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Abstract 

Background  Cardiovascular diseases (CVD) are the primary medical manifestation of metabolic syndrome (MetS). 
Hypoxia is also involved in the pathogenesis of CVD. Since dietary intervention significantly improved the physiologi-
cal condition in MetS, the development of functional food to complement conventional medical therapy is essential. 
Among several standard consumable products, decaffeinated green tea (DGT) and decaffeinated green coffee (DGC) 
have excellent activity in managing MetS-induced CVD. However, the mechanism underlying their protective activity 
is poorly understood. This study aimed to understand the cardio-protective activity of DGT, DGC, and a combination 
of the two (DGT + DGC) in managing MetS-induced CVD in vivo and in silico.

Results  The MetS condition led to the upregulation of Cardiotrophin-1 (CT-1), Signal Transducer and Activator of Tran-
scription 3 (STAT3), GATA binding protein 4 (GATA4), and B-type Natriuretic Peptide (BNP) beyond the levels of the normal 
(N) group, while administration of DGT, DGC, and DGT + DGC significantly decreased the expression of those genes 
compared with the levels of the N group (p < 0.05). The computational analysis showed that the protective role of 
DGT, DGC, and DGT + DGC might be achieved through AKT1 inhibition by several bioactive components present in 
DGT and DGC. The analysis also defined the improvement in cardio-protective activity by combining DGT and DGC.

Conclusions  The administration of DGT, DGC, or DGT + DGC repaired cardiac dysfunction parameters through indi-
rect regulation of the CT-1 signaling axis by inhibiting AKT1 activity.
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1 � Background
Changes in lifestyle, nutrition, and social environments 
in modern society positively correlate with the global 
escalation of the prevalence obesity, insulin resistance 
(IR), diabetes, dyslipidemia, and hypertension [1]. The 
occurrence of those abnormalities is generally known 
as metabolic syndrome (MetS) [1]. Additionally, devel-
opment of cardiovascular disease (CVD) in individuals 
with MetS indicates a poor prognoses compared to the 
individual without it [2]. The combination among sev-
eral aforementioned features of MetS increases the risk 
and severity of a broad spectrum of CVD [3].

Dysregulation of metabolic activity associated with 
glucose and lipid metabolism is the primary causa-
tive agent in the development of MetS. A recent study 
revealed the overexpression of cardiotrophin-1 (CT-1) 
to be linked to MetS-induced CVD [4, 5]. CT-1 belongs 
to the interleukin-6 (IL-6) cytokine family that has a 
crucial role in glucose and lipid metabolism, obesity, IR 
pathogenesis, and, importantly, cardiomyopathy patho-
genesis [4, 6, 7]. CT-1 induces signal transduction via 
the membrane glycoprotein 130 (gp130) receptor sys-
tem [8]. Activation of gp130 induces the expression of 
the signal transducer and activator of transcription 3 
(STAT3) [9]. Then, STAT3 expression upregulates the 
transcription factor GATA4 [10] and leads to the tran-
scription of the B-type natriuretic peptide (BNP) gene 
[11]. Interestingly, the dysregulated level of BNP in the 
serum was an independent predictor for CVD mortality 
and might serve as a target for medium to long-term 
preventive therapies [12]. Thus, the inter-dependent 
pathway of those genes provides an opportunity to reg-
ulate MetS-induced CVD pathophysiology.

Lifestyle modification, particularly dietary interven-
tion, plays a significant role in physiological improve-
ment under MetS conditions beyond conventional 
medical therapy [13]. Among several available natu-
ral products, Decaffeinated Green Tea (DGT) and 
Decaffeinated Green Coffee (DGC) have the potential 
bioactivity in maintaining physiological homeosta-
sis. DGT and DGC have been shown to individually 
improve the physiological balance in MetS conditions 
and display cardio-protective effects [14–16]. In addi-
tion, a combination of DGT + DGC was also reported 
to have physiological benefits by ameliorating MetS 
through regulating lipid and glucose metabolism, IR, 
and inflammation [17–20]. Although the cardio-pro-
tective effect of the DGT + DGC administration has 
been elucidated [19, 21], the biomechanism underlying 
it remains unknown. Therefore, this study will explore 
the protective effect of DGT, DGC, and DGT + DGC 
against cardiomyopathy in vivo and in silico.

