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Abstract 

Background The concept of Pythagorean fuzzy sets (PFSs) is an utmost valuable mathematical framework, which 
handles the ambiguity generally arising in decision-making problems. Three parameters, namely membership degree, 
non-membership degree, and indeterminate (hesitancy) degree, characterize a PFS, where the sum of the square of 
each of the parameters equals one. PFSs have the unique ability to handle indeterminate or inconsistent information 
at ease, and which demonstrates its wider scope of applicability over intuitionistic fuzzy sets.

Results In the present article, we opt to define two nonlinear distances, namely generalized chordal distance and 
non-Archimedean chordal distance for PFSs. Most of the established measures possess linearity, and we cannot incor-
porate them to approximate the nonlinear nature of information as it might lead to counter-intuitive results. Moreo-
ver, the concept of non-Archimedean normed space theory plays a significant role in numerous research domains. 
The proficiency of our proposed measures to overcome the impediments of the existing measures is demonstrated 
utilizing twelve different sets of fuzzy numbers, supported by a diligent comparative analysis. Numerical examples of 
pattern recognition and medical diagnosis have been considered where we depict the validity and applicability of our 
newly constructed distances. In addition, we also demonstrate a problem of suitable medicine selection for COVID-19 
so that the transmission rate of the prevailing viral pandemic could be minimized and more lives could be saved.

Conclusions Although the issues concerning the COVID-19 pandemic are very much challenging, yet it is the cur-
rent need of the hour to save the human race. Furthermore, the justifiable structure of our proposed distances and 
also their feasible nature suggest that their applications are not only limited to some specific research domains, but 
decision-makers from other spheres as well shall hugely benefit from them and possibly come up with some further 
extensions of the ideas.
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1  Background
Although our classical concept of set theory is capable of 
answering or representing most of the scenarios, there 
also exist certain situations when the ideas of two-valued 
logic (set theory) are not sufficient enough to completely 
describe the phenomenon and to handle the uncertainty 
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which normally exists in almost all real-life phenomenon. 
Such inefficiency of the two-valued logic is due to the fact 
that they are completely unable to represent the uncer-
tain information, and they can only convey about the 
occurrence or non-occurrence of an event but nothing 
more than that. Thus, in order to overcome those lacu-
nas, Zadeh in 1965 [1] developed the concept of fuzzy 
sets. Since then, fuzzy sets have seen numerous applica-
tions in various fields to handle the uncertainty inherent 
in them. There is no denying the fact that almost every 
kind of information or knowledge which is available 
in the real-life setting is in a way vague, or imprecise in 
nature.

However, certain extensions of fuzzy sets were also 
proposed according to the need to represent the uncer-
tain information suitably, which are intuitionistic fuzzy 
sets (IFSs) [2], interval-valued fuzzy sets [3], fuzzy multi-
sets [4], etc. A single membership function that assumes 
values between 0 and 1 characterizes a fuzzy set. But in 
a real-life setting, there also arises a need to represent 
its non-membership degree too, and we cannot merely 
say that the non-membership degree is given by 1 minus 
membership degree. Hence, in order to give more mean-
ingful insight, it was Atanassov [2] who generalized the 
idea of fuzzy sets and proposed the new variant of fuzzy 
sets known as IFSs, which are characterized by both 
membership and non-membership degrees, and accord-
ing to Atanassov, IFSs should be characterized by an 
added degree, known as the degree of indeterminacy or 
non-determinacy, which is defined as 1 minus member-
ship degree minus non-membership degree. For an IFS 
P = (µP(x), νP(x)) in X , the inequality µP(x)+ νP(x) ≤ 1 
must be satisfied and the degree of indeterminacy ( πP ) is 
πP(x) = 1− µP(x)− νP(x) . Later, it was Yager [5], who 
initially pondered that the condition for IFSs, µ+ ν ≤ 1 
could not only be limited to this and it could be further 
extended.

Hence, in 2013, Yager and Abbasov [6] and Yager [5] 
substituted the constraint condition of µ+ ν ≤ 1 by 
µ2 + ν2 ≤ 1 and proposed a new class of fuzzy sets by the 
name of Pythagorean fuzzy sets (PFSs). In other words, 
the membership values of PFSs are ordered pairs of the 
form (µ, ν) which satisfy the inequality of µ2 + ν2 ≤ 1 . 
Clearly, PFSs are extensions of IFSs since the space of 
intuitionistic membership grades is inclusive under 
the space of Pythagorean membership grades. Also, 
according to Yager and Abbasov [6] there exists some 
relationship between complex numbers and Pythago-
rean membership degrees, and it was established that 
Pythagorean degrees are necessarily a subclass of com-
plex numbers and are referred to as −i  numbers. 
PFSs have more powerful applicability and are more reli-
able than IFSs, as far as dealing with the uncertainty-led 

daily life situations are concerned, since there are cer-
tain scenarios where IFSs are not suitable to be used, 
but PFSs could be applied. Say, for instance, to repre-
sent the belongingness of an element to a set, a certain 
element has membership degree value, µ = 0.7 and 
the corresponding non-membership degree is ν = 0.7 . 
Clearly, µ+ ν = 0.7+ 0.6 = 1.3 > 1 , and therefore, IFSs 
could not be used for violating its constraint condition. 
Whereas we can use PFSs since the constraint condition 
µ2 + ν2 = 0.49+ 0.36 = 0.85 ≤ 1 is fulfilled. Afterward, 
PFSs received much more recognition and concern from 
researchers all around the globe. Yager and Abbasov [6] 
solved multicriteria decision-making (MCDM) problems 
based on aggregation operators on PFSs. Recently, sev-
eral prominent works on PFSs can be noted in the litera-
ture. For instance, Yager [7] introduced the Pythagorean 
membership grades into problems of MCDM. Zhang 
and Xu [8] extended the method for TOPSIS (Technique 
for Order Preference by Similarity to an Ideal Solution) 
to solve decision-making problems with PFSs. Peng and 
Yang [9] developed certain significant results for PFSs. 
Moreover, they also proposed the Choquet integral for 
PFSs in 2016 [10]. Later, Ren et  al. [11] elaborated the 
TODIM (an acronym in Portuguese of interactive and 
multicriteria decision making) approach for solving 
MCDM problems with Pythagorean fuzzy preference 
information. Garg [12] made use of the Einstein opera-
tions to devise a novel generalized aggregation operator 
for Pythagorean fuzzy numbers (PFNs). Thereafter, Garg 
[13] also devised a new accuracy function for solving 
MCDM problems, provided the uncertain information 
is represented by interval-valued Pythagorean fuzzy sets. 
Zhang [14] tackled group decision-making problems with 
the help of a new similarity measure for PFSs. At that era, 
a relatively newer concept of complex PFSs was intro-
duced by Dick et al. [15]. Peng et al. [16] discussed about 
information measures in the Pythagorean fuzzy setting 
and mentioned some of their applications. Then, it was 
Zeng [17], who introduced OWA (ordered weighted 
averaging) approach into Pythagorean fuzzy group deci-
sion-making problems. Thereafter, Garg [18] introduced 
the concept of geometric aggregation operators into tack-
ling MCDM problems. Qin et al. [19] considered general-
ized weighted distance measures for PFSs. Later, a regret 
theory and prospect theory-based score function and 
a novel distance measure for PFSs were investigated by 
Peng and Dai [20]. Thereafter, Biswas and Sarkar [21] put 
forward a point operator-based similarity measure for 
solving group decision-making problems involving PFSs. 
Wei and Wei [22] proposed several cosine function-based 
similarity measures for PFSs. Li and Mao [23] gave some 
new similarity and distance measures for PFSs overcom-
ing the previous discrepancies [24] and demonstrating 
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several multifarious applications. Xiao and Ding [25] pro-
posed a divergence measure for PFSs that aids in medical 
diagnosis procedures. Adabitabar et al. [26] formulated a 
fruitful similarity measure for PFSs, which is efficient and 
robust enough to handle different real-life scenarios.

Distance measure acts as a research hotspot in fuzzy 
set theory owing to its immense applications in the field 
of machine learning, medical diagnosis, pattern recogni-
tion, signal processing, and many more. In this regard, 
several fruitful distance measures for PFSs were proposed 
by Li and Zeng [27]; Chen [28]; Ejegwa [29]; Hussian and 
Yang [30]; Baccour and Alimi [32]; Yang and Chiclana 
[33]; Wang and Xin [34]; Jin et  al. [35]; Song et  al. [36] 
and so on. Ejegwa and Awolola [37] tackled pattern rec-
ognition problems via some novel distance measures for 
PFSs. Sarkar and Biswas [38] devised a novel distance 
measure that can be applied to complex problems of 
transportation management. Mahanta and Panda [39] 
proposed a PFS-based distance measure and showed its 
application in the face-mask selection problem and few 
others.

Although several researchers and practitioners have 
provided some very fruitful versions of their own, the 
question of defining a universal or global distance to 
measure the distance between any two sets particularly 
in fuzzy set theory is still left an untouched problem. And 
as such to date, there has not been any such established 
metric (or distance) to measure the distance between 
two PFSs to the best of the author’s knowledge. From our 
acquired knowledge, we know that in order to construct a 
distance (or metric), we can either achieve it via a topol-
ogy (based on topology theory) or via a norm (based on 
normed space theory). Most of the established distances 
like Euclidean distance, Minkowski distance, Pearson 
correlation distance are all linear in nature, and they hold 
the Archimedean property. But there arise certain situa-
tions where we deal with the nonlinear nature of infor-
mation, and approximating them via linear distances may 
lead to inappropriate results. Due to this existing inad-
equacy, in the present article, we devise two notions of 
nonlinear distances for PFSs, namely  generalized chordal 
distance and non-Archimedean chordal distance, where 
the core idea for constructing them came from complex 
analysis and non-Archimedean normed space theory, 
respectively. Researchers from the field of physics and 
mathematics background know about the crucial impor-
tance of non-Archimedean normed space theory, as 
they have widespread applications in numerous research 
domains, particularly in clustering algorithms. Later, it 
has been established that the newly constructed distances 
are more coherent and they can overcome the inadequa-
cies of the existing distance measures, and further they 
apply to various decision-making instances.

The rest of the paper is structured as follows: in Sect. 2, 
we review some useful mathematical definitions and 
also provide a firm mathematical framework that will be 
necessitated to understand the newly proposed notions 
revealed in the subsequent sections. In Sect.  3, we list 
down some of the existing distance measures for PFSs, 
and then, we provide the definitions for our newly con-
structed nonlinear distances. Section  4 demonstrates 
some of the impediments of the existing measures, 
and we show how our proposed measures are efficient, 
feasible, and worthy of due consideration over those 
measures. In Sect.  5, we establish the applicability and 
rationality of our proposed distance measures by illus-
trating few numerical scenarios. For instance, problems 
of pattern recognition, medical diagnosis, and COVID-
19 medicine selection are discussed in detail. Also, we 
conduct an in-depth sensitivity analysis for our newly 
constructed distance measures. Finally, some concluding 
remarks fill up Sect. 6.

2  Methods and basic preliminaries
In this section, we discuss some of the basic concepts 
and ideas related to IFS and PFS. Moreover, a firm math-
ematical background is provided on few other concepts, 
which will be necessitated in our study.

2.1  IFS and PFS

Definition 1 (Atanassov’s IFSs) [2] Suppose we con-
sider any universe of discourse U(say), then according to 
Atanassov, a set P can be called an IFS when it has the 
form.

where the degree of belongingness (membership) and 
degree of non-belongingness (non-membership) of 
the element x ∈ U  to the set P are indicated by func-
tions µP : U → [0, 1] and νP : U → [0, 1] , respectively. 
In addition to that, the condition of 0 ≤ µP(x) ≤ 1 , 
0 ≤ νP(x) ≤ 1 and 0 ≤ µP(x)+ νP(x) ≤ 1 must be 
satisfied.

Atanassov added one more degree which he called as 
the degree of hesitation of x to P , and defined it as, 
πP(x) = 1− µP(x)− νP(x).

Definition 2 (Yager’s PFSs) [5] Yager came up with 
the idea of PFSs as a solution to some exceptional cases 
or situations, when the sum of membership degree and 
non-membership degree exceeds 1 and as a result IFS 
theory fails to be applied.

(1)P = {(x,µP(x), νP(x))|x ∈ U}
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According to Yager, a PFS Q in a finite universe U should 
be defined as

where the functions, µQ : U → [0, 1] and νQ : U → [0, 1] , 
respectively, denote the membership and non-member-
ship degree of the element x ∈ Q , provided the condition 
of 0 ≤ µ2

Q(x)+ ν2Q(x) ≤ 1 is satisfied.

Here, the degree of indeterminacy (hesitation) takes the 
form given by

We may also refer to a Pythagorean fuzzy number (PFN) 
as Q =

(

µQ(x), νQ(x)
)

 for convenience (Garg [40]).

