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Abstract 

Dahab is a tourist city located in the Sinai Peninsula, downstream of the Dahab watershed, as a part of the arid coastal 
region. Groundwater samples have been collected from the Dahab delta and were tested for salinity, major ions, 
minor elements, and heavy metals to investigate the geochemical processes deteriorating the groundwater qual-
ity. The spatial distribution of major, minor, and trace elements integrated with the geochemical interrelationships 
using the cumulative salinity bases mixing curves have been utilized to investigate the main source(s) of ground-
water recharge and salinization origin in Dahab delta aquifer. The groundwater salinity ranges from 339 upstream 
of Dahab watershed to 53,216 mg/L downstream in the delta area. The groundwater varies from fresh, brackish, and 
saline water. The spatial distributions of major ions, minor elements (Si, and Br), and heavy metals (B and Sr) confirm 
that the recharge comes from the upstream watershed. According to the mixing model curves, groundwater quality 
has declined due to interactions with the aquifer matrix, mixing with seawater, and rejected brine from the reverse 
osmosis desalination plants. The fresh/brackish groundwater classes have been recorded in the northwestern part 
of the study area close to the basement rocks, where the Quaternary aquifer receives considerable recharge through 
the underneath fractures, joints, and faults that enhance the subsurface recharge. The samples with a high saline 
groundwater class have been recorded in the eastern and southern parts of the delta, demonstrating the effects of 
seawater intrusion. Based on WHO guideline criteria, the assessment of groundwater for various uses has determined 
that most groundwater samples from the alluvial aquifer (91%) are unfit for human consumption. The Water Quality 
Index indicates that the groundwater in the southern part of the delta is not suitable for all uses due to mixing with 
the seawater, and injection of rejected brine water from the desalination plants. In the north, groundwater is unfit for 
drinking and aquatics, excellent for recreation, marginal for irrigation, and fair for livestock. The groundwater in coastal 
arid region aquifers has deteriorated due to seawater intrusion.
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1  Background
In most arid region countries, groundwater is the pri-
mary source of water [47]. Over the past few decades, 
groundwater quality in coastal aquifers in arid regions 
worldwide, including Egypt, North Africa, and Oman has 
declined due to the expansion of the urban, agricultural, 
mining, and industrial sectors [53, 62, 80]. In coastal 
aquifers, excessive withdrawals frequently account for 
groundwater salinization [36]. Geogenic pollution, 
including water–rock interaction and seawater intrusion, 
deteriorates the quality of groundwater resources [52]. 
In addition, human activities, including residential and 
agricultural activities, frequently result in a decline in 
the quality and quantity of groundwater [32, 54]. Water 
quality monitoring is crucial to ensure the long-term 
sustainability of freshwater resources [18, 46]. Under-
standing water quality is essential for the efficient and 
sustainable management of groundwater resources [14, 
62]. Numerous academics have assessed the suitability of 
water resources in arid regions for various uses, includ-
ing domestic, agricultural, and industrial operations, 
using various techniques and methods [28]. Drinking 
water has attracted more scientific interest than other 
applications [3, 4, 18, 46]. Identifying processes control-
ling the water’s physical and chemical components, such 
as water–rock interaction and mixing with other water, is 
part of groundwater geochemistry [8]. The World Health 
Organization (WHO) provides information on various 
boreholes, well selection, implementation and specifies 
drinking water quality guidelines [59]. However, people 
in developing countries frequently ignore these regula-
tions, which causes pathogenic, microbiological, and 
chemical contamination of wells and boreholes [43, 70]. 
To alleviate water scarcity issues and meet agricultural 
sector demands, groundwater quality evaluations for 
agrarian irrigation have been carried out in Egypt [49, 
69]. By the end of 2022, Egypt’s population will increase 
by over 100 million, creating considerable difficulties in 
supplying safe drinking water to rural and small commu-
nities. Rural communities are hence practically obliged to 
drink from existing groundwater sources [2, 5, 32].

The studied region is the delta Dahab watershed, 
located in the South Sinai governorate, where more 
than 178,000 people rely primarily on groundwater for 
agriculture and drinking [76]. The South Sinai Penin-
sula’s Delta Wadi Dahab comprises groundwater, seawa-
ter desalination, and local seasonal rainfall as primary 
water sources. The Quaternary aquifer is the sole aquifer 
in the Delta Dahab, where limited precipitation results 
in limited yearly groundwater replenishment and, con-
sequently, groundwater salinization [59]. Additionally, 
because the upwelling of seawater cannot support the 
excessive groundwater withdrawals, the groundwater 

quality of the Quaternary aquifer along the Gulf of Aqaba 
has worsened [42].

