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Abstract

Background Every year thousands of people die from atherosclerosis. This heart disease causes artery hardening,
which impairs blood flow. For this type of disease, the primary treatment is the application of stents. Observing the
importance of the application of stents in the treatment of atherosclerosis, the present work aimed to carry out a
systematic review of the literature on the applicability of computational fluid dynamics in the design of stents for
coronary arteries.

Main body of abstract To achieve the objective of this work, a review protocol was used. According to the method
employed, we selected 16 articles to be read and analyzed in detail. Based on these studies, it was possible to verify
that the works had two primary goals. The first was to model blood flow precisely to have CFD as a simulation and
design tool. The second was to search for geometries of better performance, considering flow parameters that are
believed to affect the stent lifespan—increasing time for stent replacement. Regarding the mathematical models

for blood flowy, it was verified that non-Newtonian models in transient regimes presented the best results. Regarding
stent geometry, it was found that strut geometry and stent thickness can greatly influence wall shear stress param-
eters, which affect restenosis formation, and that the design of stents with innovative geometries has the potential to
increase the lifespan of arterial stents.

Short conclusion After completing the work, a document that serves as a knowledge base for works that apply
stents as a treatment and support material for further research was obtained.

Keywords Stent, Computational fluid dynamics, Atherosclerosis

1 Background
Cardiovascular diseases have always been a source of
mortality among human beings, making it a challenge to
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solve them, both for medical and engineering profession-
als. Atherosclerosis is among the diseases that cause the
most deaths [1].

Atherosclerosis is a disease caused by the hardening
of the arteries due to the accumulation of fatty plaques
inside them. This causes a change in blood flow, lead-
ing to severe consequences for the heart [2]. As a form
of treatment, it is possible to use a device called a stent,
which aims to restore blood flow in the region affected
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by the disease [3]. For example, in Fig. 1, one can see the
application of a stent in an artery, where, through the
introduction of a catheter inside the artery, the stent is
inflated and positioned in such a way as to clear the pas-
sage of blood.

A recurrent inconvenience in this intervention is the
need for new stent implantation. This is because, over
time, new cells and layers of fat are deposited in the
region of the stent, once again decreasing the diameter
of the artery (this phenomenon is called restenosis) [3,
4]. One of the possible solutions employed is the change
in the material of the stent, replacing the metallic stents
with other so-called drug-eluting stents (they release a
type of drug that reduces the chances of restenosis) and
biodegradable [5]. However, although such a solution has
good results, restenosis often occurs [3, 4].

To find new ways to minimize this problem, it is pos-
sible to use knowledge of computational fluid dynamics
(CFED) applied to blood flow. One of the main advantages
is that in the first stage of design and performance test-
ing, the analyses are performed "in silico", i.e., virtually.
As pointed out by Rocha et al. [6], currently, patient-
specific CAD models allow for obtaining accurate results
for the simulation of human hemodynamics. These mod-
els can be obtained from medical examination images
of each patient. CAD modeling from medical imaging
examinations is becoming more and more realistic, and
the future points to increasing the accuracy of geom-
etries and simulations and incorporating computational
models to expand research and incorporate CFD simula-
tion as a tool for clinical examinations, according to the
authors. Based on this, the present work aims to carry
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out a systematic review of the literature of works that
use computational fluid dynamics to improve the perfor-
mance of stents, proposing new forms of design, as well
as more accurate mathematical models for blood flow.

2 Main text

2.1 Review protocol

A review protocol [7] was followed to verify the state of
the art of CFD application for stent analysis, as detailed
in Table 1.

We sought to structure the review by defining the
conceptual framework and the central question of the
research: “is it possible to improve coronary artery stent
geometry based on CFD results?’, i.e., we searched if CFD
is a valuable tool for stent design. Based on this question,
we sought to verify in the literature the state of the art
in research aiming to improve stent design to reduce the
restenosis process, using CFD. Thus, we sought to iden-
tify how fluid dynamic analysis can be effective for this
type of research and innovation. Other tools, such as
structural analysis (finite element method), which could
be used, were not considered. This research was limited
to investigating the use of CFD to analyze the stent per-
formance and design.

The context of the review is general, covering the
period from 2008 to 2021. The search strategy is
aggregative, as “the question is about a well-defined
and homogeneous question” [7]. As inclusion crite-
ria, it was established that the studies should propose
improvements to stent geometry based only on fluid
dynamic analysis. On the other hand, studies that dealt

(b)

Fig. 1 Application of the stent inside a coronary artery: a introduction of the catheter; b stent inflation and positioning and ¢ unobstructed artery.

