36]. Blocking the potas-
sium flow through KV10.1 channels disrupts the cell 
cycle progression and induces a significant decrease in 
cell proliferation and migration [27, 31, 36, 37]; however, 
is noteworthy that the oncogenic potential of KV10.1 
channel is also independent of its ion-conductive activ-
ity, as non-conductive mutants still preserve the ability 
to induce cell proliferation and a transformed phenotype 
[34, 38].

This study aimed to explore if the plasma membrane 
targeting drug, 2OHOA, modulates the functioning of 
KV10.1 channels as part of its mechanisms to regulate cell 
proliferation.

2 � Methods
2.1 � Cell culture and compounds
HEK-293 [ATCC® CRL-1573™] and MCF-7 [ATCC® 
CRL-HTB-22™] cells were cultured in 35  mm culture 
dishes (Corning, Corning, NY, USA) at 37 °C in a humidi-
fied air atmosphere containing 5% CO2. Cells were main-
tained in DMEM (GIBCO, Grand Island, NY, USA) 
supplemented with 10% (v/v) fetal bovine serum (Corn-
ing Life Sciences, Manassas, VA, USA) and 1% (v/v) anti-
biotic–antimycotic solution (Sigma-Aldrich, St. Louis, 
MO, USA). Sodium salt of 2-hidroxioleic acid (2OHOA) 
and astemizole were purchased from Avanti Polar Lipids 
(Alabaster, AL, USA) and Sigma-Aldrich, respectively. 
Stocks of 2OHOA and astemizole were prepared in aque-
ous solution and dimethyl sulfoxide (DMSO) respectively 
and diluted to the final desired concentrations.

2.2 � Cell transfection
HEK-293 cells were transiently co-transfected with the 
cDNAs encoding the Kv10.1 channel (kindly provided 
by Dr. Michael C. Sanguinetti, University of Utah, USA) 
and the enhanced green fluorescence protein (EGFP), the 
Kv10.1 (F546A) mutant channel and EGFP (for Fig. 3D) 
or transfected only with EGFP (for Fig.  3E) using the 
Lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA, 
USA) according to manufacturer’s specifications. In all 

cases the transfection efficiency was of ~ 50–60%. For 
electrophysiological recordings, cells were used 24 h after 
transfection.

2.3 � Cell proliferation assay
MCF-7, HEK-293 cells and HEK-293 cells expressing 
Kv10.1 channels were seeded in 96-well plates at differ-
ent densities (5000–20,000 cells/per well) and cultured 
overnight. Cells were then treated with 12.5–1000 μM of 
2OHOA and/or 5 μM of astemizole for 24 h, 48 h or 72 h 
before the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenylte-
trazolium bromide (MTT) assay. MTT reagent (5  mg/
ml in PBS) was then added to each well and incubated 
for 4 h. Finally, cells were lysed with 10% SDS. A Multi-
skan™ FC Microplate Photometer (Thermo Fisher Sci-
entific, Waltham, MA, USA) was used to measure the 
absorbance at 570 nm. The percentage of viable cells after 
2OHOA and/or astemizole treatment was calculated by 
dividing the absorbance of the treated group by that of 
the control group.

2.4 � Electrophysiological recordings
Kv10.1 currents in HEK-293 cells were recorded at room 
temperature using the whole-cell patch clamp technique 
with an Axopatch 200B amplifier (Molecular Devices, 
Sunnyvale, CA, USA) and a Digidata 1440A interface 
(Molecular Devices) controlled by the pCLAMP 10 soft-
ware (Molecular Devices). Currents were filtered with a 
four-pole Bessel filter at 1 kHz and digitized at 10 kHz. 
The specific voltage-clamp protocols used are described 
in the Results section. Recording pipettes were pulled 
with a micropipette programable puller (Sutter Instru-
ments, Novato, CA, USA) and had a resistance of 
1.5–2.5  MΩ when filled with the internal solution. The 
external solution contained (in mM): 140 NaCl, 4 KCl, 
1 MgCl2, 10 HEPES, 1.8 CaCl2, and 10 glucose, pH 7.4 
(NaOH). The pipette solution contained (in mM): 130 
KCl, 5 MgCl2, 10 EGTA, 5K2ATP, and 10 HEPES, pH 7.2 
(KOH). Solutions were applied using the Fast-Step Per-
fusion System VC-77SP (Warner Instruments, Hamden, 
CT, USA).