The groundwater quality downstream of the Dahab 
aquifer has deteriorated due to seawater intrusion and 
brine water injection deeper into the aquifer [21, 68]. 
The upwelling of seawater in south Sinai considerably 
impacted the Quaternary aquifer’s salinity because there 
were no natural groundwater replenishments in such an 
arid region. A thin layer of brackish water suspended 
over deep, salty groundwater vulnerable to the stresses 
of groundwater pumping compensates the groundwa-
ter [23]. Groundwater quality has also decreased due to 
the aquifer’s deeper penetration of rejected brine water 
caused by the widespread use of reverse osmosis desali-
nation. Therefore, assessing how geochemical processes 
control groundwater salinization is essential for sustain-
ably managing groundwater resources [13, 62, 65]. Con-
taminated water can impact everyone, which eventually 
poses a health risk.

Therefore, the main objectives of this research are 
to (1) identify the primary sources contributing to the 
groundwater quality decline based on the spatial distri-
bution of major, minor, and trace constituents (2) Inves-
tigate the effects of seawater mixing and the rejection of 
brine deeper into the Quaternary aquifer; and (3) Evalu-
ate the groundwater quality using the Water Quality 
Index (WQI) model to assess changes and consider the 
groundwater’s chemistry.

2  The study area
2.1  Location
Delta Wadi Dahab is located on the west shore of the 
Gulf of Aqaba between longitudes 34° 28′ and 34° 32′ 
E. and latitudes 28° 28 ′ and 29° 32′ N. (Fig. 1). It has an 
area of 10.9  km2. The average rainfall ranges from 10.3 
to 18.9  mm/year, with the majority falling in a handful 
of days, particularly in the spring and autumn. Tempera-
tures in the summer vary from 31 to 37  °C, while tem-
peratures in the winter range from 2 to 13  °C [20]. The 
average evaporation rate is between 3976 and 6252 mm/
year [1]. The aridity index is 1.3 based on the Emberger 
equation (1955) [26]. Groundwater is the sole drinking, 
domestic, and agricultural source in the study area since 
it can be easily extracted from the Quaternary aquifer. 
The relative humidity is highest in the winter (45–56%) 
and lowest in the summer (25–32%). Current coastal 
overdevelopment, notably in the Delta Wadi Dahab 
basin on the Gulf of Aqaba, needs increased demand for 
urban water supply. The tapped water potential is fre-
quently insufficient to meet the excessive growth in water 
demands required for municipal, agricultural, industrial, 
and tourism-related activities.
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Fig. 1 Groundwater, reject brine water and extract water samples collected from Delta Wadi Dahab
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2.2  Geological and hydrogeological setting
The Dahab basin is part of the old Archean Triangle of 
the Arbo-Nubian Shield. The study area’s sedimentary, 
metamorphic, and igneous rock ages range from the 
Cambrian to the Quaternary [25, 38, 39, 83]. Most igne-
ous and metamorphic rocks are upstream and primar-
ily composed of fractured granitic rocks that have been 
intruded by basic and intermediate dykes.

Sedimentary rocks dominate the studied areas in the 
upstream northern portions. Most of the rocks in the 
upstream part of the Dahab basin are from the Cambrian, 
Lower Cretaceous, and Upper Cretaceous periods [27, 
74]. Quartz and kaolinite minerals are extremely com-
parable between the Lower Cretaceous clastic layer and 
Cambrian rocks [45]. Wadi fills, alluvial deposits, and ter-
races are common in the downstream delta. Rock frag-
ments the size of cobbles and boulders, gravel, sand, silt, 
and clays make up most of the wadi fill deposits [41, 66]. 
Alluvial deposits were considered significant aquifers 
due to their excellent hydraulic qualities [27]. The stream 
channel floors are covered with various alluvial depos-
its of varying thicknesses and textures (Fig. 2) from one 
meter upstream to more than 50 m in the Dahab down-
stream delta of the basin [9].