Definition 3 (Some operations on PFSs) [6, 7] Hereby, 
we define some basic operations involving PFSs. For that 
purpose, suppose we consider the collection of all PFSs 
defined on a universe U , as PFS(U) , then for any two 
PFSs, P = (µP(x), νP(x)) and Q =

(

µQ(x), νQ(x)
)

 , the fol-
lowing properties hold:

 (i) Inclusion Any PFS P is said to be a subset of 
another PFS Q , that is, P ⊆ Q if and only if for all 
x ∈ U , we have µP(x) ≤ µQ(x) , and νP(x) ≥ νQ(x);

 (ii)  Equality Any two PFSs P and Q are said to 
be equal, that is, P = Q if and only if ∀x ∈ U

,µP(x) = µQ(x) , and νP(x) = νQ(x);

 (iii)  Complement For any PFS P considered, its comple-
ment is defined by

 (iv)  Intersection The intersection between two PFSs P 
and Q can be defined as,

 (xxii)  Union Similarly, the union operation between 
two PFSs P and Q is defined as,

2.2  Comparison between IFS and PFS
The differences that exist between IFS and PFS can be 
grouped into two major factors:

(2)Q =
{(

x,µQ(x), νQ(x)
)

|x ∈ U
}

(3)πP(x) =
√

1− µ2
Q(x)− ν2Q(x)

PC = {νP(x),µP(x)}, ∀x ∈ U .

P ∩ Q =
{

min
(

µP(x),µQ(x)
)

, max
(

µP(x),µQ(x)
)}

, ∀x ∈ U;

P ∪ Q =
{

max
(

µP(x),µQ(x)
)

, min
(

µP(x),µQ(x)
)}

, ∀x ∈ U .

2.2.1  Constraint condition
First major difference, which is notable, is that of the 
different constraint conditions, as µP(x), νP(x) ∈ [0, 1] 
for a set P and an element x ∈ P , the constraint condi-
tion for IFSs is µP(x)+ νP(x) ≤ 1 , whereas for PFSs, it 
takes the form µ2

P(x)+ ν2P(x) ≤ 1 . Accordingly, the 
degree of hesitation for IFSs is πP(x) = 1− µP(x)

−νP(x) , whereas the same degree in case of PFSs is 

πP(x) =
√

1− µ2
P(x)− ν2P(x) . Moreover, as PFSs are a 

generalization of IFSs, the space of intuitionistic mem-
bership grades is smaller than that of Pythagorean 
membership grades. That is, a PFS is necessarily an IFS, 
but the reverse is not true. Furthermore, PFSs cannot 
only handle the situations when the degree of member-
ship and non-membership degree is greater than 1, 
where IFS theory fails, but in addition to that, it is also 
capable of handling the indeterminate information, 
which normally exists in real-life scenarios.

2.2.2  Complement operator
The second difference lies in the definition of the com-
plement operator for IFN, say P = (µP , νP) and PFN, 
say Q =

(

µQ, νQ
)

.
Precisely, for any α ∈ U  , the complement operator  

for IFN, PC = (νP ,µP) is proposed as per the Sugeno 
class of components, C(α) = (1−α)

(1+�α)
(� ∈ (−1,∞)) when 

� = 0 (i.e.C(α) = 1− α) , whereas the complement 
operator for PFN, QC =

(

νQ,µQ

)

 is defined according 
to Yager class of components, C(α) = (1− ασ )

1
/σ

(σ ∈ (0,∞)) when σ = 2
(

i.e.C(α) =
√
1− α2

)

.

2.3  Chordal distance and non‑Archimedean chordal 
distance

In this segment, some prerequisite concepts necessary 
to have a proper visualization of the aforementioned 
terms are presented. Very briefly, we define what is 
a norm, distance (or metric), generalized chordal dis-
tance, non-Archimedean norm, non-Archimedean val-
uation, and finally non-Archimedean chordal distance.

Definition 4 (Norm) [41] For any non-empty set A , a 
norm is defined as a mapping N : A → R

+ , such that it 
satisfies the conditions mentioned below,

 (i) N(x) = 0 iff x = 0 , for any x ∈ A;
 (ii) N

(

xy
)

= N(x)N
(

y
)

 , for x, y ∈ A;
 (iii) N

(

x + y
)

≤ N(x)+N
(

y
)

 , for x, y ∈ A , which is 
popularly known as the triangle inequality.
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Here, R
+ denotes the extended real plane, 

i.e. R+ = [0,∞).

Remark 1 An example of a very widely used norm is 
the standard lp norm, which has the form.

�x�p =
(

n
∑

i=1

|xi|p
)
1/p

 , where for p = 1 ( l1 norm) we 

obtain the taxicab norm or Manhattan distance, and 
p = 2 ( l2 norm) refers to the Euclidean norm. For p = ∞ 
or l∞ norm, we obtain the infinity or maximum norm.

Definition 5 (Distance or metric) [41] By distance 
or metric, we mean a mapping ‘ d ’ on a set A , such that, 
d : A× A → R

+ , and which satisfies the conditions,

 (i) d
(

x, y
)

≥ 0 for x, y ∈ A;
 (ii) d

(

x, y
)

= 0 if and only if x = y;
 (iii) d

(

x, y
)

= d
(

y, x
)

;
 (iv) d(x, z) ≤ d

(

x, y
)

+ d
(

y, z
)

 , for x, y, z ∈ A.

Remark 2 The distance and norm are interrelated by 
the condition,

Definition 6 (Generalized chordal distance) [41] The 
generalized chordal metric (distance) denoted by ‘ DChd ’ 
and defined as a mapping DChd : A× A → [0,∞) such 
that, for x, y ∈ A (non-empty set), we have,

where ‖ . ‖ denotes a norm or an absolute value function.

Definition 7 (non-Archimedean norm) [41] As per the 
definition of a norm already discussed, when we replace 
the third condition of triangular inequality by the condi-
tion, N(a+ b) ≤ max

{

N(a), N(b)
}

 , for a, b ∈ A (known 

(4)d
(

x, y
)

= N
(

x − y
)

.

(5)DChd

(

x, y
)

=
∥

∥x − y
∥

∥

√

1+ �x�2
√

1+
∥

∥y
∥

∥

2

as the ultrametric inequality), what we obtain is called a 
non-Archimedean norm.

Definition 8 (non-Archimedean valuation) [41] For a 
function or mapping to be termed as a non-Archimedean 
valuation, we must have | . | : A → R

+ such that the fol-
lowing properties hold,

 (i) |x| = 0 iff x = 0 , for x ∈ A;
 (ii) 

∣

∣xy
∣

∣ = |x|
∣

∣y
∣

∣ , for x, y ∈ A;
 (iii) 

∣

∣x + y
∣

∣ ≤ max
{

|x|,
∣

∣y
∣

∣

}

 , for x, y ∈ A;
 (iv) ∃ x ∈ A such that |x| = 0, 1 . (Non-triviality condi-

tion)

Definition 9 (non-Archimedean chordal dis-
tance) [41] The non-Archimedean chordal dis-
tance denoted by ‘ D�

nAChd ’ and defined as a mapping 
D�

nAChd : A× A → [0,∞) such that, for x, y ∈ A(non-
empty set) and � ∈ [0, 1] , we have.

where | . | denotes a non-Archimedean valuation or an 
absolute value function.

3  New types of distance measures induced 
by existing measures

As a fruitful means of differentiating between two 
objects, a variety of distance or dissimilarity measures 
has been frequently used which are presented below. We 
then define our proposed distance measures and illus-
trate some of their desirable properties.

3.1  Existing measures
Let us review some of the widely applied distance meas-
ures pertinent to PFSs. So, for any two PFSs P = (µP , νP) 
and Q =

(

µQ, νQ
)

 , defined in the finite universe say 
U = {x1, x2, ..., xn} , we have.

 (i) Hamming distance measure ( DH ) [31]

 (ii) Euclidean distance measure ( DE ) [31]

(6)D�

nAChd

(

x, y
)

=
∣

∣x − y
∣

∣

max {�, |x|}max
{

�,
∣

∣y
∣

∣

}

(7)DH (P,Q) =
1

2

n
∑

i=1

(∣

∣

∣
µ2
P(xi)− µ2

Q(xi)
∣

∣

∣+
∣

∣

∣ν
2
P(xi)− ν2Q(xi)

∣

∣

∣+
∣

∣

∣π
2
P(xi)− π2

Q(xi)
∣

∣

∣

)

(8)DE(P,Q) =

(

1

2

n
∑

i=1

(

µ2
P(xi)− µ2

Q(xi)
)2

+
(

ν2P(xi)− ν2Q(xi)
)2

+
(

π2
P(xi)− π2

Q(xi)
)2

)
1
2
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 (iii)  Normalized Hamming distance measure ( DnH ) 
[31]

 (iv)  Normalized Euclidean distance measure ( DnE ) 
[31]

 (v)  Baccour and Alimi’s First Squared distance meas-
ure ( D1

BA ) [32]

 (vi) Baccour and Alimi’s second squared distance 
measure ( D2

BA ) [32]

 (vii) Grzegorzewski’s distance measure ( DG ) [3]

 (viii)  Yang and Chiclana’s distance measure ( DYF ) [33]

 (ix)  Wang and Xin’s distance measure ( DWX ) [34]

 (x)  Jin et al.’s distance measure ( DJHP ) [35]

(9)DnH(P,Q) =
1

2n

n
∑

i=1

(∣

∣

∣
µ2
P(xi)− µ2

Q(xi)
∣

∣

∣+
∣

∣

∣ν
2
P(xi)− ν2Q(xi)

∣

∣

∣+
∣

∣

∣π
2
P(xi)− π2

Q(xi)
∣

∣

∣

)

(10)DnE(P,Q) =

(

1

2n

n
∑

i=1

(

µ2
P(xi)− µ2

Q(xi)
)2

+
(

ν2P(xi)− ν2Q(xi)
)2

+
(

π2
P(xi)− π2

Q(xi)
)2

)
1
2

(11)D1
BA(P,Q) =

1

2n

n
∑

i=1

(

(

√

µP(xi)−
√

µQ(xi)
)2

+
(

√

νP(xi)−
√

νQ(xi)
)2

)

(12)D2
BA(P,Q) =

1

4n

n
∑

i=1

(

√

∣

∣

∣µ2
P(xi)− µ2

Q(xi)
∣

∣

∣+
√

∣

∣

∣ν2P(xi)− ν2Q(xi)
∣

∣

∣

)2

(13)

DG(P,Q) =
1

n

n
∑

i=1

max
{∣

∣

∣
µ2
P(xi)− µ2

Q(xi)
∣

∣

∣,
∣

∣

∣ν
2
P(xi)− ν2Q(xi)

∣

∣

∣

}

(14)DYF(P,Q) =
1

n

n
∑

i=1

max
(∣

∣

∣
µ2
P(xi)− µ2

Q(xi)
∣

∣

∣,
∣

∣

∣ν
2
P(xi)− ν2Q(xi)

∣

∣

∣,
∣

∣

∣π
2
P(xi)− π2

Q(xi)
∣

∣

∣

)

(15)DWX(P,Q) =
1

n

n
�

i=1





�

�

�
µ2
P(xi)− µ2

Q(xi)
�

�

�
+

�

�

�
ν2P(xi)− ν2Q(xi)

�

�

�

4
+

max
��

�

�
µ2
P(xi)− µ2

Q(xi)
�

�

�
,
�

�

�
ν2P(xi)− ν2Q(xi)

�

�

�

�

2





(16)DJHP(P,Q) =
1

4n

n
�

i=1







�

�

�µ
2
P(xi)− µ2

Q(xi)
�

�

�+
�

�

�ν
2
P(xi)− ν2Q(xi)

�

�

�+
�

�

�π
2
P(xi)− π2

Q(xi)
�

�

�

+2max
��

�

�µ
2
P(xi)− µ2

Q(xi)
�

�

�,
�

�

�ν
2
P(xi)− ν2Q(xi)

�

�

�,
�

�

�π
2
P(xi)− π2

Q(xi)
�

�

�

�
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 (xi)  Song et al.’s distance measure ( DSF ) [36]

 (xii)  Ren et al.’s distance measure ( DRX ) [11]

 (xiii)  Peng et al.’s distance measure ( DPY ) [16]

 (xiv)  Ejegwa and Awolola’s distance measure ( DEA ) [37]

 (xv)  Sarkar and Biswas’s distance measure ( DSB ) [38]

 (xvi)  Mahanta and Panda’s distance measure ( DMP ) [39]

Remark 3 It is noteworthy that the distance measures 
(i)–(iv) may also be referred to as Euclidean-like distance 
measures.