2.5 � Data analysis and statistics
Patch clamp data were processed using Clampfit 10 
(Molecular Devices) and analyzed in Origin 8.6 (Origin-
Lab Corp., Northampton, MA, USA) software. Con-
ductance-voltage (G–V) relationships were calculated 
according to the equation:

where Imax is the maximum current amplitude at the test 
potential V and VKrev is the potassium reversal potential. 

G =
Imax

V − V Krev
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The voltage dependence was determined from the G–V 
curves fitted to a Boltzmann equation:

where V is the test potential, V1/2 is the potential at which 
the conductance was half-activated, and K is the slope.

Data are presented as the mean ± SEM. Statistical com-
parisons were determined using ANOVA and paired or 
one-sample Student’s t-test. Statistical significance was 
set at p < 0.05.

3 � Results
3.1 � 2OHOA increased Kv10.1 currents amplitude 

in a voltage dependent manner
The effect of 2OHOA on Kv10.1 channels was explored 
using the whole-cell configuration of the patch clamp 
technique. A 200  μM concentration of 2OHOA is 

y =
1

1+ exp[−(V − V 1/2)/K ]

commonly employed for in vitro studies and was selected 
for the electrophysiological experiments.

Kv10.1 currents were elicited by 500-ms depolariz-
ing pulses from − 80  mV to + 90  mV (in 10  mV incre-
ments) followed by a pulse to − 50 mV, from a holding 
potential of − 100  mV. Representative Kv10.1 current 
traces are shown before (Fig.  1A) and after applica-
tion of 200  μM 2OHOA (Fig.  1A). 2OHOA increased 
the Kv10.1 current amplitude in the whole voltage 
range (Fig.  1C), but with a clear voltage dependence 
(Fig.  1D), showing the higher effect at voltages close 
to the activation threshold (n = 13). To further char-
acterize the effects of 2OHOA on Kv10.1 channels, 
we determined the conductance-voltage relationship 
(G–V curve) from untreated (control) and 2OHOA 
treated cells (Fig.  2A). The conductance-voltage rela-
tionship is displaced towards more negative volt-
ages after application of 200  μM 2OHOA, indicating 
that Kv10.1 channels are more prone to open. The 

Fig. 1  2OHOA increases Kv10.1 currents in a voltage-dependent manner. A, B Representative recordings of Kv10.1 currents before (A) and after 
application of 200 µM 2OHOA (B), from the same cell. Currents were evoked by 500 ms depolarizing steps to test potentials ranging from -80 
to + 90 mV in 10 mV increments from a holding potential of -100 mV. C normalized I-V relationships for currents measured at the end of the 
500 ms pulses before (squares) and after 2OHOA (circles). D Kv10.1 current increase by 2OHOA plotted as a function of the test potential. Data are 
represented as mean ± SEM (n = 13 cells)
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mean activation parameters in untreated and 2OHOA 
treated cells were V1/2 = 5.9 ± 0.9  mV, k = 21.6 ± 0.8 
and V1/2 = − 6.2 ± 1.1  mV, k = 23.6 ± 1.0, respec-
tively (n = 13). Furthermore, we analyzed the effect of 
2OHOA on the activation kinetics of Kv10.1 currents 
like those shown in Fig.  1A, B. A monoexponential 
function was fitted to the activation recording data. 
2OHOA significantly accelerated the activation rate 
in the range of − 20 to 60  mV (Fig.  2B, n = 9). Finally, 
we explored if the Cole-More shift, a characteristic of 
Kv10.1 channels which reflect a slowing of current acti-
vation kinetics by hyperpolarizing pulses, is affected by 
2OHOA. We evaluated this phenomenon by applying 
prepulses to hyperpolarized potentials from − 130 to 
− 70  mV (in 10  mV increments), followed by a depo-
larizing pulse to + 60  mV to open the channels. In 
drug-free conditions, Kv10.1 currents displayed their 
characteristic behavior, activating more slowly as the 
prepulse potential become more negative (Fig.  2C). 

Notably, although 2OHOA accelerated the current acti-
vation, kinetics remained dependent on the prepulse 
potential, i.e., the Cole-More shift was not affected 
(Fig. 2D).