Source: Image by brgfx on Freepik.com
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Table 1 Systematic review protocol
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Systematic review protocol

Conceptual framework
Context/horizon
Theoretical currents
Review strategy
Search criteria

Improve stent geometry based on fluid dynamics

General, 2008 a 2021

Computational fluid dynamics

Aggregative

Studies that treat and use fluid dynamic analysis in relation to coronary artery

stents should be included and those that are not coronary artery stents (such
as stents in the urethra for the treatment of strokes, etc.) and that did not use
exclusively computational fluid dynamic analysis should be excluded (such as
structural analysis)

Review question
Search terms/database

Is it possible to improve coronary artery stent geometry based on CFD results?
'STENT' AND ‘GEOMETRY" AND ‘CORONARY’ (Scopus/Elsevier)

Table 2 Keywords employed in search

Keywords Number of
findings
‘stent’ AND ‘cfd’ 404
'stent geometry’ AND ‘cfd’ 161
‘stenosis’ AND ‘cfd’ 594
'stent’ AND ‘coronary’ 57,993

‘stent’ AND ‘coronary’ AND ‘cfd’ 113

‘stent’ AND ‘flow’ 15918
‘stenosis’ AND flow’ 36,166
‘stent’ AND fluid’ 3703
'stent geometry’ AND ‘fluid’ 363
‘stent geometry’ AND ‘flow’ 569
'stenosis’ AND ‘coronary’ 503

with stents for other systems of the human body and
others that presented different CFD methodologies
were excluded.

Then, we tried to establish the keywords. Table 2 sum-
marizes the attempts at combinations to delimit the
research in the best possible way.

As can be seen, some combinations resulted in a very
expressive number of academic works. Words such as
‘STENOSIS’ AND FLOW’ AND ‘STENT” AND ‘FLOW’
retrieved works that employed structural analyzes and
bare-metal stents that meet the exclusion criteria estab-
lished in Table 1. Thus, it was observed that the best
combination of words corresponds to ‘STENT’ AND
‘CORONARY’ AND ‘CFD’ because, with these, it was
possible to exclude works that did not comply with the
protocol effectively. Then, the 113 texts found were ana-
lyzed. Among these, 30 were chosen to be read in full,
while the others were disregarded based on the reading of
the abstract and the criteria of inclusion/exclusion. Thus,
16 studies were selected to compose state of the art on
the analyzed topic. Table 3 summarizes the texts chosen.

2.2 Analyzed articles
Sixteen articles concerning CFD analysis of blood flow
through vessels with stents were fully read and analyzed.
Most of the selected papers analyzed commercial stents
and compared their geometry in terms of better system
response in terms of fluid dynamic quantities. Other
documents explored existing geometries and suggested
their improvement based on simulation results. Finally,
some papers evaluated the mathematical modeling for
blood rheology (Newtonian or non-Newtonian fluid)
and boundary conditions (steady or pulsating flow) to
properly analyze the flow systems consisting of vessels
and stents. The rheological modeling of blood as a sin-
gle-phase fluid was one of the aspects approached by the
analyzed works. Blood is a suspension of red blood cells
in plasma. Therefore, blood may present non-Newtonian
effects such as shear-thinning, viscoplasticity and viscoe-
lasticity [22]. The degree to which these non-Newtonian
effects affect the flow is a crucial aspect of the perfor-
mance of simulation results. Because of this, the rheo-
logical modeling of blood was an item that was analyzed
when reviewing the selected articles for the present work.
In the following paragraphs, a summary of the contribu-
tion of each selected work to the state of the art is made.
Initially, Dehlaghi et al. [2] analyzed which stent design
parameters were the ones that most influenced wall
shear stress. The authors studied three-dimensional and
two-dimensional stents, modeling blood as a Newtonian
and incompressible fluid. As for the flow, a steady-state
regime was adopted. As the main results, it was found
that the number of struts (small cells that make up the
stent), their profile, and the distance between them are
the geometric parameters that most influence the flow.
Like the present work, Murphy et al. [5] reviewed how
computational fluid mechanics had been used to pre-
dict and minimize the incidence of restenosis in arter-
ies with stents. The authors divided the subject into two
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main topics: model effects and stent design effects. In the
first part, the article explained how different fluid models
(Newtonian and non-Newtonian) and boundary condi-
tions had performed in terms of accuracy and efficiency.
In this first part, they concluded that modeling blood as
a Newtonian fluid could negatively affect the quality of
results. However, inaccurate or poorly modeled boundary
conditions would be the most significant source of errors
in CFD results. In the second part, considerations were
made about stent design based on fluid dynamics. Thus,
the authors reviewed studies that compared commercial
types of stents to analyze which parameters are most rel-
evant for design to minimize restenosis. They discovered
that low WSS and high OSI could lead to restenosis and
that these parameters needed to be analyzed together.