(17)DSF(P,Q) = 1−
1

3n

n
�

i=1





2
�

µP(xi)µQ(xi)+ 2
�

νP(xi)νQ(xi)+
�

πP(xi)πQ(xi)

+
�

(1− µP(xi))
�

1− µQ(xi)
�

+
�

(1− νP(xi))
�

1− νQ(xi)
�





(18)DRX(P,Q) =

[

1

2n

n
∑

i=1

{

(

µ2
P(xi)− µ2

Q(xi)
)2

+
(

ν2P(xi)− ν2Q(xi)
)2

+
(

π2
P(xi)− π2

Q(xi)
)2

}

]
1
2

(19)

DPY(P,Q) =
1

4n

n
∑

i=1

(

∣

∣

∣µ
2
P(xi)− µ2

Q(xi)
∣

∣

∣

2
+

∣

∣

∣ν
2
P(xi)− ν2Q(xi)

∣

∣

∣

2
+

∣

∣

∣π
2
P(xi)− π2

Q(xi)
∣

∣

∣

2
)

(20)DEA(P,Q) =
1

4n

n
∑

i=1

{
∣

∣µP(xi)− µQ(xi)
∣

∣+ |µP(xi)− νP(xi)| −
∣

∣µQ(xi)− νQ(xi)
∣

∣

+|µP(xi)− πP(xi)| −
∣

∣µQ(xi)− πQ(xi)
∣

∣

}

(21)DSB(P,Q) =
1

3n

n
�

i=1











�

�

�µ
2
P(xi)− µ2

Q(xi)
�

�

�+
�

�

�ν
2
P(xi)− ν2Q(xi)

�

�

�+
�

�

�π
2
P(xi)− π2

Q(xi)
�

�

�

+
�

�

�max
�

µ2
P(xi), ν

2
Q(xi)

�

−max
�

µ2
Q(xi), ν

2
P(xi)

��

�

�











(22)

DMP(P,Q) =
1

n

n
∑

i=1

∣

∣

∣
µ2
P(xi)− µ2

Q(xi)
∣

∣

∣
+

∣

∣

∣
ν2P(xi)− ν2Q(xi)

∣

∣

∣

µ2
P(xi)+ µ2

Q(xi)+ ν2P(xi)+ ν2Q(xi)

3.2  Newly proposed distance measures
Based on the concepts discussed in Sect.  2.2, we are 
motivated to define two nonlinear distances for PFSs, as 
given below.

3.2.1  Generalized chordal distance for PFSs
For any two PFSs, P = (µP(xi), νP(xi)) and 
Q =

(

µQ(xi), νQ(xi)
)

 defined in a finite universe, 
U = {x1, x2, ..., xn} , the generalized chordal distance in 
PFSs is defined as

(23)DChd,p(P,Q) =

(

1

2

(

1− p
2

)

n

n
∑

i=1

[

{

DChd

(

µP(xi),µQ(xi)
)}p +

{

DChd

(

νP(xi), νQ(xi)
)}p

]

)
1/p
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To establish the validity and reasonability of Eq.  (23), 
we state the following theorems.

Theorem  1 For any finite universe, U = {x1, x2, ..., xn} , 
the proposed distance DChd,p(P,Q) between PFSs P and Q 
must satisfy the following conditions:

(C-1) 0 ≤ DChd,p(P,Q) ≤ 1 ; (Boundedness)

(C-2) DChd,p(P,Q) = 0 ⇔ P = Q ; (Separability)

(C-3) DChd,p(P,Q) = DChd,p(Q,P) ; (Symmetricity).

Proof (C-1) We have the generalized chordal distance 
between PFSs P and Q is defined as.

or, it can be written in more simplified form as,

However, 
√

1+ �µP(xi)�2 ≥ 1 and 
√

1+
∥

∥µQ(xi)
∥

∥

2 ≥ 1 , 
as µP(xi),µQ(xi) ≥ 0.

This implies that,

Combining Eqs. (24) and (25), we get,

DChd,p(P,Q) =

(

1

2

(

1− p
2

)

n

n
∑

i=1

[

{

DChd

(

µP(xi),µQ(xi)
)}p +

{

DChd

(

νP(xi), νQ(xi)
)}p

]

)
1/p

DChd,p(P,Q) =





1

2

�

1− p

2

�

n

n
�

i=1











�

�µP(xi)− µQ(xi)
�

�

�

1+ �µP(xi)�2
�

1+
�

�µQ(xi)
�

�

2







p

+







�

�νP(xi)− νQ(xi)
�

�

�

1+ �νP(xi)�2
�

1+
�

�νQ(xi)
�

�

2







p







1
/p

(24)
Now, since 0 ≤ µP(xi),µQ(xi) ≤ 1,

therefore 0 ≤
∥

∥µP(xi)− µQ(xi)
∥

∥ ≤ 1.

(25)

0 ≤
1

√

1+ �µP(xi)�2
≤ 1 and, 0 ≤

1
√

1+
∥

∥µQ(xi)
∥

∥

2
≤ 1

(26)

0 ≤
�

�µP(xi)− µQ(xi)
�

�

�

1+ �µP(xi)�2
�

1+
�

�µQ(xi)
�

�

2
≤ 1

⇒





�

�µP(xi)− µQ(xi)
�

�

�

1+ �µP(xi)�2
�

1+
�

�µQ(xi)
�

�

2





p

≤ 1 (for any value of p, the value is further smaller

By the same argument we have,

We observe that, in each of the fractions, the numera-
tor part is much smaller than the denominator part, 
which ultimately results in a value of the fraction being 
smaller than 1(one). Consequently, taking any posi-
tive power ( p ) of such an output will further reduce its 
value.

(27)





�

�νP(xi)− νQ(xi)
�

�

�

1+ �νP(xi)�2
�

1+
�

�νQ(xi)
�

�

2





p

≤ 1

Therefore, from Eqs. (26) and (27), we can conclude that,

0 ≤





1

2

�

1− p
2

�

n

n
�

i=1











�

�µP(xi)− µQ(xi)
�

�

�

1+ �µP(xi)�2
�

1+
�

�µQ(xi)
�

�

2







p

+







�

�νP(xi)− νQ(xi)
�

�

�

1+ �νP(xi)�2
�

1+
�

�νQ(xi)
�

�

2







p







1
/p

≤ 1

⇒ 0 ≤ DChd,p(P,Q) ≤ 1.
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(C-2) When P = Q , we have µP(xi) = µQ(xi), νP(xi)

= νQ(xi), ∀xi ∈ U .

Therefore, we have, DChd

(

µP(xi),µQ(xi)
)

= 0 , 
DChd

(

νP(xi), νQ(xi)
)

= 0 , and hence, DChd,p(P,Q) = 0.

Conversely, when DChd,p(P,Q) = 0 , we have

Therefore, condition (C-2) holds.

(C-3) The symmetric property is very much trivial.

We now state and prove an important lemma, which will 
be utilized in proving the subsequent theorem that follows.

Lemma 1 If 0 ≤ p1 ≤ p2 ≤ p3 ≤ 1 , then |p1 − p3|
√

1+ p
2

2
≥ |p1 − p2|

√

1+ p
2

3
.

Proof Given 0 ≤ p1 ≤ p2 ≤ p3 ≤ 1 , then we evaluate.

(

1

2

(

1− p
2

)

n

n
∑

i=1

[

{

DChd

(

µP(xi),µQ(xi)
)}p +

{

DChd

(

νP(xi), νQ(xi)
)}p

]

)
1/p

= 0

⇒ DChd

(

µP(xi),µQ(xi)
)

= 0; DChd

(

νP(xi), νQ(xi)
)

= 0

⇒ µP(xi) = µQ(xi); νP(xi) = νQ(xi), ∀xi ∈ U

⇒ P = Q

|p1 − p3|
�

1+ p
2
2 − |p1 − p2|

�

1+ p
2
3 = (p3 − p1)

�

1+ p
2
2 − (p2 − p1)

�

1+ p
2
3

=
�

p3

�

1+ p
2
2 − p2

�

1+ p
2
3

�

+ p1

�

�

1+ p
2
3 −

�

1+ p
2
2

�

=





p
2
3

�

1+ p
2
2

�

− p
2
2

�

1+ p
2
3

�

p3

�

1+ p
2
2 + p2

�

1+ p
2
3



+ p1





�

1+ p
2
3

�

−
�

1+ p
2
2

�

�

1+ p
2
3 +

�

1+ p
2
2





=
(p3 − p2)(p3 + p2)

p3

�

1+ p
2
2 + p2

�

1+ p
2
3

+
p1(p3 − p2)(p3 + p2)
�

1+ p
2
3 +

�

1+ p
2
2

=





1

p3

�

1+ p
2
2 + p2

�

1+ p
2
3

+
p1

�

1+ p
2
3 +

�

1+ p
2
2



(p3 − p2)(p3 + p2)

≥ 0, since p3 ≥ p2.

Hence, |p1 − p3|
√

1+ p22 ≥ |p1 − p2|
√

1+ p23.

Corollary 1 If pi ∈ R ∩ [0, 1] , then 
∣

∣pi − pj
∣

∣ =
∥

∥pi − pj
∥

∥ 
and also, |pi|2 = �pi�2 = p2i  . So, the relation �p1 − p3�
√

1+ �p2�2 ≥ �p1 − p2�
√

1+ �p3�2 also holds.

Theorem  2 Let DChd,p : PFS(U)× PFS(U) → R be a 
distance measure between two PFSs P = (µP(xi), νP(xi)) 
and Q =

(

µQ(xi), νQ(xi)
)

 , defined as.

or, 

DChd,p(P,Q) =

(

1

2

(

1− p

2

)

n

n
∑

i=1

[

{

DChd

(

µP(xi),µQ(xi)
)}p

+
{

DChd

(

νP(xi), νQ(xi)
)}p

])
1
/p
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DChd,p(P,Q) =

(

1

2

(

1−
p
2

)

n

n
∑

i=1

[{

�µP(xi)−µQ(xi)�√
1+�µP(xi)�2

√

1+�µQ(xi)�2

}p

+

{

�νP(xi)−νQ(xi)�√
1+�νP(xi)�2

√

1+�νQ(xi)�2

}p])
1/p

 , 

then it satisfies the following axioms

A‑1: If P ⊆ Q ⊆ R , then DChd,p(P,Q) ≤ DChd,p(P,R) 
and DChd,p(Q,R) ≤ DChd,p(P,R) for P,Q,R

∈ PFS(U) . (Containment property).
A‑2: DChd,p

(

P,PC
)

= 1, ∀ P ∈ PFS(U) if and only if 
P is a crisp set.
A‑3: DChd,p(P,Q) = DChd,p

(

P
C ,QC

)

, ∀ P,Q ∈ PFS(U).

A‑4: DChd,p

(

P,PC
)

= 0 if and only if µP(xi) = νP(xi), 
∀ xi ∈ U , P ∈ PFS(U).

A‑5: DChd,p

(

P,QC
)

= DChd,p

(

P
C ,Q

)

, ∀ P,Q ∈ PFS(U).

Proof (A-1) Let P = (µP(xi), νP(xi)) , Q =

(

µQ(xi), νQ(xi)
)

 , 
R = (µR(xi), νR(xi)) , and P ⊆ Q ⊆ R . Then ∀ xi ∈ U  we 
get,

which implies that, ∀ xi ∈ U

From Eqs. (32) and (33), we have

(28)0 ≤ µP(xi) ≤ µQ(xi) ≤ µR(xi) ≤ 1

(29)and 0 ≤ νR(xi) ≤ νQ(xi) ≤ νP(xi) ≤ 1

(30)|µR(xi)− µP(xi)| ≥
∣

∣µQ(xi)− µR(xi)
∣

∣

(31)|νR(xi)− νP(xi)| ≥
∣

∣νP(xi)− νQ(xi)
∣

∣

(32)
1

√

1+ µ2
P(xi)

≥
1

√

1+ µ2
Q(xi)

≥
1

√

1+ µ2
R(xi)

(33)
1

√

1+ ν2R(xi)
≥

1
√

1+ ν2Q(xi)
≥

1
√

1+ ν2P(xi)

(34)

1
√

1+ µ2
P(xi)

√

1+ µ2
R(xi)

≥
1

√

1+ µ2
Q(xi)

√

1+ µ2
R(xi)

From Eqs. (30) & (34), (31) & (35), we obtain

Using Corollary 1, Eqs. (36) and (37) can also be written 
as,

From Eq. (28), using Lemma 1, we get ∀ xi ∈ U ,

Dividing both sides by 
√

1+ µ2

P
(xi)

√

1+ µ2

Q
(xi)

√

1+ µ2

R
(xi) we get,

(35)

1
√

1+ ν2P(xi)

√

1+ ν2R(xi)
≥

1
√

1+ ν2P(xi)
√

1+ ν2Q(xi)

(36)

|µP(xi)− µR(xi)|
√

1+ µ2
P(xi)

√

1+ µ2
R(xi)

≥
∣

∣µQ(xi)− µR(xi)
∣

∣

√

1+ µ2
Q(xi)

√

1+ µ2
R(xi)

(37)

and
|νP(xi)− νR(xi)|

√

1+ ν2P(xi)

√

1+ ν2R(xi)
≥

∣

∣νP(xi)− νQ(xi)
∣

∣

√

1+ ν2P(xi)
√

1+ ν2Q(xi)

(38)

�µP(xi)− µR(xi)�
√

1+ �µP(xi)�2
√

1+ �µR(xi)�2

≥
∥

∥µQ(xi)− µR(xi)
∥

∥

√

1+
∥

∥µQ(xi)
∥

∥

2
√

1+ �µR(xi)�2

(39)

�νP(xi)− νR(xi)�
√

1+ �νP(xi)�2
√

1+ �νR(xi)�2

≥
∥

∥νP(xi)− νQ(xi)
∥

∥

√

1+ �νP(xi)�2
√

1+
∥

∥νQ(xi)
∥

∥

2

|µP(xi)− µR(xi)|
√

1+ µ2
Q(xi) ≥

∣

∣µP(xi)− µQ(xi)
∣

∣

√

1+ µ2
R(xi)

(40)

|µP(xi)− µR(xi)|
√

1+ µ2
P(xi)

√

1+ µ2
R(xi)

≥
∣

∣µP(xi)− µQ(xi)
∣

∣

√

1+ µ2
P(xi)

√

1+ µ2
Q(xi)
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By Corollary 1, Eq. (40) can be written as

From Eq. (29), using Lemma 1, we get ∀ xi ∈ U ,

Dividing both sides by 
√

1+ ν2
P
(xi)

√

1+ ν2
Q
(xi)

√

1+ ν2P(xi)
√

1+ ν2Q(xi)

√

1+ ν2R(xi) we get,

By Corollary 1, Eq. (42) can be written as

From Eqs. (38) and (43), we get DChd,p(Q,R) ≤ DChd,p(P,R).