The hydrogeological setting of the Dahab Basin was 
affected by many factors, including geological, structural, 
and climatic conditions. The wadi fill deposits distributed 
in the downstream or upstream parts of Dahab basin 
contain groundwater [29, 56, 71–73]. Surface drainage 
allowed a significant volume of precipitation to be dis-
charged into the Gulf of Aqaba. The recent rainfall is the 
main source of groundwater recharge in the basement 
rocks. Recent rainfall percolation through alluvial stream 
deposits replenishes the groundwater [19].

3  Methods
In July 2019, thirty-nine groundwater samples were taken 
from the alluvial aquifer. Additionally, one sample of 
rainfall, one sample of seawater, four representatives were 
collected from desalination planets (brine water), and 
ten samples represented the water–rock extract (Tables 1 
and 2). The samples were collected in two bottles: one for 
major ions determination and the other for heavy metals 
measurements. The first was preserved in the refrigera-
tor, and the second was preserved by added conc. Nitric 
acid. The groundwater samples represent the delta aqui-
fer, extending from inland close to the basement moun-
tain to the coast. The exposed rock units and subsurface 
geological cross sections were used to determine the tap-
ping aquifers and water-carrying formations. The analy-
ses were carried out using the procedures that had been 
established [31, 63], American Society for Testing and 

Materials [6] at the Centre laboratories, Desert Research 
Centre (DRC) in July 2019.

3.1  Determination of major ions
The analysis includes the pH, electrical conductivity (EC), 
total dissolved solids (TDS) measured during the field 
trip. Orion 150A + EC meter of Thermo Electron Corpo-
ration, USA’s was used to measure the electrical conduc-
tivity. At 25  °C, the EC was expressed in mohs/cm, and 
the salinity can be calculated from EC (μmohs/cm) from 
this equation:

(ke is a constant of proportionality).
Ca2+ and  Mg2+ were determined by titration against 

disodium Ethylenediaminetetraacetic acid  (Na2EDTA) 
using a murexide indicator. At the same time,  Mg2+ was 
estimated by subtracting the calcium value from the total 
hardness  (Ca2+  +  Mg2+) using E.B.T (Eriochrome Black 
T) indicator [10, 40].  Na+ was determined by standard 
curves using Flame Photometer, PF P7, Jenway, UK. The 
detailed chemical analysis of such groundwater samples 
is shown in Table 1.

3.2  Determination of heavy metals
The Inductively Coupled Argon Plasma, ICAP 6500 Duo, 
from Thermo Scientific, England, was used to measure 
the dissolved heavy metals (Al, Ba, Cd, Co, Cr, Cu, Fe, 
Mn, Mo, Ni, Pb, and Zn) in the water samples that were 
collected. A stock solution for instrument standardiza-
tion, 1000  mg/L multi-element certified standard solu-
tion, Merck, Germany, was used.

3.3  Evaluation of groundwater
Generally, water used for drinking purposes should be 
colorless, free of turbidity, excessive amounts of dis-
solved salts, harmful micro-organisms, and unpleas-
ant odor or taste. To evaluate groundwater for human 
drinking, the groundwater salinity and concentration of 
major ions and heavy metals have been considered on 
recommended standards [81]. Water used for house-
hold purposes on farms, including that eaten by ani-
mals and poultry, is subject to quality restrictions and 
international standards set by the National Academies 
of Science (NAS) and Engineering (NAE) [55]. High 
salinity and toxicity components are two of the most 
common water quality issues in irrigation. When salts 
accumulate in soils, the salinization deteriorates its 
quality. Water contains some elements that can slow 
down or stop plant growth, including but not limited to 
salinity, chlorine, and sodium. For a better understand-
ing of whether water is suitable for agricultural use, key 
factors such as the electrical conductivity (Ec), Na% 

(1)TDS mg/L = ke× EC (µmohs/cm)
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Fig. 2 Geological Map for the Wadi Dahab Watershed, Southern Sinai, Egypt
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Table 1 Chemical analyses of salinity, major ions, and minor elements (mg/L) of the Quaternary aquifer at Dahab Area