Differently from the previous papers, in the work of
Pant et al. [8], the authors use the three-dimensional
model to analyze five different types of commercial stents
to verify how their design can influence hemodynamics.
Considering the fluid as non-Newtonian and the pul-
sating flow at the inlet, the authors concluded that the
length of the struts and their alignment with the flow are
the factors that most influenced hemodynamics.

Further, in the analysis of stent geometry, in the arti-
cle by Gori [9], two different types of three-dimensional
stent models were compared. Their differences were the
position of the struts: an open-cell stent and the other
with a closed-cell stent. In addition, the blood was mod-
eled as a Newtonian and incompressible fluid, while the
leakage was analyzed for both the steady state and the
transient case. The analysis of the shear stress distribu-
tion showed that the closed-cell stent was more efficient
in avoiding restenosis.

Later in seeking better stent design concerning hemo-
dynamic performance, Gundert et al. [10] presented
a new idea: instead of comparing some commercial
designs; the authors employed an optimization algorithm
to achieve the optimal angle between the struts. Mod-
eling blood as a Newtonian, incompressible fluid and
adopting boundary conditions that characterize the tran-
sient regime, this work concluded that the optimal angle
would be 40°.

With the advancement of research, it was questioned
how the stent design could affect its effectiveness and
whether the models used in the simulations were the
most appropriate. Given this, Hsiao et al. [11] focused
their analysis on the modeling done for the flow and the
boundary conditions applied to find the most accurate
possible. The authors compared Newtonian and non-
Newtonian models, pulsating and steady-state flow
regimes. It was observed that the modeling as a Newto-
nian fluid presents little difference from the non-New-
tonian one. Therefore, it is more interesting to model
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for the simplest case (Newtonian) to reduce the compu-
tational effort. As for the flow, it was observed that the
blood flow is better characterized using transient flow
inlet conditions.

At the same period, the work of Gundert et al. [12]
sought to analyze the relationship between the number
of struts and the diameter of the artery using an opti-
mization algorithm. Thus, using the exact modeling as
in Gundert et al. [10], the authors concluded that for
good hemodynamic conditions (high WSS), the larger
the diameter, the greater the number of struts. As the
artery with stenosis already has a reduced diameter,
stents with fewer struts would be more effective in
practice.

Also, using optimization algorithms, Hsiao et al. [13]
sought to modify some geometric parameters in the
stents to analyze which has the most significant effect on
the shear stress values. The model used considered blood
as a non-Newtonian fluid in a steady state. Of the param-
eters analyzed, it was observed that the thickness of the
struts is what most influences the wall shear stress values.

Similarly, Stiehm et al. [14] also analyzed the influence
of stent design parameters and their influence on WSS.
The authors used the exact modeling (non-Newtonian
fluid with Carreu’s model) and boundary condition (flow
in steady state). They concluded that the most criti-
cal parameter to be analyzed is the stent thickness. The
main difference between these two works was the soft-
ware used for numerical simulations. Stiehm et al [14]
used OpenFOAM and Hsiao et al. [11, 13] used ANSYS
FLUENT.

Then, the following papers started to analyze how the
curvature of the arteries could influence hemodynam-
ics. First, Hsiao et al. [15] modeled blood using the Car-
reau model and steady-state flow. In the case of arteries
without curvature, it was observed that the profile of the
struts did not significantly influence the WSS. For arter-
ies with curvature, however, the values varied consider-
ably and tended to have smaller measurements when
compared to arteries without curvature. They concluded
that inserting a stent in a curved region increases the area
of low shear stress.