From Eqs. (39) and (41), we get DChd,p(P,Q) ≤ DChd,p(P,R).

This completes the proof.

(A-2) We know that, for given P = (µP(xi), νP(xi)) , 
PC = (νP(xi),µP(xi)).

Let DChd,p

(

P,PC
)

= 1 , then

(41)

�µP(xi)− µR(xi)�
√

1+ �µP(xi)�2
√

1+ �µR(xi)�2

≥
∥

∥µP(xi)− µQ(xi)
∥

∥

√

1+ �µP(xi)�2
√

1+
∥

∥µQ(xi)
∥

∥

2

|νR(xi)− νP(xi)|
√

1+ ν2Q(xi) ≥
∣

∣νR(xi)− νQ(xi)
∣

∣

√

1+ ν2P(xi)

(42)

|νP(xi)− νR(xi)|
√

1+ ν2P(xi)

√

1+ ν2R(xi)
≥

∣

∣νQ(xi)− νR(xi)
∣

∣

√

1+ ν2Q(xi)

√

1+ ν2R(xi)

(43)

�νP(xi)− νR(xi)�
√

1+ �νP(xi)�2
√

1+ �νR(xi)�2

≥
∥

∥νQ(xi)− νR(xi)
∥

∥

√

1+
∥

∥νQ(xi)
∥

∥

2
√

1+ �νR(xi)�2





1

2

�

1− p
2

�

n

n
�

i=1











�µP(xi)− νP(xi)�
�

1+ �µP(xi)�2
�

1+
�

�µQ(xi)
�

�

2







p

+







�νP(xi)− µP(xi)�
�

1+ �νP(xi)�2
�

1+
�

�νQ(xi)
�

�

2







p







1/p

= 1

Putting p = 1, n = 1 , we have

By using Corollary 1, we can write the above equation as

Squaring both sides, we have

Since 0 ≤ |µP(xi)− νP(xi)| ≤ 1 and 0 ≤ µP(xi), νP(xi)

≤ 1 , ∀ xi ∈ U

(A-3) We know that, for given P = (µP(xi), νP(xi)) and 
Q =

(

µQ(xi), νQ(xi)
)

 , we have their complements as 
PC = (νP(xi),µP(xi)) and QC =

(

νQ(xi),µQ(xi)
)

.

n
�

i=1



2





�µP(xi)− νP(xi)�
�

1+ �µP(xi)�2
�

1+
�

�µQ(xi)
�

�

2







 =
√
2

⇔ 2





�µP(xi)− νP(xi)�
�

1+ �µP(xi)�2
�

1+
�

�µQ(xi)
�

�

2



 =
√
2

⇔
√
2�µP(xi)− νP(xi)� =

�

1+ �µP(xi)�2
�

1+
�

�µQ(xi)
�

�

2

⇔
√
2(µP(xi)− νP(xi)) =

√

1+ µ2
P(xi)

√

1+ µ2
Q(xi)

⇔ 2
(

µ2
P(xi)+ ν2P(xi)− 2µP(xi)νP(xi)

)

= 1+ µ2
P(xi)+ ν2P(xi)+ µ2

P(xi)ν
2
P(xi)

⇔ µ2
P(xi)+ ν2P(xi)

= 1+ 4µP(xi)νP(xi)+ µ2
P(xi)ν

2
P(xi)

⇔ µ2
P(xi)+ ν2P(xi)− 2µP(xi)νP(xi)

= 1+ 2µP(xi)νP(xi)+ µ2
P(xi)ν

2
P(xi)

⇔ |µP(xi)− νP(xi)|2 = (1+ µP(xi)νP(xi))
2

(

Using Corollary 1
)

⇔ |µP(xi)− νP(xi)| = 1+ µP(xi)νP(xi)

⇔ µP(xi)νP(xi) = 0 and |µP(xi)− νP(xi)| = 1

⇔ (µP(xi) = 1 and νP(xi) = 0) or (µP(xi) = 0 and νP(xi) = 1)

⇔ P = (1, 0) or P = (0, 1)

⇔ P is a crisp set.

DChd,p(P,Q) =





1

2

�

1− p

2

�

n

n
�

i=1











�

�µP(xi)− µQ(xi)
�

�

�

1+ �µP(xi)�2
�

1+
�

�µQ(xi)
�

�

2







p

+







�

�νP(xi)− νQ(xi)
�

�

�

1+ �νP(xi)�2
�

1+
�

�νQ(xi)
�

�

2







p







1
/p

=





1

2

�

1− p

2

�

n

n
�

i=1











�

�νP(xi)− νQ(xi)
�

�

�

1+ �νP(xi)�2
�

1+
�

�νQ(xi)
�

�

2







p

+







�

�µP(xi)− µQ(xi)
�

�

�

1+ �µP(xi)�2
�

1+
�

�µQ(xi)
�

�

2







p







1
/p

= DChd,p

�

P
C
,Q

C

�
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Fig. 1 Nonlinear characteristics of the proposed generalized chordal distance measure

This completes the proof.

(A-4) Let DChd,p

(

P,PC
)

= 0 , then ∀ xi ∈ U ,

(A-5) For given P = (µP(xi), νP(xi)) and 
Q =

(

µQ(xi), νQ(xi)
)

 , we have their complements as 
PC = (νP(xi),µP(xi)) and QC =

(

νQ(xi),µQ(xi)
)

 . Thus,

This completes the proof.

Thus, the proofs of various theorems and lemmas as 
shown above, suggests that our proposed distance func-
tion is worthy of being called as a “distance measure”.

1

2

�

1− p
2

�

n

n
�

i=1



2







�µP(xi)− νP(xi)�
�

1+ �µP(xi)�2
�

1+
�

�µQ(xi)
�

�

2







p

 = 0

⇔





�µP(xi)− νP(xi)�
�

1+ �µP(xi)�2
�

1+
�

�µQ(xi)
�

�

2





p

= 0, ∀ xi ∈ U , ∀ p ∈ R
+ − {0}

⇔ �µP(xi)− νP(xi)� = 0

⇔ µP(xi) = νP(xi), ∀xi ∈ U

DChd,p

�

P,Q
C

�

=





1

2

�

1− p

2

�

n

n
�

i=1











�

�µP(xi)− νQ(xi)
�

�

�

1+ �µP(xi)�2
�

1+
�

�νQ(xi)
�

�

2







p

+







�

�νP(xi)− µQ(xi)
�

�

�

1+ �νP(xi)�2
�

1+
�

�µQ(xi)
�

�

2







p







1
/p

=





1

2

�

1− p

2

�

n

n
�

i=1











�

�νP(xi)− µQ(xi)
�

�

�

1+ �νP(xi)�2
�

1+
�

�µQ(xi)
�

�

2
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+
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�µP(xi)− νQ(xi)
�
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1+ �µP(xi)�2
�

1+
�

�νQ(xi)
�

�

2







p







1
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= DChd,p

�

P
C
,Q

�

The nonlinear nature of our proposed generalized 
chordal distance for PFSs is demonstrated with the help 
of the following graphical illustration as shown in Fig. 1.

Moreover, the surface visualization of the generalized 
chordal distance measure for different values of the input 
parameter “ p ” ( p = 1, 2, 3, 4 ) is depicted in Figs. 2, 3, 4, 
and 5.

3.2.2  Non‑Archimedean chordal distance
For any two PFSs, P = (µP(xi), νP(xi)) and 
Q =

(

µQ(xi), νQ(xi)
)

 defined in the universe of discourse, 
U = {x1, x2, ..., xn} , the non-Archimedean chordal dis-
tance in PFSs is defined as
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Fig. 2 Surface of generalized chordal distance measure for p = 1

Fig. 3 Surface of generalized chordal distance measure for p = 2
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(44)
D�

nAChd,p(P,Q) =

(

n
∑

i=1

[{

D�

nAChd

(

µP(xi),µQ(xi)
)

20n

}p

+

{

D�

nAChd

(

νP(xi), νQ(xi)
)

20n

}p])
1/p

Fig. 4 Surface of generalized chordal distance measure for p = 3

Fig. 5 Surface of generalized chordal distance measure for p = 4
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Remark 4 The newly constructed distance D�

nAChd,p 
satisfies the conditions of a metric, which can be estab-
lished by adopting the similar procedure used to show 
DChd,p as a distance measure. The proof is not elaborated 
here to maintain the concise length of the article.

Here, we showcase the nonlinear nature of our proposed 
non-Archimedean chordal distance for PFSs in Fig. 6 as 
shown below.
Consequently, the 3D plot of the non-Archimedean 
chordal distance measure for a particular value of � , say 
� = 1 , and for p = 1, 2, 3, 4 are presented in Figs. 7, 8, 9, 
and 10.

3.3  Propositions
It is found that certain propositions are satisfied by both 
our newly defined distance measures which are listed 
below.

Proposition 1 For any two PFSs, P = (1, 0) and 
Q = (0, 1) , we have DChd,p(P,Q) = 1 when p = 1 ; and 
D�

nAChd,p(P,Q) = 1 when p = 1 ; � = 0.1.

Proof Given P = (1, 0) and Q = (0, 1) . Now, for p = 1 
the formula for DChd,1(P,Q) with the given assumptions 
has the following representation,

Fig. 6 Nonlinear characteristics of the proposed non-Archimedean chordal distance measure

Fig. 7 Surface of non-Archimedean chordal distance measure for � = 1 ; p = 1
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Fig. 8 Surface of non-Archimedean chordal distance measure for � = 1 ; p = 2

Fig. 9 Surface of non-Archimedean chordal distance measure for � = 1 ; p = 3
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Fig. 10 Surface of non-Archimedean chordal distance measure for � = 1 ; p = 4

and for p = 1 ; � = 0.1 , D1
nAChd,1(P,Q) has the form,

Here, µP(x) = 1 , νP(x) = 0 ; µQ(x) = 0 , νQ(x) = 1.

Therefore, we have

and, 

D
0.1
nAChd,1(P,Q) =

[

D
0.1
nAChd(1, 0)

20
+

D
0.1
nAChd(0, 1)

20

]

⇒ D
0.1
nAChd,1((1, 0), (0, 1)) =

[

1

20
×

1

max {0.1, 1}max {0.1, 0}
+

1

20
×

1

max {0.1, 0}max {0.1, 1}

]

=
1

20
×

[

1

1× 0.1
+

1

0.1× 1

]

=
1

20
× [10+ 10] =

1

20
× 20 = 1

(45)

DChd,1(P,Q) =
1
√
2
×

[

DChd

(

µP(x),µQ(x)
)

+ DChd

(

νP(x), νQ(x)
)]

(46)

D
0.1
nAChd,1

(P,Q) =

[

D
0.1
nAChd

(

µP(x),µQ(x)
)

20

+

D
0.1
nAChd

(

νP(x), νQ(x)
)

20

]

DChd,1(P,Q) =
1
√
2
× [DChd(1, 0)+ DChd(0, 1)]

⇒ DChd,1((1, 0), (0, 1)) =
1
√
2
×

[

1
√
2
√
1
+

1
√
1
√
2

]

=
1
√
2
×

[

2
√
2

]

=
2

2
= 1

Hence the result. Noteworthy that, for the pairs P = (0, 1) 
and Q = (1, 0) , we obtain similar outcomes.

Proposition 2 Let us consider two PFSs, P = (a, b) and 
Q = (b, a) , then we have DChd,p(P,Q) =

√
2× DChd(a, b) 

when p = 1 ; and 10D�

nAChd,p(P,Q) = N(a, b) when 

p = 1 ; � = 1 , for 0 ≤ a, b < 1.

Proof Given that,P = (a, b) and Q = (b, a) , where 
0 ≤ a, b < 1 . Now, for p = 1 we have the formula for 
DChd,1(P,Q) as,

and for p = 1 ; � = 1 , D1
nAChd,1(P,Q) has the following 

representation,

(47)

DChd,1(P,Q) =
1
√
2
×

[

DChd

(

µP(x),µQ(x)
)

+ DChd

(

νP(x), νQ(x)
)]



Page 18 of 34Dutta et al. Beni-Suef Univ J Basic Appl Sci           (2023) 12:42 

Here, µP(x) = a , νP(x) = b ; µQ(x) = b , νQ(x) = a.