Variables Mean Median Min Q1 Q3 Max

Upstream watershed groundwater (8 samples: 1, 31–37 and 44)

pH 7.4 7.40 7.10 7.30 7.58 7.80

EC µmhos/cm 1764 1314 641 654 1873 5790

Salinity (TDS) (mg/l) 1065 684 339 362 1138 3842

Ca2+ 112 87 47 50 114 47

Mg2+ 39 21 5 11 48 152

Na+ 178 113 52 61 181 660

K+ 6 7 3 3 8 10

Alkalinity 100 107 49 69 122 140

SO4
2− 464 253 101 116 549 1809

Cl− 217 150 58 62 208 833

Si 10.1 9.52 7.69 8.69 10.58 15.59

Sr 2.2 1.18 0.58 0.81 1.68 9.57

B 0.6 0.58 0.16 0.42 0.69 1.27

Br 56.9 32 8.80 21 68 150

Downstream delta groundwater (31 samples)

pH 7.8 7.70 7.00 7.50 8.00 8.60

EC µmhos/cm 17,287 7290 1793 5820 9190 78,100

Salinity (TDS) (mg/l) 10,757 3846 895 3221 4793 53,216

Ca2+ 420 416 67 297 520 874

Mg2+ 264 63 5 38 81 1453

Na+ 3156 840 250 680 1300 17,600

K+ 107 21 9 14 45 600

Alkalinity 100 85 49 67 128 201

SO4
2− 1689 645 179 515 1040 7266

Cl− 5062 1812 333 1333 2207 25,906

Si 17.3 7.34 7.77 13.45 21.04 34.82

Sr 7.5 7.46 0.89 5.08 9.54 16.79

B 2.8 1.98 1.09 1.43 3.19 9.14

Br 46.8 31 8.80 21 48 144

Reverse osmosis reject brine water (4 samples: R1 to R4)

pH 8.2 8.00 7.50 7.65 8.90 9.40

EC µmhos/cm 57,068 67,000 742 30,271 78,900 82,800

Salinity (TDS) (mg/l) 38,524 44,253 341 20,178 54,006 58,442

Ca2+ 567 562 8 264 874 8

Mg2+ 1289 1681 0 632 1750 1820

Na+ 11,863 12,800 116 6358 16,900 18,400

K+ 441 600 6 203 600 600

Alkalinity 74 76 0 31 120 140

SO4
2− 3479 1356 20 47 6428 9486

Cl− 10,298.7 439.80 46.30 174.93 24,823.40 27,489.00

Si 9.7 7.34 3.17 3.25 15.53 24.33

Sr 5.5 1.56 0.03 0.12 12.29 13.14

B 6.3 7.75 1.40 2.97 8.21 8.34

Br 80.7 13 1.67 5 156 240

Water extract (10 samples: Ex1–Ex10)

pH 8.3 8.25 7.30 7.98 8.75 9.10

EC µmhos/cm 1190 673 311 359 2027 3750

Salinity (TDS) 816 412 187 219 1456 2676
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[82], sodium adsorption ratio (SAR) [77], permeability 
index (PI) [16], potential salinity (SP), Kelly ratio (KR) 
[44], and magnesium ratio Paliwal [61] have been con-
sidered [34] to understand better whether water is suit-
able for agricultural use. The following equations have 
been used for groundwater evaluaton.

The concentrations of anions and cations in Eqs.  3–7 
are represented in meq/L.

(2)Na% =
(Na+ K) x 100

√

(

Ca+Mg+Na+ K
)

(3)SAR(meq/l) =
Na

√

(

Ca+Mg
)

/2

(4)

Permeability Index (PI) =

(

Na+
√
HCO3

(

Ca+Mg+Na
)

)

× 100

(5)PS = Cl+ 0.5(SO4)

(6)KR = Na/
(

Ca + Mg
)

(7)Magnesium ratio = Mg× 100/
(

Ca+Mg
)

3.4  Water Quality Index
The code for the Water Quality Index (WQI) version 1.0 
[15] has been used to rank categories for different water 
uses, including human drinking, irrigation, poultry, and 
recreation. The program contains over 50 predefined 
parameters to check groundwater availability for drink-
ing and other uses. The criteria for evaluating water qual-
ity are based on the Canadian Environmental Guidelines 
considering the pH, major constituents, dissolved minor 
and trace elements, and physical parameters, including 
temperature, turbidity, and color. The model output is a 
statistical summary of the data used and the rank of the 
overall water quality.