2 � Methods
2.1 � Extraction of DGC and DGT
The  DGC and DGT were extracted according to the 
protocol described by Rohman et  al. [17]. The coffee 
bean was obtained from the Dampit coffee plantation 
in Malang, Indonesia (800 MAMSL). Coffea canephora 
var. robusta was light roasted on an automatic cof-
fee roaster (N500i) at 180–200  °C until the first crack. 
Afterwards, the coffee bean was grinded using a coffee 
grinder and macerated with ethanol 95% to produce 
the crude extract. A filter cloth was used to separate 
the liquid phase from the solid phase of the crude 
extract. Finally, remaining solvent in the liquid phase 
was rotary evaporated at 40  °C (RV10 autoV, IKA). 
Column chromatography was performed using silica 
gel C18 17% (SiliaBond® C18, SiliCycle Inc) as a static 
phase to obtain the DGC. Then, the filtered product 
was evaporated.

The green tea was obtained from Sukawana green tea 
plantation, Bandung, Indonesia (1550 MAMSL). A total 
of 500 g of green tea leaf were dried in a cabinet dryer 
at 50  °C for eight hours to produce green tea with an 
8–10% water content, which was then quantified using 
gravimetric analysis. The dried green tea leaves then 
grinded and boiled for 30  min at 80  °C. A filter cloth 
was applied to separate the liquid and solid phase of 
macerated green tea leaves. The liquid phase was then 
concentrated using a rotary evaporator at 40  °C. The 
column chromatography was used to obtain the bioac-
tive compounds (SiliaBond® C18, SiliCycle Inc.), and 
the obtained yield was then evaporated to obtain the 
DGT.

2.2 � Animal model
The animal model for MetS was developed according to 
a previously described method [18, 22]. Twenty-five male 
Sprague–Dawley rats aged 2–3 months old with an aver-
age weight of 250–300 g were randomly assigned into the 
following five groups: Normal (N), MetS, DGC adminis-
tration, DGT administration, and DGT + DGC adminis-
tration (n = 5 per group). MetS rats were fed a high-fat 
and high-sucrose (HFHS) diet for eight weeks with the 
injection of STZ (30  mg/Kg BW) intraperitoneally in 
the second week during the HFHS feeding, while the N 
rats were fed a regular diet. The DGC group was orally 
administered a single GC extract at a dose of 200  mg/
Kg BW, the DGT group with a single DGT extract at a 
dose of 300 mg/Kg BW, and the DGC + DGT group with 
DGC + DGT extract at a dose of 200 and 300 mg/Kg BW, 
respectively. All treatments were given orally using a 
feeding tube every afternoon (03.00–05.00 PM) for nine 
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weeks. At the end of the treatment, the rats were eutha-
nized with diethyl ether, and the hearts were harvested 
and preserved in an RNA buffer solution to keep RNA 
integrity.

2.3 � RNA isolation, cDNA transcription, and cDNA 
amplification

According to the manufacturer’s instructions, RNA was 
isolated from cardiac tissue using the TRIzol® reagent 
(Intron Biotechnology, South Korea). RNA was reverse 
transcribed into cDNA using a ReverTra Ace-α Kit (Ref 
FSK-101, Toyobo, Japan). The relative expression of CT-1, 
STAT3, BNP, and GATA4 was analyzed through touch-
down PCR amplification using a LightCycler 96 sys-
tem (Takara, Japan). β-actin (Actb) was selected as the 
standard expression measurement for each gene. The 
primer sequences for each analyzed gene are described 
in Table 1. The amplification program was set as follows: 
94 °C for 10 s, 57 °C for 30 s, 55 °C for 60 s, and 52 °C for 
10 min. The PCR program was run for 36 cycles. Agarose 
gel electrophoresis was performed to analyze the ampli-
fied cDNA. The density of the visualized bands was then 
quantified using ImageJ software to determine the rela-
tive expression of the target genes.

2.4 � Data analysis
The expression of each target gene was calculated relative 
to β-actin’s expression. The data were then statistically 
analyzed using one-way ANOVA and Duncan’s post hoc 
test. The data were determined as significantly different if 
p < 0.05.

2.5 � Compound and protein structure retrieval
The compounds’ three-dimensional (3D) structures 
were downloaded from the PubChem database. Cafestol, 
chlorogenic acid, citric acid, kahweol, quinic acid, and 
trigonelline were selected as the bioactive compounds 
from DGC [23], and epicatechin (EC), epicatechin gal-
late (ECG), epigallocatechin (EGC), and epigallocatechin 
gallate (EGCG) were determined as the main bioactive 

compounds of DGT [24]. Meanwhile, the 3D structure 
of proteins was retrieved from the RCSB protein data 
bank (PDB) with the following PDB identity (ID): AKT1 
(3O96) and HIF-1ɑ (4H6J). Before the docking process, 
the protein structures were prepared by deleting the 
water molecules, unwanted protein chains, and pre-
attached ligands.