Therefore, we have

and, D1
nAChd,1(P,Q) =

[

D1
nAChd(a,b)

20 + D1
nAChd(b,a)

20

]

This completes the proof.

(48)

D
1
nAChd,1(P,Q) =

[

D
1
nAChd

(

µP(x),µQ(x)
)

20

+

D
1
nAChd

(

νP(x), νQ(x)
)

20

]

DChd,1(P,Q) =
1
√
2
× [DChd(a, b)+ DChd(b, a)]

⇒ DChd,1((a, b), (b, a)) =
1
√
2
×





�

�a− b
�

�

�

1+ �a�2
�

1+
�

�b
�

�

2
+

�

�b− a
�

�

�

1+
�

�b
�

�

2
�

1+ �a�2





=
1
√
2
×



2×
�

�a− b
�

�

�

1+ �a�2
�

1+
�

�b
�

�

2



,
�

since a, b ≥ 0 ⇒ �a� = a,
�

�b
�

� = b,
�

�a− b
�

� =
�

�b− a
�

�

�

=
2
√
2
×

�

�a− b
�

�

�

1+ �a�2
�

1+
�

�b
�

�

2
=

√
2× DChd(a, b)

⇒ D1
nAChd,1((a, b), (b, a)) =

1

20
×

[
∣

∣a− b
∣

∣

max {1, |a|}max
{

1,
∣

∣b
∣

∣

} +
∣

∣b− a
∣

∣

max
{

1,
∣

∣b
∣

∣

}

max {1, |a|}

]

=
1

20
×

[

2×
∣

∣a− b
∣

∣

]

,
(

since 0 ≤ a, b < 1 ⇒ max {1, |a|} = max
{

1,
∣

∣b
∣

∣

}

= 1
)

=
2

20
×N(a, b) =

N(a, b)

10

⇒ 10D�

nAChd,p(P,Q) = N(a, b)

Proposition 3 For PFSs, P = (0, 0) and Q = (0, 0) , we 
have DChd,p(P,Q) = 0 and D�

nAChd,p(P,Q) = 0.

Proof For, P = (0, 0) and Q = (0, 0) , by definition of 
DChd,p(P,Q) and D�

nAChd,p(P,Q) we have,

DChd,p(P,Q) =

(

1

2

(

1− p

2

) ×
[

{

DChd

(

µP(xi),µQ(xi)
)}p +

{

DChd

(

νP(xi), νQ(xi)
)}p

]

)
1
/p

⇒ DChd,p((0, 0), (0, 0)) =

(

1

2

(

1− p

2

) ×
[

{

DChd

(

µP(xi),µQ(xi)
)}p +

{

DChd

(

νP(xi), νQ(xi)
)}p

]

)
1
/p

=

(

1

2

(

1− p

2

) ×
[

{DChd(0, 0)}p + {DChd(0, 0)}p
]

)
1
/p

=

(

1

2

(

1− p

2

) ×
[{

�0− 0�
√
1
√
1

}p

+
{

�0− 0�
√
1
√
1

}p]
)
1
/p

=

(

1

2

(

1− p

2

) × 0

)
1
/p

= 0
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and,

D
�

nAChd,p
(P,Q) =

[{

D
�

nAChd(µP(xi),µQ(xi))
20

}p

Thus, the result holds.

Proposition 4 For any two PFSs, P = (a, b) and  
Q = (c, d) in general, we can establish the relation,  
DChd,2(P,Q) ≤ DChd,1(P,Q) and D

1
nAChd,2

(P,Q) ≤
D
1
nAChd,1

(P,Q) , provided � = 1.

Proof For P = (a, b) and Q = (c, d) , by definition of our 
constructed distances we have,

Since, 0 ≤ a, b, c, d ≤ 1 , so from (49) and (50) we have 
�a− c�2 ≤ �a− c� and

+

{

D
�

nAChd(νP(xi),νQ(xi))
20

}p]
1
/p

⇒ D�

nAChd,p((0, 0), (0, 0)) =

[{

D�

nAChd(0, 0)

20

}p

+

{

D�

nAChd(0, 0)

20

}p]
1/p

=
[{

1

20
×

|0− 0|
max {�, 0}max {�, 0}

}p

+
{

1

20
×

|0− 0|
max {�, 0}max {�, 0}

}p]
1/p

= (0+ 0)
1/p = 0

(49)

DChd,1(P,Q) =
1
√
2
× [DChd(a, c)+ DChd(b, d)]

=
1
√
2
×





�

�a− c�
�

1+ �a�2
�

1+ �c�2

�

+





�

�b− d
�

�

�

1+
�

�b
�

�

2
�

1+
�

�d
�

�

2









(50)

DChd,2(P,Q) =





1

2

�

1− 2
2

� ×
�

{DChd(a, c)}2 +
�

DChd(b, d)
�2

�





1
2

=







1

1
×







�

�a− c�
�

1+ �a�2
�

1+ �c�2

�2

+







�

�b− d
�

�

�

1+
�

�b
�

�

2
�

1+
�

�d
�

�

2







2












1
2

=









�a− c�2
�

1+ �a�2
��

1+ �c�2
� +

�

�b− d
�

�

2

�

1+
�

�b
�

�

2
��

1+
�

�d
�

�

2
�









1
2

Combining both results, we have,

�a−c�2
(

1+�a�2
)(

1+�c�2
) ≤ �a−c�√

1+�a�2
√

1+�c�2
 , and 

�b−d�2
(

1+�b�2
)(

1+�d�2
) ≤ �b−d�

√

1+�b�2
√

1+�d�2
.

Therefore, we can say that DChd,2(P,Q) ≤ DChd,1(P,Q).

√

1+ �a�2
√

1+ �c�2 ≤
(
√

1+ �a�2
√

1+ �c�2
)2

=
(

1+ �a�2
)(

1+ �c�2
)

⇒
1

(

1+ �a�2
)(

1+ �c�2
)

≤
1

√

1+ �a�2
√

1+ �c�2

Similarly, we have
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Now, for the values of a, b, c, d within the interval [0, 1] , 
we have |a− c|2 ≤ |a− c| and

and other component-wise similar results.

This shall necessarily imply D1
nAChd,2

(P,Q) ≤ D
1
nAChd,1

(P,Q) . This 
completes the proof.

4  Drawbacks of the existing measures 
and comparative analysis

Here in this section, we showcase some drawbacks of the 
existing distance measures and hence establish the effi-
ciency and superiority of our newly proposed measures. 
To fulfil our objective, we consider 12 (twelve) different 
profiles of IFSs, which are presented in Table 1. The cor-
responding evaluated distance measure values under dif-
ferent methods are shown in Table 2.

From the results obtained in Table 2, the inadequacies 
in case of each of the existing measures are listed down 
under:

 (i) Hamming distance measure (DH ) Even though 
each of the 12 profiles considered is non-identi-
cal, yet the measure DH obtains identical distance 
measure value of- 0.1000 for profiles 1, 2, 6, 8; 

D1
nAChd,1(P,Q) =

[

D1
nAChd(a, c)

20
+

D1
nAChd(b, d)

20

]

=

[

(

1

20
×

|a− c|
max {1, |a|}max {1, |c|}

)

+

(

1

20
×

∣

∣b− d
∣

∣

max
{

1,
∣

∣b
∣

∣

}

max
{

1,
∣

∣d
∣

∣

}

)]

=
1

20
×

[

|a− c| +
∣

∣b− d
∣

∣

]

D1
nAChd,2(P,Q) =









�

D1
nAChd(a, c)

20

�2

+

�

D1
nAChd(b, d)

20

�2








1
2

=





1

400
×





�

|a− c|
max {1, |a|}max {1, |c|}

�2

+

�
�

�b− d
�

�

max
�

1,
�

�b
�

�

�

max
�

1,
�

�d
�

�

�

�2








1
2

=
�

1

400
×

�

|a− c|2 +
�

�b− d
�

�

2
�

�
1
2

1

20
|a− c|2 ≤

1

20
|a− c|

⇒
1

400
|a− c|2 ≤

1

20
|a− c|2 ≤

1

20
|a− c|

Table 1 Profiles of IFSs

Profiles Pairs of IFSs

Profile 1 A = (0.5, 0.5), B = (0.4, 0.55)

Profile 2 A = (0.3, 0.6), B = (0.4, 0.55)

Profile 3 A = (0.2, 0.4), B = (0.4, 0.45)

Profile 4 A = (0.6, 0.4), B = (0.4, 0.45)

Profile 5 A = (0.4, 0.4), B = (0.5, 0.5)

Profile 6 A = (0.6, 0.4), B = (0.5, 0.5)

Profile 7 A = (0.3, 0.3), B = (0.2, 0.2)

Profile 8 A = (0.4, 0.5), B = (0.5, 0.4)

Profile 9 A = (0.0, 0.0), B = (1.0, 0.0)

Profile 10 A = (0.0, 0.0), B = (0.5, 0.5)

Profile 11 A = (0.1, 0.3), B = (0.2, 0.4)

Profile 12 A = (0.2, 0.5), B = (0.3, 0.7)

0.2000 for profiles 4, 5, 7, 11; 1.0000 for profiles 9, 
10.

 (ii) Euclidean distance measure ( DE ) DE obtains iden-
tical distance values as, 0.0866 for profiles 1, 2; 
0.1732 for profiles 5, 7, 11; 0.1000 for profiles 6, 8.

 (iii) Normalized Hamming distance measure ( DnH ) 
DnH obtains distance value of 0.1000 for profiles 1, 
2, 6, 8; 0.2000 for 4, 5, 7, 11; 1.0000 for profiles 9, 
10.
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Table 2 Comparison of the computed distance measure values

*Here in each row, identical color shades are used to depict the same values of distance obtained by the distance measures, for different pairs of profiles.
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 (iv) Normalized Euclidean distance measure ( DnE ) DnE 
fails to obtain dissimilar distance values for differ-
ent profiles and ends up obtaining- 0.0866 for pro-
files 1, 2; 0.1732 for 5, 7, 11; 0.1000 for profiles 6, 8.

 (v) Baccour & Alimi’s First Squared distance measure 
( D1

BA ) D1
BA yet again obtains identical distance val-

ues for non-similar profiles 5, 8; and 9, 10.
 (vi) Baccour & Alimi’s second squared distance measure 

( D2
BA ) D2

BA yields distance values, 0.0729 for pro-
files 1, 2; 0.1125 for profiles 3, 4; 0.1000 for profiles 
5, 6, 7, 8, 11; for non-similar profiles of fuzzy num-
bers.

 (vii) Grzegorzewski’s distance measure ( DG ) DG attains 
same distance measure value of 0.1000 for profiles 
1, 2, 5, 6, 7, 8, 11 and 0.2000 for profiles 4, 5, 12, for 
each of the dissimilar profiles.

 (viii) Yang & Chiclana’s distance measure ( DYF ) DYF fails 
to obtain unique values of similarity for each of the 
non-similar profiles and ends up obtaining values 
as, 0.1000 for profiles 1, 2, 6, 8; 0.2000 for 4, 5, 7; 
1.0000 for profiles 9, 10.

 (ix) Wang & Xin’s distance measure ( DWX ) Like most 
others as discussed, DWX attains identical distance 
measure values of 0.0875 for profiles 1, 2; 0.1625 
for profiles 3, 4; 0.1000 for profiles 5, 6, 7, 8, 11.

 (x) Jin et al.’s distance measure ( DJHP ) DJHP obtains 
0.1000 for 1st, 2nd, 6th, 8th profiles; 0.2000 for 4th, 
5th, 7th, 11th profiles; 1.0000 for 9th, 10th profiles, 
which is counter-intuitive as the profiles consid-
ered are non-identical.

 (xi) Song et al.’s distance measure ( DSF ) For the profiles 
2nd and 6th, DSF obtains identical distance values, 
which is quite illogical since the profiles are chosen 
differently.

 (xii) Ren et al.’s distance measure ( DRX ) The distance 
measure DRX obtains identical values of similarity 
for non-similar pairs of PFSs in profiles 7 and 11.

 (xiii) Peng et al.’s distance measure ( DPY ) Likewise, for 
pairs of profiles (1,8) and (7,11), the similarity value 
results obtained with measure DPY are identical, 
which is counter-intuitive.

 (xiv) Ejegwa & Awolola distance measure ( DEA ) How-
ever, non-acceptable distance measure results are 
obtained with DEA distance measure for profiles 1 
and 7. Clearly evident from Table 2 that, DEA deter-
mines negative values of distance for these profiles 
which is absurd.

 (xv) Sarkar & Biswas distance measure ( DSB ) The ineffi-
cacy of DSB distance measure is also showcased for 
pairs of profiles (2,7) and (8,11), owing to its evalu-
ation of identical distance value for different pairs 
of PFSs in them.

 (xvi) Mahanta & Panda distance measure ( DMP ) The 
distance measure by Mahanta & Panda, DMP could 
not distinguish between pairs of profiles (5,8), 
(9,10) and (11,12), which indicates a flaw in the 
structural formulation of their measure.