4  Results
4.1  Groundwater geochemistry
The groundwater is considered the main source of 
water supply in the middle east as a part of arid and 
semi-arid regions where the rainfall is scarce [35]. The 
physical parameters characterizing the groundwater in 
Wadi Dahab delta show great variations. The pH in the 
upstream groundwater ranges from 7.1 to 7.8 with a 
mean value of 7.4, while the downstream groundwater 
in the delta ranges from 7.0 to 8.6 with a mean value 
of 7.8, indicating alkaline media. The electrical con-
ductivity of upstream groundwater ranges from 641 

Q1, the lower quartile, or first quartile is the value under which 25% of data points are found when they are arranged in increasing order; Q3, the upper quartile, or 
third quartile is the value under which 75% of data points are found when arranged in increasing order

Table 1 (continued)

Variables Mean Median Min Q1 Q3 Max

Ca2+ 134 24 11 13 34 11

Mg2+ 11 6 3 3 16 45

Na+ 95 65 16 33 106 400

K+ 25 18 8 13 40 52

Alkalinity 51 49 31 31 56 104

SO4
2− 404 177 47 66 822 1356

Cl− 122 86 37 44 139 440

Si 3.6 3.51 1.52 2.75 4.72 5.95

Sr 0.6 0.38 0.10 0.17 1.25 1.56

B  < 0.0004  < 0.0004  < 0.0004  < 0.0004  < 0.0004  < 0.0004

Br 4.9 3.75 1.33 1.79 8.63 9.50

Table 2 Chemical analyses of sea and rainwater samples, mg/L

Sample pH EC TDS Ca Mg Na K CO3 HCO3 SO4 Cl Br Si Sr B
µs/cm mg/l

Rain 7.0 45.5 29.15 7.1 0.6 2.3 ND ND 14.5 6.4 5.5 5.2 ND 3.036 0.0066

Sea 7.6 66,101 42,304 391 1661 12,690 460.0 ND 149.7 3500 23,528 80 4 8.239 3.00



Page 8 of 21Samy et al. Beni-Suef Univ J Basic Appl Sci           (2023) 12:54 

to 5790 µmhos/cm with a mean value of 1764 µmhos/
cm, while the downstream delta groundwater ranges 
from 1793 to 78,100 µmhos/cm, with a mean value of 
17,287 µmhos/cm, indicating elevated groundwater 
salinization due to mixing with the seawater. Salin-
ity is the term used to describe the dissolved concen-
trations of major ions in water. The concentration of 
the groundwater constituents varies according to how 
mineral-rich the aquifer matrix through which the 
groundwater flows. The average salinity of the ground-
water located upstream ranges from 339 to 3842 mg/L 
while the groundwater in the delta alluvial aquifer 
downstream ranges from 895 to 53,216 mg/L (Table 1). 
The  Na+ ion predominates, explaining the significance 
of saltwater through and the seawater intrusion [60]. 
The dissolved  Na+ ion concentration in the upstream 
watershed ranges between 52 and 660  mg/L with a 
mean average of 2545 mg/L, while in the delta ground-
water it ranges between 250 and 17,600  mg/L with a 
mean value of 3156 mg/L.  HCO3

− and  Ca2+ predomi-
nance reveals the impact of rock water interaction with 
limestone boulders embedded in the aquifer matrix 
[37]. Calcium concentration ranges between 66.5 mg/L 
and 874  mg/L with a median value of 420  mg/L. The 
chloride ion concentration in the upstream watershed 
ranges between 58 and 833  mg/L with a mean value 
of 217  mg/L, while downstream in the delta ranges 
between 333 and 25,906  mg/L, with a mean value of 
5062 mg/L (Table 1). Based on the values of groundwa-
ter salinity, water can be classified as fresh, brackish, 
and saline water classes [11]. The bulk of groundwater 
samples located in the delta area are classified as saline 
(68%) and brackish (22%) water classes, with a minor-
ity classified as freshwater (10%).

4.2  Dissolved minor elements in groundwater
The concentration of minor elements (Si, Sr, B, and 
Br) dissolved in groundwater is displayed in Table  1. 
The silica concentration in the upstream groundwa-
ter samples ranges between 7.69 and 15.59  mg/L, with 
a mean value of 10.1  mg/L. In the downstream delta, 
silica ranges between 7.77 and 34.82 mg/L, with a mean 
value of 17.3 mg/L. The strontium concentrations in the 
upstream watershed range from 0.58 to 9.57  mg/L with 
a mean value of 2.2 mg/L. In the downstream delta, the 
Sr ranges between 0.8 and 16.8 mg/L with a mean value 
of 7.5  mg/L. The boron concentration in the upstream 
ranges between 0.16 and 1.27 mg/L with a mean value of 
0.6 mg/L, in the downstream delta, it ranges from 1.1 to 
9.1 mg/L with a mean value of 2.8 mg/L. The bromide in 
the delta ranges between 8.8 and 144 mg/L with a mean 
value of 46.8 mg/L. The rejected brine water samples pos-
sess very high concentrations of minor elements, espe-
cially bromide ions, while the water extract samples have 
lower concentrations of minor elements (Table 1).