In the work of Jiang et al. [16], the authors analyzed
how inlet boundary conditions and blood rheology mod-
eling affected the results and analysis performed in the
arteries with stents. The authors concluded that when
considering the fluid as Newtonian, although the compu-
tational time is reduced, there is a risk of overestimating
the results, especially the WSS. Because of this, it is more
accurate to model blood as non-Newtonian for arteries
with stents. In addition, the authors also conclude that
the boundary conditions with pulsating profile at the
inlet are more accurate.
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In a different approach, Wiistenhagen et al. [17] com-
pared blood flow in an artery with a bifurcation and
another without (equivalent to a straight tube). This
analysis considered blood as an incompressible and non-
Newtonian fluid (Carreau model). The steady flow was
applied as a boundary condition to a bifurcated artery
with a stent. Three situations were considered (each one
varying the angle between the branches with values of
70°, 90° and 110°), and the velocity profile at the exit was
obtained after the simulation. Based on this, new ana-
lyzes were performed considering the artery as a tube,
with an inlet velocity profile equal to that obtained for
the bifurcated artery. The objective was to verify if the
results, mainly of wall shear stress, were similar and if
the numerical analysis of the bifurcated artery could be
replaced by a “straight line” (reducing the computational
effort). It was possible to conclude that this substitution
could be made, but for the 110° angle, the results tended
to be more imprecise.

Advancing further in analyzing bifurcated geometries,
Rigatelli et al. [18] used fluid CFD to compare four tech-
niques for placing stents in arteries with a 50° bifurca-
tion, namely, Nano-Crush, Modified T, DK-Crush, and
Cullote. Blood was modeled as an incompressible and
non-Newtonian fluid under a laminar flow and steady-
state regime. As a result of the analyzed parameters
(especially the shear stress distribution), it was observed
that the “Nano-Crush” and “Modified T” techniques were
the most efficient since they generated a blood flow pro-
file and WSS distribution more physiological.

Contrary to what was being analyzed so far, Yu et al.
[19] innovated by analyzing the hemodynamics of a stent
with a conical profile, i.e., a varying diameter stent. The
idea was to promote the increase in shear stress by nar-
rowing the cross-sectional flow area. Although the built
geometry was a simplified model, it was possible to
observe that the shear stress values for the conical stents
are higher, when compared to the cylindrical profile,
resulting in a better performance. As for modeling, the
authors modeled blood as a Newtonian fluid with steady-
state inlet condition.

Aiming to model situations with more complex geom-
etries, Fujimoto et al. [20] analyzed a trifurcated artery
to see if stent placement affects blood flow and the pos-
sibility of restenosis. When modeling blood as a Newto-
nian fluid, laminar flow and steady-state regime, different
positions were tested between the stent and the trifur-
cation, and it was found that they influenced the values
of shear stress. This type of influence is limited to the
area around the branch. They concluded that the stent
should be placed in a position that did not overlap with
the peaks of inlet velocity. Thus, it would be necessary to
analyze the region of the trifurcation in which the highest
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velocity values would occur to avoid placing the stent in
this area.

Finally, Wang et al. [21] analyzed a specific type of
commercial stent. They made several modifications
in the geometry to reach an optimal pattern and verify
which parameters most influence the WSS values. Blood
is modeled as a Newtonian fluid at a steady state. With
the main result, and corroborating with others previously
found, it was observed that the thickness of the struts sig-
nificantly influences the WSS.

Considering the works that appeared in the literature
citing those analyzed here (e.g., [23, 24]), it was noticed
that the trend that followed was the modeling of fluid—
structure interaction. In this case, the coupling between
the structural simulation of the vessel walls and the stent
and the simulation of blood flow has the potential to
bring more realistic results. Therefore, it is possible to
envision the application of simulation methods in engi-
neering to optimize medical device designs, especially
stents, in the near future.

3 Conclusions

Based on the systematic review, it was possible to analyze
a set of 16 works to verify how state of the art is in the
research of fluid dynamic analysis of the design of coro-
nary artery stents in a time range between 2010 and 2020.
Furthermore, it was possible to verify the broad applica-
bility of computational fluid mechanics in this area based
on research that sought to describe the best design and
blood flow model to minimize restenosis.

In general, it was possible to observe that Newtonian
and non-Newtonian models are employed for blood flow.
However, when explicitly comparing Newtonian and
non-Newtonian models, non-Newtonian models were
more accurate in predicting the risk of restenosis. Also,
the transient pulsatile fluid model has been widely used
in recent research. In addition, it is worth noting that
CFED results may be helpful in the design of new stent
geometries. Such an approach can reduce the resteno-
sis rate and prolong the time the stent remains in the
patient. It is expected that in the coming years, more
research can advance in this direction to verify in vivo if
suggested changes in geometry are indeed effective.

With the analysis of the set of papers selected in the
present review and their indication of future trends, we
may conclude that coupling CFD modeling with struc-
tural modeling and simulation, that is, the modeling of
fluid—structure interaction (FSI), can bring more realis-
tic results and make stent design optimization a standard
process shortly.
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