 (xvii) Proposed measures ( DChd,p and D�

nAChd,p ) On 
careful observation of Table 2, we find that for our 
proposed measures whether be it DChd,p or 
D�

nAChd,p , neither of them attains identical values of 
distances. This is logical and at par with human 
intuition that, since we have considered different 
profiles of fuzzy numbers, so their respective eval-
uated distance measure values should be non-iden-
tical as well. Even though, most of the existing dis-
tance measures failed to obtain logical outcomes, 
but our proposed measures proved to be successful 
and effective. Hence, our proposed measures are 
more efficient, more common-sensical, feasible and 
are worthy of due consideration.

5  Practical applications
In this section, we demonstrate the applicability and 
effectiveness of our proposed measures by illustrating the 
procedure for multicriteria decision-making, when prob-
lems from the field of pattern recognition and medical 
decision-making are considered.

5.1  Pattern recognition
5.1.1  Description
Pattern recognition refers to the process of recognition 
or identification of patterns and regularities in a data 
sample. The arena of pattern recognition owes its origins 
in engineering and statistics, and it has become one of 
the widely researched areas with applications in machine 
learning, image analysis, signal processing, etc. In deci-
sion-making problems, the idea of pattern recognition 
usually consists of a certain set of known patterns and an 
unknown pattern, which we need to identify or classify 
into the known patterns. Briefly speaking, the known pat-
tern having the maximum similarity or least dissimilarity 
may be identified as the most deserving pattern. Hereby, 
we illustrate a numerical scenario below, to give a vivid 
visualization of the process.

5.1.2  Assumptions
Suppose we consider three known patterns 
Pi (i = 1, 2, 3) , where the preference information for the 
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patterns is represented by PFSs in a universe of discourse 
U = {x1, x2, x3} as given below.

Now, we assume that we have an unknown pattern Q , 
which needs to be recognized or classified. Let Q ∈ PFSs(U) 
and Q = {(x1, 0.6, 0.2), (x2, 0.9, 0.1), (x3, 0.1, 0.7)}.

5.1.3  Objective
Our aim is to classify or characterize the unknown pat-
tern Q into one of the known patterns P1 , P2 or P3 . Based 
on the least difference or maximum similarity, we can 
obtain our required suitable pattern.

5.1.4  Results
After having evaluated the distance values between 
the set of patterns (P1,Q) , (P2,Q) and (P3,Q) we have 
obtained the following results.

By generalized chordal distance,

By non-Archimedean chordal distance,

5.1.5  Discussion
Therefore, based on the distance measure values 
obtained, the pattern P2 is the most suitable pat-
tern, which can be characterized with the pattern Q 
(unknown). Furthermore, a comparison table showing 
the suitable pattern under various other methods are also 
presented in Table 3.

Moreover, a graphical representation of distance meas-
ure values and the most suitable pattern being P2 is evi-
dent from Fig. 11, as shown below.

5.2  Medical diagnosis
5.2.1  Description
Medical diagnosis is referred to as the process of deter-
mining the disease or medical condition, which is causing 
the patient’s illness or sickness. The process of diagnosis is 

P1 = {(x1, 1.0, 0.0), (x2, 0.6, 0.2), (x3, 0.4, 0.3)}
P2 = {(x1, 0.7, 0.1), (x2, 1.0, 0.0), (x3, 0.2, 0.6)}
P3 = {(x1, 0.8, 0.1), (x2, 0.5, 0.1), (x3, 0.9, 0.0)}

DChd,1(P1,Q) = 0.5101; DChd,1(P2,Q) = 0.2469;

DChd,1(P3,Q) = 0.5172

DChd,2(P1,Q) = 0.8527; DChd,2(P2,Q) = 0.5334;

DChd,2(P3,Q) = 0.8649

D0.2
nAChd,1(P1,Q) =0.4343; D0.2

nAChd,1(P2,Q) = 0.2302; D0.2
nAChd,1(P3,Q) = 0.5023

D0.6
nAChd,1(P1,Q) =0.1624; D0.6

nAChd,1(P2,Q) = 0.0667; D0.6
nAChd,1(P3,Q) = 0.1703

D0.2
nAChd,2(P1,Q) =0.5001; D0.2

nAChd,2(P2,Q) = 0.3426; D0.2
nAChd,2(P3,Q) = 0.5324

D0.6
nAChd,2(P1,Q) =0.1628; D0.6

nAChd,2(P2,Q) = 0.1042; D0.6
nAChd,2(P3,Q) = 0.1718.

Table 3 Results obtained under various methods for the most 
suitable pattern

Distance measures Distances between patterns Most 
suitable 
pattern(P1,Q) (P2,Q) (P3,Q)

DH 1.1000 0.3000 1.4000 P2

DE 0.5657 0.1732 0.8718 P2

DnH 0.3667 0.1000 0.4667 P2

DnE 0.3266 0.1000 0.5033 P2

D
1
BA

0.0803 0.0241 0.1983 P2

D
2
BA

0.2754 0.1000 0.3316 P2

DG 0.3667 0.1000 0.4667 P2

DYF 0.3667 0.1000 0.4667 P2

DWX 0.3250 0.1000 0.4167 P2

DJHP 0.3667 0.1000 0.4667 P2

DSF 0.1112 0.0229 0.2005 P2

DRX 0.4823 0.1439 0.5393 P2

DPY 0.4967 0.1500 0.5467 P2

DEA 0.0903 0.0687 0.1146 P2

DSB 0.4889 0.1856 0.4933 P2

DMP 0.5375 0.1551 0.5995 P2

DChd,1 0.5101 0.2469 0.5172 P2

DChd,2 0.8527 0.5334 0.8649 P2

D
0.2
nAChd,1

0.4343 0.2302 0.5023 P2

D
0.6
nAChd,1

0.1624 0.0667 0.1703 P2

D
0.2
nAChd,2

0.5001 0.3426 0.5324 P2

D
0.6
nAChd,2

0.1628 0.1042 0.1718 P2

achieved via physical examination of the patient needing 
medical attention and also, acquiring knowledge about the 
background history of diseases. Very seldom does it happen 
that the diagnosis process is very effortless or simple, but in 
most situations it is very much challenging as the informa-
tion we collect or refer to, is too much unclear or vague. In 
this context, the application of fuzzy sets and their ability 
to represent uncertain information helps us attain convinc-
ing results, and hence, we impose PFSs with the motive to 
effectively conduct the medical decision-making process. 
Precisely, the medical decision-making process comprises 
a set of diagnoses and a set of symptoms. When we rep-
resent the information about a patient with respect to the 
set of all possible symptoms by an ordered set, then based 
on the maximum similarity or least dissimilarity between 
the patient and the set of diagnoses, we determine the 
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disease causing the patient’s medical condition. Hereby, 
a numerical illustration is presented below for enhanced 
understanding.

5.2.2  Assumptions
Let us consider a set which represents the set of diagnoses,
P =

{

P1(Malaria),P2
(

Kidney Stone
)

,P3
(

Typhoid
)

,

P4

(

Dengue
)

,P5(Viral Fever)
}

 , and equivalently we con-
sider a set of symptoms,
S =

{

s1(Headache), s2
(

Cough
)

, s3(Chest Pain), s4

(Temperature), s5(Stomach Pain)
}

.

We have a patient Q , which we represent by a PFS so that 
the patient with respect to the given set of symptoms has 
the following form,
Q(Patient) = {(s1, 0.8, 0.2), (s2, 0.4, 0.4), (s3, 0.1, 0.8),

(s4, 0.5, 0.4), (s5, 0.2, 0.6)}.

Moreover, the set of diagnoses Pi (i = 1, 2, 3, 4, 5) can 
also have the following representations in the form of PFSs, 
with respect to all possible symptoms.

P1(Malaria) = {(s1, 0.7, 0.1), (s2, 0.5, 0.5), (s3, 0.2, 0.8), (s4, 0.5, 0.3), (s5, 0.3, 0.7)}
P2
(

Kidney Stone
)

= {(s1, 0.1, 0.4), (s2, 0.9, 0.0), (s3, 0.5, 0.2), (s4, 0.7, 0.1), (s5, 0.8, 0.1)}
P3
(

Typhoid
)

= {(s1, 0.2, 0.7), (s2, 1.0, 0.0), (s3, 0.6, 0.3), (s4, 0.1, 0.9), (s5, 0.3, 0.4)}
P4

(

Dengue
)

= {(s1, 0.6, 0.1), (s2, 0.7, 0.2), (s3, 0.5, 0.4), (s4, 0.2, 0.3), (s5, 0.7, 0.3)}
P5(Viral Fever) = {(s1, 0.9, 0.0), (s2, 0.1, 0.2), (s3, 0.4, 0.4), (s4, 0.1, 0.2), (s5, 0.8, 0.2)}

Fig. 11 Distance measure values between the unknown and the known patterns

5.2.3  Objective
Our target is to classify the patient Q , into one of 
the classes (diagnoses) P1 , P2 , P3 , P4 or P5 . Depend-
ing on the least value of distance obtained between 
the patient Q and any of P1 , P2 , P3 , P4 or P5 , we can 
identify the exact disease from which the patient is 
suffering.

5.2.4  Results
The evaluated distance values with respect to both our 
proposed measures are given below.

By generalized chordal distance,

DChd,1(P1,Q) = 0.0912; DChd,1(P2,Q) = 0.5321;

DChd,1(P3,Q) = 0.6036; DChd,1(P4,Q) = 0.3418;

DChd,1(P5,Q) = 0.3477
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By non-Archimedean chordal distance,

5.2.5  Discussion
From the distance values obtained, the least distance is 
found for the pair (P1,Q) . Hence, the patient Q is more 
likely to suffer from illness caused by P1 (Malaria).

Further, some of the comparison results under differ-
ent distance measures are depicted in Table 4.

A graphical representation of distance measure val-
ues is depicted in Fig.  12, as shown below. From the 
figure, we can clearly observe that the causal disease of 
the patient Q is P1.

5.3  Effective COVID‑19 medicine selection
5.3.1  Description
The COVID-19 is a novel strain, and it originates from 
a family of viruses known as ‘coronaviruses’. COVID-19 
virus was first identified within the people of Wuhan 
city, China, when they seemed to suffer from pneumonia 
of unknown cause. The virus has spikes all over its sur-
face and that is why it is named after ‘corona’ referring 
to a crown-like structure [42]. COVID-19 virus is more 
susceptible to humans and some other animals, and its 
parent family was also responsible for some highly con-
tagious and fatal diseases in the past, like that of MERS  
(Middle East Respiratory Syndrome) and SARS (Severe 
Acute Respiratory Syndrome). The virus has an alarm-
ingly high infectious rate, and it transmits mainly through 
physical contact with an infected person and also via air 

DChd,2(P1,Q) = 0.2924; DChd,2(P2,Q) = 0.7636; DChd,2(P3,Q) = 0.8522; DChd,2(P4,Q) = 0.5426;
DChd,2(P5,Q) = 0.6009

D0.5
nAChd,1(P1,Q) = 0.0323; D0.5

nAChd,1(P2,Q) = 0.2221; D0.5
nAChd,1(P3,Q) = 0.2518; D0.5

nAChd,1(P4,Q) = 0.1430;

D0.5
nAChd,1(P5,Q) = 0.1564

D0.7
nAChd,1(P1,Q) = 0.0201; D0.7

nAChd,1(P2,Q) = 0.1263; D0.7
nAChd,1(P3,Q) = 0.1456; D0.7

nAChd,1(P4,Q) = 0.0843;

D0.7
nAChd,1(P5,Q) = 0.0854

D0.5
nAChd,2(P1,Q) = 0.0506;D0.5

nAChd,2(P2,Q) = 0.2127; D0.5
nAChd,2(P3,Q) = 0.2436; D0.5

nAChd,2(P4,Q) = 0.1551;

D0.5
nAChd,2(P5,Q) = 0.1668

D0.7
nAChd,2(P1,Q) = 0.0260 ; D0.7

nAChd,2(P2,Q) = 0.1235 ; D0.7
nAChd,2(P3,Q) = 0.1462; D0.7

nAChd,2(P4,Q) = 0.0721;

D0.7
nAChd,2(P5,Q) = 0.0824

transmissions. While considering how infective this virus 
is and the number of fatalities worldwide due to it, WHO 
(World Health Organization) declared it a ‘pandemic’ 
status on March 2020 [43].

COVID-19 active patients often experience symptoms 
like shortness of breath, fatigue, loss of appetite, loss of 
taste, loss of smell, cough, fever, nausea, decreased neu-
ral response, etc. [44]. Depending upon the symptoms 
manifested by the COVID-19 active patients, they can be 
broadly classified into mild, moderate, and critical cases. 
In some severe cases, reduced ability to move, decreased 
neural response, and myalgia (or muscle pain) is often 
observed in patients. The current need of the hour is to 
provide immediate treatment to these patients so that 
they can recover as soon as possible. But unfortunately, 
in absence of strong medical evidence, only a few medical 
drugs or medicines are authorized for usage to COVID-
19 virus-infected patients. Also, some therapeutic tech-
niques are available that can suppress the symptoms 
shown by the virus and eventually cure the patient.