2.6 � Molecular docking
AutoDock Vina [25] was employed for the docking pro-
cess in the PyRx 0.8 user interface [26]. The compounds’ 
structures were inserted, their energy minimized, and 
converted to AutoDock Vina’s ligand through the Open-
Babel plugin [27]. The proteins, as well as the macromol-
ecules, were set as rigid entities, while the ligands were 
set as flexible molecules. As per previous studies, the 
docking was specified at the inhibitor-binding site of 
HIF-1ɑ and AKT1 [28, 29]. The binding pose from the 
compound with a binding affinity lower than − 7.0  kcal/
mol was selected for residues-ligand interaction using the 
Biovia Discovery Studio 2019 and molecular dynamics 
analysis [30, 31].

2.7 � Molecular dynamics
Molecular dynamics was analyzed using the YASARA 
20.12.24 program [32] under the AMBER14 forcefield 
[33]. The environment setting for the simulations was as 
follows: 310 K for temperature, 1 bar for pressure, 0.997 
for water density, 0.9% for NaCl concentration, pH 7.4, 
and cubic simulation box. The structural flexibility and 
integrity were analyzed using the root-mean-square devi-
ation (RMSD) of the atomic positions and the root-mean-
square fluctuations (RMSF) of the residue positions. The 
free-binding energy was also calculated using molecular 
mechanics Poisson–Boltzmann surface area equations 
[34] in YASARA binding energy macros.

3 � Results
3.1 � Effect of DGC, DGT, and DGC + DGT Administration on 

CT‑1, STAT3, BNP, and GATA4
The MetS group consistently displayed a higher expres-
sion of all experimental parameters, i.e., CT-1, STAT3, 
BNP, and GATA4, compared with the N group. The 
administration of DGT or DGC alone significantly 
decreased the expression of CT-1, and the combination 
of the two extracts rescued the expression to the levels 
of the N group (Fig. 1A). The same event was observed 
for STAT3 expression, where the administration of DGT, 
DGC, and DGT + DGC rescued the condition by sup-
pressing the expression as well as the normal condition 
(Fig. 1B). The protective effect of the treatment was also 
shown by the alleviation of BNP expression compared 
with that in the MetS group (p < 0.05). Interestingly, the 

Table 1  The primer sequence for each target gene in this study

Gene Primer sequence (5′ to 3′)

Forward Reverse

CT-1 GGT​GTG​TTG​AAG​GAA​ACA​GG GTT​GCT​GCA​CAT​ATT​CCT​CC

STAT3 GCA​GCA​ACT​CAG​ATC​ACT​GAA​ GCA​CCG​AAA​AGG​CTG​TTA​C

BNP CTG​CTG​GAG​CTG​ATA​AGA​GAA​ CGG​TCT​ATC​TTC​TGC​CCA​AA

GATA4 CCC​CAA​TCT​CGA​TAT​GTT​TGATG​ TGG​TTT​GAA​TCC​CCT​CCT​TC

β-actin TGA​GAG​GGA​AAT​CGT​GCG​TGA​
CAT​

ACC​GCT​CAT​TGC​CGA​TAG​
TGA​TGA​
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administration of DGT alone was statistically similar 
to that in the N group (Fig.  1C). Furthermore, down-
regulation of GATA4 was also observed in all treated 
groups, with the DGC + DGT group performing better 
to overwhelm the expression of GATA4 as the N group 
than DGT or DGC alone (Fig.  1D). In summary, the 
administration of DGT, DGC, or DGT + DGC mark-
edly decreased the expression of the selected parameters 
below the MetS group.

3.2 � Interaction of compounds in DGT and DGC with HIF‑1ɑ 
and AKT1

The compounds from DGT and DGC have a greater 
affinity for AKT1 than for HIF-1ɑ. Cafestol achieved the 
lowest binding energy to HIF-1ɑ, whereas ECG posed 
a minor energy requirement to bind to AKT1. Further-
more, not all analyzed compounds showed a low binding 
energy with AKT1. Only cafestol, chlorogenic acid, kah-
weol, EC, ECG, EGC, and EGCG showed small binding 
energy (lower than −  7.0  kcal/mol) to AKT1. In addi-
tion, cafestol, ECG, and EGCG displayed similar binding 
energies with the Inhibitor-8, a known inhibitor of AKT1 
(Table 2). Therefore, the compounds with binding energy 
smaller than − 7.0 kcal/mol were used for residue bind-
ing analysis.