3.2 � 2OHOA inhibited cell proliferation in Kv10.1 
expressing cells

We used the MTT assay to determine whether prolifera-
tion of Kv10.1 expressing cells was altered by 2OHOA. In 
addition, we used astemizole, a well-known pore blocker 
of Kv10.1 channels that decreases cell proliferation by 
its action on this channel [39]. Initially, HEK-293 cells 
expressing Kv10.1 channels were treated with 2OHOA, 
astemizole and a combination of both (2OHOA + astemi-
zole) for 24, 48 or 72 h (Fig. 3A–C). 2OHOA at 200 μM 
and astemizole at 5 μM significantly reduced cell prolif-
eration after 72 h treatment by 26.7% and 43.2%, respec-
tively (Fig.  3C). Interestingly, the combination of both 
drugs (200 μM 2OHOA + 5 μM astemizole) significantly 

Fig. 2  Effect of 2OHOA on the voltage-dependence of activation, activation kinetics and Cole-More shift of Kv10.1 channel. A conductance-voltage 
(G–V) curves before (squares) and after application of 200 µM 2OHOA (circles). The V1/2 values were 5.9 ± 0.9 mV and − 6.2 ± 1.1 mV for currents 
recorded before and after 2OHOA, respectively (n = 13 cells). B time constant of activation kinetics as a function of test potential before (squares) 
and after 2OHOA application (circles; n = 9 cells). C, D Representative Kv10.1 currents at + 60 mV evoked with the protocol shown inset in control 
(C) and 200 µM 2OHOA treated cells (D). similar results were obtained in five more cells. Data are represented as mean ± SEM. *p < 0.05, **p < 0.01, 
NS: Not significant
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reduced cell proliferation by 22%, 41.2% and 54.3% at 24 
(Fig. 3A), 48 (Fig. 3B) and 72 h (Fig. 3C), respectively. At 
24 and 48  h, the combination of 2OHOA and astemi-
zole induced a higher decrease on cell proliferation than 
when each drug was applied alone, indicating a synergis-
tic effect (Fig.  3A, B). At 72  h, a small further decrease 
on cell proliferation was also observed, although was not 
statistically significant (Fig. 3C).

Additionally, we evaluated the effect of 2OHOA on 
the proliferation of HEK-293 cells expressing the non-
conducting Kv10.1-F456A mutant channel (Fig. 3D). The 
Kv10.1-F456A channel has been reported to induce cell 
proliferation even though it is unable to conduct ions 
[38]. After 72  h treatment, 2OHOA reduced cell prolif-
eration by 26% (Fig.  3D), similar to the effect observed 
on HEK-293 cells expressing the wild type (WT) Kv10.1 
channel. Notably, in HEK-293 cells not expressing Kv10.1 

channels, 2OHOA does not significantly inhibited cell 
proliferation (Fig. 3E).

Finally, we determined the effects of 2OHOA and 
astemizole on the proliferation of MCF-7 cells, a breast 
cancer cell line that endogenously expresses Kv10.1 
channels.

MCF-7 cells were treated with different concentrations 
of 2OHOA (12.5, 25, 50, 100, 200, 400 and 1000  µM), 
5 µM astemizole, and a combination of 200 µM 2OHOA 
and 5 µM astemizole for 24, 48 and 72 h (Fig. 4). Prolif-
eration of MCF-7 cells was decreased only at high con-
centrations of 2OHOA (> 400  µM, Fig.  4). Astemizole 
(5  µM) decreased MCF-7 cells proliferation at 48 and 
72 h by 19.4% and 60.9% respectively (Fig. 4B, C), simi-
lar to previous reports [39]. Remarkably, as observed in 
Kv10.1 expressing HEK-293 cells, the combination of 
200 µM 2OHOA and 5 µM astemizole has a synergistic 

Fig. 3  2OHOA and astemizole synergistically decreases cell proliferation of HEK-293 cells expressing the Kv10.1 channel. A–C the effect of 200 µM 
2OHOA on cell proliferation was determined using the MTT assay at 24 (A), 48 (B) and 72 h (C) on HEK-293 cells expressing the Kv10.1 channel 
(n = 6). D Effect of 200 µM 2OHOA on proliferation of HEK-293 cells expressing the non-conducting mutant Kv10.1-F456A (n = 6). E Effect of 200 µM 
2OHOA on proliferation of HEK-293 cells not expressing Kv10.1 channels (n = 5). Asterisks indicate significant effects compared with controls 
(*p < 0.05), # indicate a significant effect of the combination 2OHOA + Astemizole compared with both drugs applied alone (#p < 0.05), NS: Not 
significant. Data are represented as mean ± SEM
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effect in reducing proliferation of MCF-7 cells. Under 
this condition (2OHOA + astemizole), cell proliferation 
was reduced by 25.8%, 41.7%, and 71.9% at 24, 48 and 
72 h, respectively (Fig. 4A–C).

4 � Discussion
2-hydroxyoleic acid (2OHOA) is a synthetic fatty acid 
with antitumor properties. In contrast with commonly 
used anticancer drugs, 2OHOA targets the plasma 
membrane altering its composition and structure, 
thereby affecting the functioning of membrane proteins 
and cell signaling [2–9]. In the present study we found 
another mechanism of action for the antitumoral effects 
of 2OHOA, resulting from the modulation of Kv10.1 
channels.