5.3.2  Assumptions
In our present study, we will be considering certain 
medicinal drugs, which are approved by Food and Drug 
Administration (FDA), and they can be administered to 
patients depending upon the past medical history, body’s 
immune condition, and the nature of viral symptoms 
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Table 4 Determination of the patient’s suffering illness under various methods

Distance measures Distance values between Patient Q 
suffering from 
disease(P1,Q) (P2,Q) (P3,Q) (P4,Q) (P5,Q)

DH 0.8000 2.7000 2.4000 1.9000 2.3000 P1   (Malaria)

DE 0.3317 1.1225 1.0392 0.7874 0.9539 P1  (Malaria)

DnH 0.1600 0.5400 0.4800 0.3800 0.4600 P1 (Malaria)

DnE 0.1483 0.5020 0.4648 0.3521 0.4266 P1 (Malaria)

D
1
BA

0.0070 0.1748 0.1500 0.0607 0.1000 P1 (Malaria)

D
2
BA

0.0700 0.4304 0.4276 0.2747 0.3056 P1 (Malaria)

DG 0.1000 0.5400 0.4800 0.3400 0.3800 P1 (Malaria)

DYF 0.1600 0.5400 0.4800 0.3800 0.4600 P1 (Malaria)

DWX 0.0900 0.4900 0.4550 0.3100 0.3450 P1 (Malaria)

DJHP 0.1600 0.5400 0.4800 0.3800 0.4600 P1 (Malaria)

DSF 0.0299 0.1747 0.1642 0.0784 0.1097 P1 (Malaria)

DRX 0.1295 0.5040 0.5438 0.3352 0.3552 P1 (Malaria)

DPY 0.1280 0.5440 0.5680 0.3700 0.3760 P1 (Malaria)

DEA 0.0476 0.0780 0.0688 0.1316 0.0960 P1 (Malaria)

DSB 0.1440 0.5280 0.5500 0.3460 0.3400 P1 (Malaria)

DMP 0.1343 0.7652 0.7103 0.5514 0.6309 P1 (Malaria)

DChd,1 0.0912 0.5321 0.6036 0.3418 0.3477 P1 (Malaria)

DChd,2 0.2924 0.7636 0.8522 0.5426 0.6009 P1 (Malaria)

D
0.5
nAChd,1

0.0323 0.2221 0.2518 0.1430 0.1564 P1 (Malaria)

D
0.7
nAChd,1

0.0201 0.1263 0.1456 0.0843 0.0854 P1 (Malaria)

D
0.5
nAChd,2

0.0506 0.2127 0.2436 0.1551 0.1668 P1 (Malaria)

D
0.7
nAChd,2

0.0260 0.1235 0.1462 0.0721 0.0824 P1 (Malaria)

Fig. 12 Distance measure values between the patient and the set of diseases
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exhibited by the patients. Here, we prefer a total of six 
medicines to treat the COVID-19 patients, namely Favi-
piravir ( M1 ), Hydroxychloroquine ( M2 ), Remdesivir ( M3 ), 
Lopinavir/Ritonavir with Interferon-beta ( M4 ), Tocili-
zumab ( M5 ), and Convalescent Plasma ( M6).

Favipiravir ( M1 ), an antiviral drug developed in 
Japan, can extract the genetic material and kill the virus 
responsible for causing influenza in people. It has been 
tested to show good results in patients showing mild 
symptoms of the COVID-19 virus. Hydroxychloroquine 
( M2 ), popularly known as an antimalarial drug, can 
significantly reduce the intensity of COVID-19 symp-
toms. Remdesivir ( M3 ) is a clinically tested drug, that 
can be recommended to mild cases of COVID-19 and 
patients who are under ventilation. Lopinavir/Ritonavir 
with Interferon-beta ( M4 ), although being a drug used 
primarily for the treatment of HIV(Human Immuno-
deficiency Virus)/AIDS (Acquired Immune Deficiency 
Syndrome), are also useful in curing the immune-
suppressed cases of COVID-19 infected patients. This 
drug has the ability to work smoothly without causing 
further complications to the already existing medi-
cal conditions in the patient’s body. Similarly, the drug 
Tocilizumab ( M5 ) can be given to patients showing 
intermediate symptoms of COVID-19, and those who 
are under constant ventilation. However, severe cases 
of patients who are constantly under oxygen supply 
and intaking steroids to suppress the COVID-19 symp-
toms can be given the therapy of Convalescent Plasma 
( M6 ). This treatment procedure is clinically tested to be 
effective.

The medicines which are mentioned have their own 
way of operating and might induce some side effects 
occasionally. Therefore, certain performance evalua-
tion factors are necessary to assess these medicines. 
We consider eight such parameters as criteria, namely 

Fever ( C1 ), Shortness of breath ( C2 ), Cough ( C3 ), Myal-
gia ( C4 ), Anorexia (or loss of appetite) ( C5 ), Ease breath-
ing ( C6 ), Antiviral activity ( C7 ), Coolify ( C8).

The assessment matrix depicting the set of medicines 
with respect to the set of performance evaluation fac-
tors is formulated with the help of PFSs and is shown 
in Table 5.

From the set of criteria (or performance evalua-
tion factors) under consideration, we can observe 
that C1 , C2 , C3 , C4 , C5 are cost-criteria (criteria, which 
needs to be minimized) and consequently, C6 , C7 , 
C8 are benefit-criteria (criteria, which needs to be 
maximized).

5.3.3  Objective
Our objective is to determine the optimum medi-
cine for the treatment of COVID-19 infected patients 
among M1 , M2 , M3 , M4 , M5 , and M6 . For that purpose, 
we need to construct an ideal medicine M∗ , so that 
depending upon the distance measure value between 
M∗ and the available set of medicines, the best medi-
cine can be evaluated. Thereby, the smallest distance 
measure value will correspond to the optimum medici-
nal choice for the treatment of COVID-19 infected 
patients.

The formulae for constructing an ideal medicine M∗ 
with respect to nature of the criteria is,
M∗ =

〈

M∗
C1,M

∗
C2,M

∗
C3,M

∗
C4,M

∗
C5,M

∗
C6,M

∗
C7,M

∗
C8

〉

,where, M∗
Cj =

(

max
i

µij , min
i

νij

)

 , for benefit-type 

criteria,

M∗
Cj =

(

min
i

µij , max
i

νij

)

 , for cost-type criteria, and 

i = 1, 2, 3, 4, 5, 6 ; j = 1, 2, 3, 4, 5, 6, 7, 8.

Table 5 The assessment matrix of six medicines with respect to their performance evaluation factors in terms of PFSs

Performance Index →

Medicines ↓ C1 C2 C3 C4 C5 C6 C7 C8

M1 (0.2, 0.7) (0.2, 0.6) (0.4, 0.7) (0.5, 0.8) (0.5, 0.6) (0.5, 0.7) (0.1, 0.7) (0.5, 0.8)

M2 (0.4, 0.7) (0.3, 0.9) (0.1, 0.8) (0.4, 0.7) (0.7, 0.7) (0.4, 0.6) (0.4, 0.8) (0.3, 0.6)

M3 (0.2, 0.9) (0.1, 0.8) (0.2, 0.7) (0.4, 0.4) (0.6, 0.7) (0.3, 0.8) (0.2, 0.9) (0.4, 0.7)

M4 (0.1, 0.7) (0.4, 0.7) (0.4, 0.8) (0.2, 0.5) (0.3, 0.7) (0.2, 0.8) (0.3, 0.7) (0.5, 0.5)

M5 (0.1, 0.6) (0.2, 0.9) (0.3, 0.8) (0.4, 0.6) (0.1, 0.8) (0.9, 0.2) (0.8, 0.3) (0.8, 0.4)

M6 (0.3, 0.8) (0.3, 0.6) (0.4, 0.9) (0.1, 0.8) (0.4, 0.7) (0.1, 0.9) (0.2, 0.8) (0.6, 0.7)
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5.3.4  Results
The distance measure values obtained with our pro-
posed measures are as follows.

By generalized chordal distance,

By non-Archimedean chordal distance,

DChd,1

(

M1,M
∗) = 0.3062;DChd,1

(

M2,M
∗) = 0.2912;DChd,1

(

M3,M
∗) = 0.2952;

DChd,1

(

M4,M
∗) = 0.2683;DChd,1

(

M5,M
∗) = 0.0811;DChd,1

(

M6,M
∗) = 0.2559

DChd,2

(

M1,M
∗) = 0.3280; DChd,2

(

M2,M
∗) = 0.3049;DChd,2

(

M3,M
∗) = 0.3089;

DChd,2

(

M4,M
∗) = 0.2985; DChd,2

(

M5,M
∗) = 0.1246;DChd,2

(

M6,M
∗) = 0.2757

D0.3
nAChd,1

(

M1,M
∗) = 0.8572; D0.3

nAChd,1

(

M2,M
∗) = 0.8028; D0.3

nAChd,1

(

M3,M
∗) = 0.8544;

D0.3
nAChd,1

(

M4,M
∗) = 0.8002; D0.3

nAChd,1

(

M5,M
∗) = 0.2824; D0.3

nAChd,1

(

M6,M
∗) = 0.7647

D0.8
nAChd,1

(

M1,M
∗) = 0.2942; D0.8

nAChd,1

(

M2,M
∗) = 0.2747; D0.8

nAChd,1

(

M3,M
∗) = 0.2902;

D0.8
nAChd,1

(

M4,M
∗) = 0.2624; D0.8

nAChd,1

(

M5,M
∗) = 0.0748; D0.8

nAChd,1

(

M6,M
∗) = 0.2326

D0.3
nAChd,2

(

M1,M
∗) = 0.6470; D0.3

nAChd,2

(

M2,M
∗) = 0.6123; D0.3

nAChd,2

(

M3,M
∗) = 0.6379;

D0.3
nAChd,2

(

M4,M
∗) = 0.5931; D0.3

nAChd,2

(

M5,M
∗) = 0.3246; D0.3

nAChd,2

(

M6,M
∗) = 0.5775

D0.8
nAChd,2

(

M1,M
∗) = 0.4128; D0.8

nAChd,2

(

M2,M
∗) = 0.3978; D0.8

nAChd,2

(

M3,M
∗) = 0.4015;

D0.8
nAChd,2

(

M4,M
∗) = 0.3942; D0.8

nAChd,2

(

M5,M
∗) = 0.1671; D0.8

nAChd,2

(

M6,M
∗) = 0.3749

5.4  Sensitivity analysis
The two newly proposed distances in this article, viz. gen-
eralized chordal distance and non-Archimedean chordal 
distance involve two input parameters ‘ p ’ and ‘ � ’ in their 

5.3.5  Discussion
Here, we observe that the smallest distance value is 
obtained for the pair (M5,M

∗) , which implies that the 
medicine M5 (Tocilizumab) is suited best for treatment of 
COVID-19. The recovery rate of Tocilizumab is relatively 
better than the others if administered at the same time.

The distance measure values calculated under differ-
ent distance methods are presented in Table 6.

Furthermore, a graphical representation of distance 
measure values and the most optimum medicine being 
M5 is evident from Fig. 13, as shown below.

expressions. And with respect to different values of these 
input parameters, Eqs.  (23) and (32) undergo different 
transformations. Therefore, it is necessary to analyze the 
influence of these changing parameters p and � on the 
final ranking yielded under different application scenar-
ios. For different values of these input parameters, if the 
final ranking order remains unchanged, only then we can 
establish the validity of the results. Therefore, it becomes 
an integral component of any multicriteria decision-
making problem to conduct a sensitivity analysis as such 
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Table 6 Determination of the best medicine for the treatment of COVID-19

Distance measures Distance values between Best medicine

(M1,M
∗) (M2,M

∗) (M3,M
∗) (M4,M

∗) (M5,M
∗) (M6,M

∗)

5DH 3.1986 2.9826 3.1060 2.8737 0.9014 2.7033 M5 (Tocili-
zumab)

DE 1.0726 1.0525 1.1224 1.0175 0.4675 1.1000 M5 (Tocili-
zumab)

DnH 0.3998 0.3728 0.3884 0.3592 0.1127 0.3379 M5 (Tocili-
zumab)

DnE 0.3792 0.3721 0.3968 0.3597 0.1653 0.3889 M5 (Tocili-
zumab)

D
1
BA

0.0776 0.0677 0.0790 0.0646 0.0136 0.0857 M5 (Tocili-
zumab)

D
2
BA

0.2884 0.2546 0.2942 0.2626 0.0616 0.2750 M5 (Tocili-
zumab)

DG 0.4000 0.3750 0.3625 0.3500 0.1125 0.3500 M5 (Tocili-
zumab)

DYF 0.4139 0.3834 0.3786 0.3603 0.1212 0.3522 M5 (Tocili-
zumab)

DWX 0.3531 0.3250 0.3344 0.3125 0.0938 0.3188 M5 (Tocili-
zumab)

DJHP 0.4069 0.3781 0.3834 0.3598 0.1169 0.3450 M5 (Tocili-
zumab)

DSF 0.1092 0.1135 0.0962 0.1178 0.0910 0.1635 M5 (Tocili-
zumab)

DRX 0.3955 0.3765 0.4287 0.3908 0.1884 0.4006 M5 (Tocili-
zumab)

DPY 0.4100 0.3687 0.4087 0.3825 0.1162 0.3312 M5 (Tocili-
zumab)

DEA 0.0241 0.0210 0.0218 0.0108 0.0005 0.0116 M5 (Tocili-
zumab)

DSB 0.4067 0.3721 0.4179 0.4025 0.1379 0.3467 M5 (Tocili-
zumab)

DMP 0.4410 0.3850 0.4506 0.4229 0.1156 0.3773 M5 (Tocili-
zumab)

DChd,1 0.3062 0.2912 0.2952 0.2683 0.0811 0.2559 M5 (Tocili-
zumab)

DChd,2 0.3280 0.3049 0.3089 0.2985 0.1246 0.2757 M5 (Tocili-
zumab)

D
0.3
nAChd,1

0.8572 0.8028 0.8544 0.8002 0.2824 0.7647 M5 (Tocili-
zumab)

D
0.8
nAChd,1

0.2942 0.2747 0.2902 0.2624 0.0748 0.2326 M5 (Tocili-
zumab)

D
0.3
nAChd,2

0.6470 0.6123 0.6379 0.5931 0.3246 0.5775 M5 (Tocili-
zumab)

D
0.8
nAChd,2

0.4128 0.3978 0.4015 0.3942 0.1671 0.3749 M5 (Tocili-
zumab)
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to get a clear idea of the sensitiveness of the proposed 
model towards the involved parameters.