Compounds with low binding energy exhibited a more 
significant number of hydrogen and hydrophobic bonds. 
From the residues-binding point of view, cafestol had 
the most similar bounded residues with the Inhibitor-8. 
However, cafestol had fewer hydrogen bonds than chlo-
rogenic acid, EC, ECG, and EGCG. As displayed by the 
binding energy value, Inhibitor-8 had a more complex 

Fig. 1  The expression of CT-1 (A), STAT3 (B), BNP (C), and GATA4 (D) in each treatment group. Different notation describes a significant difference 
according to Duncan post-hoc test

Table 2  The binding energy of compounds from GT and GC 
from the molecular docking analysis

Compound Binding energy (kcal/mol)

HIF1A AKT1

Cafestol − 5.0 − 10.1

Chlorogenic acid − 4.5 − 9.3

Citric acid − 3.2 − 5.6

Kahweol − 4.9 − 9.8

Quinic acid − 3.5 − 6.2

Trigonelline − 3.4 − 5.4

EC − 4.5 − 9.1

ECG − 3.9 − 10.9

EGC − 4.3 − 9.0

EGCG​ − 4.2 − 10.7

Inhibitor-AKT – − 14.1



Page 5 of 8Rohman et al. Beni-Suef Univ J Basic Appl Sci           (2023) 12:53 	

binding interaction with several hydrogen bonds, hydro-
phobic bonds, and van der Waals interaction. EC and 
EGCG was the compound with the more number of 
hydrogen bonds (Fig.  2). Those compounds were then 
directed for molecular dynamics simulation to assess the 
structural and interaction stability in the physiological 
milieu.

The value of the RMSD atom backbone described 
that kahweol affected the structural integrity of AKT1, 
depicted by the high fluctuation of the RMSD value. 
Other compounds did not affect the structural integ-
rity of AKT1’s structure, although several compounds 
showed some escalation at the end of the simulation, 
such as chlorogenic acid and EGC (Fig.  3A). The com-
pounds’ structure was also stable during the simula-
tion, even though chlorogenic acid displayed the highest 
RMSD value (Fig. 3B). Furthermore, the RMSD of ligand 

movement also visualized a stable interaction between 
the compounds and the AKT1 structure. Kahweol and 
EC showed similar stability to Inhibitor-8 (Fig. 3C). This 
observation was also supported by the number of hydro-
gen bonds in the complexes, which had a similar event 
without any significant difference (Fig. 3D). However, the 
RMSF value described the instability of some residues of 
AKT1, including VAL45, GLN113, ARG200, GLU298, 
and VAL429. Those instabilities mostly occurred by chlo-
rogenic acid binding to the AKT1 (Fig. 3E). Nevertheless, 
those instabilities may not affect the interaction of the 
compounds with the AKT1 according to the free-binding 
energy calculation. No apparent difference was observed 
among the simulated complexes, and each complex 
showed stable binding without any differences in their 
binding energy (Fig. 3F).

Fig. 2  The residues and interaction chemistry that involved in the protein–ligand binding of selected compounds from GT and GC with AKT1
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4 � Discussion
CVD has become a common medical manifestation 
of MetS. Several biomarkers have been discovered to 
detect cardiac dysfunction, and BNP has become an 
accurate predictor [35]. Increased level of BNP provides 
a robust prediction of cardiac dysfunction [36, 37]. This 
study confirmed that event where the MetS group had 
higher BNP levels than the N group. Fortunately, the 
administration of DGC, DGT, and a combination of the 
two could restore the expression of BNP near the N con-
dition (Fig. 1C). Thus, the DGT + DGC could contribute 
to cardio-protective effect under MetS conditions.

Since the transcription factor GATA4 regulates BNP 
expression [11], this study also measured its expression. 
In line with the BNP result, MetS increased the expres-
sion of GATA4, and the administration of DGT, DGC, 
particularly DGT + DGC, downregulated GATA4’s 
expression (Fig.  1D). Therefore, the GATA4 expres-
sion regulator was also measured to comprehend the 
upstream target of the current treatment. Previously, 
GATA4 expression was upregulated by STAT3 expression. 
[10] Thus, STAT3 was also evaluated to confirm the regu-
latory mechanism of the treatment. During the GATA4 
regulation, STAT3 is also repressed upon treatment as an 
N condition (Fig. 1B). CT-1 expression was also evaluated 
to better understand the modulatory mechanism of the 

treatment of the MetS condition, mainly related to CVD. 
As previously described, CT-1 activates the STAT3 upon 
binding to gp130. Thus, the upregulation of CT-1 expres-
sion may influence STAT3’s expression.