2OHOA was rationally designed to treat a condition 
by modulating membrane lipid composition and struc-
ture, the so-called membrane lipid therapy (MLT) [40]. 
Two main mechanisms have been described for 2OHOA 
action: (1) either free or in phospholipids, 2OHOA regu-
lates the order of membrane lipids, the membrane struc-
ture, and the balance between raft and non-raft domains 
(type-1 MLT); and (2) by its activation of the sphingomy-
elin synthase, 2OHOA increases the levels of sphingomy-
elin, changing the membrane lipid composition (type-2 
MLT) [7, 10, 12]. These effects induced by 2OHOA on 
the plasma membrane could affect the functioning of 
lipid-sensitive proteins, as is the case of Kv10.1, an ion 
channel that has been shown to be regulated by differ-
ent membrane lipids [22, 41]. Notably, the perturbation 
of membrane structure by methyl-beta-cyclodextrin 

(MBCD) treatment increases the current density of 
Kv10.1 channels [22], evidencing the channel sensitivity 
to alterations on the plasma membrane. Similarly, here 
we found that 2OHOA application increased the cur-
rent amplitude of Kv10.1 channels (Fig. 1) and modulate 
its kinetics and voltage dependence (Fig. 2). The known 
sensitivity of Kv10.1 to plasma membrane alterations lead 
us to propose that the effects induced by 2OHOA on the 
functioning of this channel are likely generated by the 
type-1 MLT mechanism. Although, our experiments can-
not completely discard the tipe-2 MLT mechanism.

Studies have shown that Kv10.1 channel blockage 
decreases cell proliferation [35], reflecting the impor-
tance of ion permeation through this channel on this 
process. However, non-conducting Kv10.1 mutants 
also support cell proliferation by regulating intracellu-
lar signaling pathways, a process attributed to voltage-
dependent changes on the protein conformation rather 
than ion permeation [34, 38]. In this work, astemizole, 
a Kv10.1 channel blocker, decreased proliferation of 
HEK-293 (transfected with Kv10.1) and MCF-7 cells 
(Figs. 3 and 4), which agree with previous reports [39]. 
On the other hand, 2OHOA did not block ion conduc-
tion through Kv10.1 channels but regulated its voltage-
dependent gating; the voltage-dependence of activation 
was shifted toward negative voltages (Fig. 2A) and the 
kinetics of channel activation was accelerated (Fig. 2B). 
2OHOA induced a reduction of cell proliferation on 
Kv10.1 expressing cells (Figs. 3 and 4), whereas Kv10.1 
non-expressing cells (HEK-293 cells transfected only 
with EGFP) were not affected by 2OHOA (Fig.  3E). 

Fig. 4  2OHOA and astemizole synergistically decreases MCF-7 cells proliferation. A–C proliferation of MCF-7 cells treated with different 
concentrations of 2OHOA (12.5, 25, 50, 100, 200, 400 and 1000 µM), 5 µM astemizole and the combination 200 µM 2OHOA and 5 µM astemizole 
determined at 24 (A), 48 (B) and 72 h (C). Asterisks indicate significant effects compared with controls (*p < 0.05; **p < 0.01), # indicates a significant 
effect of the combination of 200 µM 2OHOA + 5 µM Astemizole compared to 200 µM 2OHOA or 5 µM Astemizole applied alone (#p < 0.05; 
##p < 0.01), NS: Not significant. Data are represented as mean ± SEM (n = 5)
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Interestingly, 2OHOA also reduced proliferation of 
HEK-293 cells expressing the non-conducting Kv10.1-
F456A mutant (Fig.  3D). Altogether, these results 
suggest that 2OHOA could be interfering with a non-
conducting function of Kv10.1 channels involved in cell 
proliferation, possibly, with an intracellular signaling 
pathway regulated by voltage-dependent changes in the 
channel conformation.

Remarkably, 2OHOA and astemizole synergistically 
decreased cell proliferation of Kv10.1 expressing cells 
(Figs. 3, 4), suggesting that simultaneously targeting the 
conducting and non-conducting functions of Kv10.1 
channels could be a more effective antiproliferative 
strategy.

In conclusion, 2OHOA decreases cell proliferation by 
several mechanisms, including the regulation of Kv10.1 
channels. Moreover, 2OHOA can act synergistically 
with drugs that block ion permeation through Kv10.1 
channels to reduce more effectively cell proliferation.
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