4.3  Dissolved trace and heavy elements
The main source of dissolved elements in groundwa-
ter in rural desert areas mainly comes from the geo-
genic source due to leaching, dissolution processes, and 
interaction with the aquifer matrix [51]. The concentra-
tion of heavy and trace elements records high variation 
in the groundwater samples. The dissolved aluminum, 
iron, manganese, and zinc concentration in groundwater 
record higher variations, while the Cobalt, chromium, 
and copper show lower variations (Fig. 3). The aluminum 
concentration in groundwater ranges between 0.02 and 
0.75 mg/L, with a median value of 0.1 mg/L and an aver-
age value of 0.16  mg/L. The concentration of dissolved 
iron ranges between 0.034 and 4.6 mg/L, with a median 
value of 0.24  mg/L and an average value of 0.51  mg/L. 

Fig. 3 Box-Whisker plot of heavy metals concentrations for groundwater samples in the Alluvium aquifer related to the Permissible limit
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The manganese concentration ranges between 0.003 
and 0.09  mg/L, with a median value of 0.015  mg/L and 
an average value of 0.0 mg/L. The concentration of zinc 
ranges between 0.001 and 1.19  mg/L, with a median 
value of 0.026 and an average value of 0.089 mg/L.

5  Discussion
5.1  Origin of groundwater salinization
The fresh groundwater class has been recorded in the 
northern part of the study area close to the basement 
rocks, where the Quaternary aquifer receives consider-
able recharge through the underneath fractures, joints, 
and faults that enable surface and groundwater perco-
lation and enhance the subsurface recharge [59]. The 
samples with a high saline groundwater class have been 
recorded in the eastern and southern parts of the delta, 
demonstrating the effects of seawater incursion. The 
seawater intrusion is mainly due to withdrawals and the 
impact of injecting hypersaline water from desalina-
tion plants [24]. Figure  4 shows the spatial distribution 
of groundwater salinity, major cations and anions using 
kriging interpolation method. In Fig. 4a, the groundwa-
ter salinity increases from northwest to southeast, which 
coincides with the groundwater flow path due to leach-
ing and dissolution with the flow direction that reported 
by Shabana [68]. Groundwater salinity is made up of 
dissolved major ions. In all collected groundwater sam-
ples, the  Ca2+,  Mg2+,  Na+,  HCO3

−,  SO4
2−, and  Cl− ions 

typically make up most of the dissolved solid’s load. The 
primary components of carbonate rocks (limestone and 
dolomite) in the aquifer matrix are calcium and magne-
sium, readily dissolved in water as alkaline earth met-
als. They are mostly accused of water hardness and are 
typically present in natural water in dissociated form as 
bivalent ions. In the delta Dahab area, the calcium con-
centration ranges from 67 to 874 mg/L with a mean value 
of 420  mg/L, while magnesium concentration ranges 
from 5 to 1453  mg/L with a mean value of 264  mg/L 
(Fig.  4b, c). The illustration depicts the interaction of 
water and rock in an aquifer with a carbonate-rich sub-
strate and seawater mixing [7, 57, 79].

The alkali-metal group of the periodic table is domi-
nated by sodium. The primary source of sodium in the 
fresh groundwater class is the leaching of sedimen-
tary rocks like clay minerals. Due to the great solubil-
ity of sodium salts and their weakly-bonding nature to 
clay minerals and other adsorbents, the sea becomes 
enriched, and deposits eventually evaporate [50]. Natu-
ral freshwater typically has a sodium concentration of 
less than 200 mg/L, whereas seawater and brines have 
sodium concentrations of roughly 10,000  mg/L and 
25,000  mg/L, respectively [40]. The sodium levels in 
the investigated aquifer range from 250 to 17,600 mg/L, 