Interestingly, the results showed the same manner of 
lower expression of CT-1 in the N group than in MetS. 
The DGC and DGT treatment diminished CT-1 expres-
sion, with DGT + DGC administration performing bet-
ter in reducing CT-1 expression in the N group (Fig. 1A). 
According to the data, the expression of BNP in MetS 
was CT-1-dependent. However, the downregulation of 
CT-1 post-treatment still needs further explanation to 
clearly define the cardio-protective effect DGT, DGC, 
and DGT + DGC.

A previous study demonstrated that the increasing level 
of CT-1 induced by hypoxic stress suggests the involve-
ment of HIF-1ɑ in CVD events [38]. This condition was 
confirmed by a previous study that reported that HIF-1ɑ 
dependently regulated CT-1 expression at the transcrip-
tional level [39]. Unfortunately, the computational analy-
sis failed to define the cardio-protective activity through 
the HIF-1ɑ axis. All compounds from DGT and DGC 
failed to bind with HIF-1ɑ to perform their inhibitory 
activity (Table 2). Thus, another upstream target may be 
involved in the modulatory activity of the above-men-
tioned parameters.

Fig. 3  The structural dynamics of protein, ligand, and the interaction among them. The RMSD of atom backbone (A), the RMSD of ligand structure 
(B), the RMSD of ligand movement (C), the average number of hydrogen bond (D), the RMSF of each residue of AKT1 (E), and the free-binding 
energy of each complex (F)
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The regulation of hypoxia can be achieved through 
indirect regulation of HIF-1ɑ. The resistance to hypoxia 
is also achieved through AKT1 signaling [40]. AKT1 dic-
tates the expression of HIF-1ɑ, and inhibition of AKT1 
resulted in the alleviation of HIF-1ɑ expression [41]. 
Hence, AKT1 may encompass the regulatory mecha-
nism of DGT, DGC, and DGT + DGC treatment. Fortui-
tously, most of the compounds from GT and GC could 
interact with AKT1 at its inhibitory site. Cafestol, chlo-
rogenic acid, kahweol, EC, ECG, EGC, and EGCG bound 
to AKT1 near the Inhibitor-8, a known inhibitor for 
AKT1 (Table 2, Fig. 2). Molecular dynamics simulations 
also complement the evidence by showing stable bind-
ing of those compounds to perform an inhibitory activity 
(Fig. 3). Kahweol also affected the structural integrity of 
AKT1 with great binding affinity, as shown in the RMSD 
of ligand movement and free-binding energy calcula-
tions. Other compounds above also perform excellent 
binding to the allosteric inhibition site of AKT1 as Inhibi-
tor-8. The inhibition of AKT1 by those compounds may 
alter the AKT1 ability to induce HIF-1ɑ expression. The 
low level of HIF-1ɑ directly suppresses the CT-1, STAT3, 
GATA4, and BNP expression, consecutively. As a result, a 
low level of BNP will repair cardiac function. Therefore, 
the DGT, DGC, and DGT + DGC may exhibit their car-
dio-protective activity through indirect CT-1 expression 
regulation by inhibiting AKT1 activity. Nevertheless, the 
measurement of HIF-1ɑ expression was not measured 
in this study. The measurement of HIF-1ɑ along with 
the AKT1 expression will further clarify the association 
of AKT1 inhibition to regulate CT-1 through AKT1 and 
HIF-1ɑ axis. In addition, the use of quantitative Real-
Time Polymerase Chain Reaction (qRT-PCR) also needed 
to confirm the current results.

5 � Conclusions
MetS upregulated CT-1, STAT3, GATA4, and BNP, while 
treatment with DGT, DGC, and DGT + DGC decreased 
the expression of these genes. The protective role of 
DGT, DGC, and DGT + DGC may occur through AKT1 
inhibition by several bioactive components, mainly caf-
estol, chlorogenic acid, kahweol, EC, ECG, EGC, and 
EGCG. The DGT + DGC provided better bioactivity by 
regulating the expression as the N level.
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