In our present study, we have demonstrated three suit-
able applications of our proposed measures in problems 
of pattern recognition, medical diagnosis, and medi-
cine selection for COVID-19, respectively. In each of 
these case studies, we have considered some particular 
values of these input parameters for our proposed defi-
nitions, such as, p = 1, 2 ; � = 0.2, 0.6 (pattern recog-
nition), p = 1, 2 ; � = 0.5, 0.7 (medical diagnosis), and 
p = 1, 2 ; � = 0.3, 0.8 (medicine selection). We have then 
evaluated the ranking orders of the available alternatives. 
However, in this section, in order to examine the effect of 
the parameter � on the final ranking order of the alterna-
tives, we assume several values of � from 0 to 1. While on 
the other hand, there is no such restriction on the value 
of the parameter p.

In Tables  7, 8, and 9, as shown, we assign the val-
ues of p as p = 1, 2, 5, 10, 50 , the values of � as 
� = 0, 0.4, 0.6, 0.8, 1 , and obtain the preference ranking 
of the available alternatives. We can observe that the 
ranking order obtained for different values of the input 
parameters is coherent with the initial ranking order. It 

implies that the ranking results are reliable and that the 
changes in the input parameter values are not capable 
of changing the best option and the initial credible rank. 
Further, we also observe that, for a particular value of p , 
as the value of the parameter � increases, the distance 
measure value decreases. This implies that the random-
ness or farness decreases and equivalently the degree of 
likeliness increases, which may be referred to as an opti-
mistic decision approach. While for smaller values of � , 
we obtain a subsequently higher value of distance meas-
ure, which can be regarded as a decision of pessimism 
among the decision-makers. Thus, our approach provides 
extreme flexibility to the decision-makers to choose the 
values of the input parameters as per their requirement 
and practicality.

6  Concluding remarks
Distance measure may be employed as a quantitative 
tool to measure the dissimilarity in order to differenti-
ate between two PFSs. PFSs are special type of sets with 
nonlinear characteristics. Therefore, a sincere attempt 
has been made to construct two nonlinear distances for 
PFSs, since it is a very much daunting task to construct 

Fig. 13 Distance measure values between the ideal medicine and the available set of medicines
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the concept of a single “universal distance” for PFSs 
owing to their complex arithmetic operations over IFSs. 
To validate the veracity of the newly constructed dis-
tances, twelve different sets of IFNs are considered where 
the proficiency of our proposed measures are established 
by means of a meticulous comparative analysis. Moreo-
ver, to demonstrate the efficacy of our newly constructed 
distances, empirical applications from the field of pattern 
recognition, medical diagnosis, and optimum medicine 
selection have been considered. From the studies con-
ducted it can be ascertained that the proposed measures 

have a valid structural formulation and are capable 
of achieving the targets of real-life decision-making 
problems.

The contributions and originality of our work can be 
pinned down to the points:

• Proposed two nonlinear distances to measure the 
distance between PFSs.

• Proposed measures are shown to be efficient over 
most of the established distance measures and hence 
their significance.

Table 7 Effect of the parameters p and � on the ranking order for the pattern recognition problem

Values of p and � Generalized chordal distance Non‑Archimedean 
chordal distance

(P1,Q) (P2,Q) (P3,Q) (P1,Q) (P2,Q) (P3,Q)

p = 1 � = 0 0.5101 0.2469 0.5172 0.5162 0.3976 0.5312

� = 0.4 0.3605 0.2141 0.3722

� = 0.6 0.1624 0.0667 0.1703

� = 0.8 0.1422 0.0472 0.1510

� = 1 0.1187 0.0266 0.1275

Ranking P2 < P1 < P3 P2 < P1 < P3

p = 2 � = 0 0.8527 0.5334 0.8649 0.5374 0.4272 0.5431

� = 0.4 0.4642 0.2973 0.4723

� = 0.6 0.1628 0.1042 0.1718

� = 0.8 0.1478 0.0529 0.1619

� = 1 0.1214 0.0482 0.1362

Ranking P2 < P1 < P3 P2 < P1 < P3

p = 5 � = 0 0.8755 0.5773 0.8799 0.5441 0.4363 0.5662

� = 0.4 0.4770 0.3009 0.4846

� = 0.6 0.1739 0.1124 0.1826

� = 0.8 0.1581 0.0606 0.1685

� = 1 0.1313 0.0584 0.1445

Ranking P2 < P1 < P3 P2 < P1 < P3

p = 10 � = 0 0.8932 0.6077 0.9038 0.5526 0.4423 0.5692

� = 0.4 0.4876 0.3135 0.4962

� = 0.6 0.1861 0.1352 0.1947

� = 0.8 0.1621 0.0771 0.1742

� = 1 0.1444 0.0609 0.1589

Ranking P2 < P1 < P3 P2 < P1 < P3

p = 50 � = 0 0.9210 0.6679 0.9442 0.5692 0.4649 0.5773

� = 0.4 0.4946 0.3215 0.5016

� = 0.6 0.1928 0.1497 0.2040

� = 0.8 0.1701 0.0808 0.1777

� = 1 0.1470 0.0737 0.1612

Ranking P2 < P1 < P3 P2 < P1 < P3
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• Proposed measures are capable of handling appli-
cation-oriented problems from the field of pattern 
recognition, medical diagnosis, COVID-19 led sce-
narios, etc.

The advantages of our article can be stated as:

• Proposed measures are capable of handling situations 
when classical set theory, fuzzy set theory, paracon-
sistent set theory, IFSs theory fails to be applied.

• Proposed measures are capable of handling both lin-
ear as well as nonlinear data or information.

• Proposed measures are capable of handling incom-
plete information and also indeterminate or incon-
sistent information as well.

• Proposed measures have more suitable engineering 
and scientific applications.

• Moreover, PFSs theory has not been previously 
explored in this direction, which is our motivation 
and hence the novelty of this work.

In the future direction, the concept of such nonlinear 
distances can be further extended to some other special 
datasets having applications in various other fields. Fur-
ther, an attempt shall be made to construct some efficient 
aggregation operators for tackling various decision-mak-
ing problems with multiple criteria.

Table 8 Effect of the parameters p and � on the ranking order for the medical diagnosis problem

Values of p and � Generalized Chordal Distance Non‑Archimedean 
Chordal Distance

(P1,Q) (P2,Q) (P3,Q) (P4,Q) (P5,Q) (P1,Q) (P2,Q) (P3,Q) (P4,Q) (P5,Q)

p = 1 � = 0 0.0912 0.5321 0.6036 0.3418 0.3477 0.1950 0.6602 0.6821 0.4408 0.5606

� = 0.4 0.1502 0.6345 0.6404 0.4166 0.5105

� = 0.6 0.0921 0.3973 0.4051 0.2677 0.2954

� = 0.8 0.0601 0.2668 0.2724 0.1740 0.1904

� = 1 0.0371 0.1738 0.1801 0.1115 0.1238

Ranking P1 < P4 < P5 < P2 < P3 P1 < P4 < P5 < P2 < P3

p = 2 � = 0 0.2924 0.7636 0.8522 0.5426 0.6009 0.2943 0.7256 0.7450 0.5002 0.6309

� = 0.4 0.2713 0.7030 0.7110 0.4812 0.5801

� = 0.6 0.1567 0.6404 0.6654 0.4463 0.4902

� = 0.8 0.1001 0.4325 0.4526 0.2846 0.3131

� = 1 0.0622 0.2813 0.3007 0.1821 0.2018

Ranking P1 < P4 < P5 < P2 < P3 P1 < P4 < P5 < P2 < P3

p = 5 � = 0 0.3113 0.7785 0.8694 0.5649 0.6216 0.4601 0.9328 0.9855 0.7031 0.7530

� = 0.4 0.4244 0.8840 0.9003 0.7865 0.7308

� = 0.6 0.2175 0.6807 0.7215 0.5602 0.5976

� = 0.8 0.1404 0.6506 0.6955 0.4438 0.5052

� = 1 0.0901 0.4202 0.4618 0.2834 0.3228

Ranking P1 < P4 < P5 < P2 < P3 P1 < P4 < P5 < P2 < P3

p = 10 � = 0 0.3258 0.7813 0.8698 0.5682 0.6289 0.5322 0.9416 0.9601 0.7842 0.8001

� = 0.4 0.5103 0.8621 0.9315 0.6501 0.7751

� = 0.6 0.2514 0.8409 0.9168 0.5952 0.6925

� = 0.8 0.1626 0.8024 0.8908 0.5620 0.6645

� = 1 0.1036 0.5137 0.5872 0.3601 0.4244

Ranking P1 < P4 < P5 < P2 < P3 P1 < P4 < P5 < P2 < P3

p = 50 � = 0 0.3474 0.8085 0.8767 0.5727 0.6378 0.6205 0.8178 0.8520 0.6575 0.7063

� = 0.4 0.5974 0.7924 0.8367 0.6220 0.7605

� = 0.6 0.3109 0.7306 0.8134 0.5109 0.6025

� = 0.8 0.2041 0.6655 0.7804 0.4838 0.5853

� = 1 0.1308 0.6510 0.7673 0.4644 0.5578

Ranking P1 < P4 < P5 < P2 < P3 P1 < P4 < P5 < P2 < P3
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Table 9 Effect of the parameters p and � on the ranking order for the medicine selection problem

Values of p and � Generalized chordal distance Non‑Archimedean chordal distance

(M1,M
∗) (M2,M

∗) (M3,M
∗) (M4,M

∗) (M5,M
∗) (M6,M

∗) (M1,M
∗) (M2,M

∗) (M3,M
∗) (M4,M

∗) (M5,M
∗) (M6,M

∗)

p = 1 � = 0 0.3062 0.2912 0.2952 0.2683 0.0811 0.2559 0.9063 0.8209 0.8447 0.7830 0.6962 0.7254

� = 0.4 0.7062 0.6700 0.6998 0.6202 0.2142 0.6175

� = 0.6 0.4620 0.4342 0.4391 0.3999 0.1301 0.3726

� = 0.8 0.2942 0.2747 0.2902 0.2624 0.0748 0.2326

� = 1 0.1999 0.1864 0.1941 0.1796 0.0563 0.1690

Ranking M5 < M6 < M4 < M2 < M3 < M1 M5 < M6 < M4 < M2 < M3 < M1

p = 2 � = 0 0.3280 0.3049 0.3089 0.2985 0.1246 0.2757 0.9113 0.8261 0.8516 0.7848 0.7278 0.7349

� = 0.4 0.7171 0.6836 0.7025 0.6219 0.4831 0.6197

� = 0.6 0.4798 0.4431 0.4479 0.4080 0.2695 0.3729

� = 0.8 0.4128 0.3978 0.4015 0.3942 0.1671 0.3749

� = 1 0.2006 0.1882 0.1950 0.1831 0.1169 0.1744

Ranking M5 < M6 < M4 < M2 < M3 < M1 M5 < M6 < M4 < M2 < M3 < M1

p = 5 � = 0 0.3303 0.3180 0.3294 0.3099 0.1470 0.2958 0.9137 0.8338 0.8690 0.7936 0.7587 0.7609

� = 0.4 0.7256 0.6934 0.7104 0.6297 0.5643 0.6272

� = 0.6 0.4868 0.4455 0.4537 0.4087 0.2888 0.3838
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� = 0.8 0.4269 0.4152 0.4273 0.4100 0.2145 0.3989

� = 1 0.2120 0.1976 0.1963 0.1897 0.1672 0.1841

Ranking M5 < M6 < M4 < M2 < M3 < M1 M5 < M6 < M4 < M2 < M3 < M1

p = 50 � = 0 0.3809 0.3539 0.3658 0.3339 0.1940 0.3222 0.9557 0.8989 0.9172 0.8567 0.8300 0.8448

� = 0.4 0.7519 0.7196 0.7456 0.6598 0.6198 0.6346
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Ranking M5 < M6 < M4 < M2 < M3 < M1 M5 < M6 < M4 < M2 < M3 < M1
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