with a mean value of 3156  mg/L. The northwestern 
region, near the mountain’s granitic rock, has a lower 
sodium concentration, indicating a geogenic source of 
sodium (Fig.  4d). Due to weathering, mineral dissolu-
tion, and atmospheric  CO2 gas dissolution, bicarbo-
nates and carbonates are typically present in natural 
groundwater [63]. Groundwater’s bicarbonate concen-
trations range from 49 to 201 mg/L, with a typical value 
of 100 mg/L (Fig. 4e). The main contributors to sulfate 
in natural water are gypsum and anhydrite, which are 
contained in the aquifer matrix of the Quaternary aqui-
fer [40]. The decomposition of organic materials in the 
soil and leachable sulfates in fertilizers lead to further 
sulfate addition to groundwater [58].

The sulfate content in the alluvial aquifer ranges from 
179 to 7266  mg/L, with a mean value of 1689  mg/L 
(Fig.  4f ). The aquifer’s comparatively low sulfate con-
tents (less than 2000  mg/L) result from water–rock 
interaction mechanisms that cause leaching and dis-
solution. However, mixing with saltwater is primarily 
responsible for the greater sulfate amounts observed. 
Chloride in the groundwater is mostly produced by the 
dissolution of evaporite and halite found in the delta 
deposits [22]. Chloride levels in groundwater sam-
ples taken from the alluvial aquifer range from 333 to 
25,906 mg/L, with a mean value of 5062 mg/L (Fig. 4g). 
The concentrations of major cations  (Ca2+,  Mg2+,  Na+) 
and major anions  (HCO3

−,  SO4
2−, and  Cl−) decrease at 

the northeast while increasing at the southeast of the 
delta area (Fig.  4b–g). The lower ions concentrations 
recorded at the northwestern side indicate subsurface 
recharge from the fractured granitic rocks located 
upstream of Dahab watershed.

The Durov diagram [17] (Fig.  5) was employed to 
understand the groundwater system’s hydrochemical pro-
cess. The groundwater samples of various hydrochemi-
cal types illustrated most of the groundwater samples 
located in box  8, showing that the samples are (Cl-Mg) 
related to reverse ion exchange. Still, the rest of the sam-
ple located in box 9 shows that the groundwater samples 
(Cl-Na) indicate mixing of fresh and saline waters, possi-
bly influencing reverse ion exchange or halite dissolution. 
Otherwise, some samples are forced to boxes 4 and 5, 
meaning that  SO4 and Ca water types indicate a gypsum-
bearing sedimentary aquifer. This confirms the interac-
tion of water with the rock. In Fig. 6, the Sulin diagram 
[75] shows that most of the upstream groundwater (31, 
32, 34–47, and 44) have a  Na2SO4 water indicating mete-
oric water origin, while most of groundwater samples 
in the delta area have a  CaCl2 water type indicating old 
marine water due to the impact of the upwelling of deep 
saline water because of over pumping. The groundwater 
samples Nos. 1, 4, 19, 25, 27, 29, 40, and 42 have a  MgCl2 
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Fig. 4 Spatial distributions of groundwater salinity (TDS) and major ion concentrations in the study area, where a Total Dissolved Solids (TDS), b 
Calcium, c Magnesium, d Sodium, e Bicarbonate, f Sulfate and g Chloride
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Fig. 5 Durov plot for groundwater in alluvial aquifer indicating the hydrochemical processes involved [48]

Fig. 6 Sulin diagram for groundwater samples in Dahab watershed, South Sinai, Egypt
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water type as well as most of the reverse osmosis brine 
water samples indicating recent marine water.

5.2  Implication of seawater intrusion using minor 
elements

The result in Fig. 7 reveals that the higher silica concen-
tration appears in the main channel region due to the 
weathering of granitic basement rocks. However, the 
lower concentrations recorded are close to seawater due 
to seawater mixing as silica records lower concentra-
tion in the sea. In groundwater, the higher concentration 
of Sr, B, and Br in the South-East of the study area are 
associated with the rejected brine water, and seawater 
intrusion as these elements are used as a fingerprint of 
marine deposits. The reject brine water samples possess 
very high concentrations of minor elements, especially 

bromide ions, while the water extract samples have lower 
concentrations of minor elements (Tables 1, 2).

Figure 8 shows the relationship between the groundwa-
ter salinity and the Si, Sr, B, and Br (in mg/L). To illustrate 
the mixing breakthrough curves, the equation derived 
by Faure [30] has been used to demonstrate the extent of 
the average concentration of these minor elements in the 
rejecting brine water, water–rock extract, and seawater 
samples. In Fig.  8a–d, the groundwater samples plotted 
on the lower left sides close to the extract samples and 
samples collected from the upstream watershed indi-
cate meteoric recharge comes from upstream and the 
water–rock interaction is the dominating process affect-
ing the groundwater quality. However, groundwater sam-
ples plotted on the upper right displayed mixed with the 
rejected brine and seawater.

Fig. 7 Distribution of minor elements in groundwater (mg/L) for a Silica, b Strontium, c Boron, and d Bromide
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5.3  Evaluation of groundwater quality for human drinking
To evaluate the groundwater suitability for human drink-
ing, the World Health Organization [81] guideline has 
been used which indicates the permissible limits for 
salinity, major, minor and trace elements. The ground-
water in the study area has high salinity, only six sam-
ples are suitable for drinking, where the recorded salinity 
is less than 1000  mg/L. One sample is located down-
stream in the delta (No. 20) and eight samples are in the 
upstream watershed (31–37, inclusive and 44). The dis-
solved major ions including Ca, Mg and Na record higher 
concentrations, where most of the groundwater samples 
are exceeding the permissible limits recommended for 
drinking (Table  3). Because heavy metals cannot biode-
grade, they tend to accumulate in living organisms. In 
significant doses, heavy metals are known to be toxic or 
carcinogenic. The heavy metals Al, Cd, Co, Cr, Cu, Fe, 
Mn, Mo, Ni, Pb, and Zn are particularly important in 
groundwater. The dissolved amounts of chromium, cop-
per, and zinc in groundwater samples drawn from the 
alluvial aquifer in this research are lower than the World 
Health Organization’s allowed levels. In the alluvial aqui-
fer, 10% of aluminum, 38% of cadmium, 23% of iron, 8% 

of manganese, 36% of nickel, and 62% of lead concentra-
tions exceed the acceptable limit, according to the WHO 
[81].

5.4  Evaluation of groundwater quality for livestock 
and domestic

The chemical analysis data reported in (Table 1) are com-
pared to the standards’ limits (Table  4 and Fig.  9a) to 
determine the acceptability of groundwater for livestock 
and poultry. It is obvious that 3% of total groundwater 
samples in the alluvial have an excellent class (No. 20), 
19% are regarded as very satisfactory (Nos. 15, 19, 22, 26, 
28, and 30), 55% are satisfactory (Nos. 6, 7, 8, 9, 14, 16, 
17, 18, 24, 25, 26, 28, 29, 38, 39, 40 and 41), and 23% are 
deemed water with a risk class for livestock and poultry 
(1, 3, 4, 11, 12 and 42) in the alluvial groundwater tests.

Water for laundry and domestic applications should 
be soft or hard. In the alluvial aquifer, total groundwa-
ter hardness ranges from 20.8 to 7602.8 mg/L, with an 
average value of 1745.7  mg/L (Table  5). According to 
the permitted limit of hardness indicated by Sawyer 
and Mc Carty [67], 87% of the collected groundwater 
samples have a hardness level above 300 mg/L. So, they 

Fig. 8 Mixing model cumulative curves for a Silica (Si), b Strontium (Sr), c Boron (B), and d Bromide (Br)
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are unfit for residential and laundry usage (Fig.  9b). 
No. 20 is the only groundwater sample collected from 
the study area evaluated as hard water; while the other 
groundwater samples consist of very hard water and 
not suitable for domestic and laundry uses.

5.5  Evaluation of groundwater for irrigation
5.5.1  Sodium percentage (Na%)
The salt content in irrigation water is generally 
expressed as a percentage (%). According to [82], 
the Na% is a standard criterion used to determine 

Table 3 Water quality guidelines for human drinking

Parameter WHO 
guidelines 
(ppm)

Groundwater Samples not exceeding the Guide lines Groundwater samples exceeding the GUIDE lines

Salinity (TDS) 1000 31, 32, 33, 34, 35, 20 36, 37, 15, 27, 28, 22, 19, 25, 30, 14, 38, 24, 41, 18, 29, 9, 44, 17, 
16, 6, 39, 40. 7, 8, 26, 10, 23, 1, 42, 3, 12, 4, 11, 13

Magnesium 50 20, 34, 31, 32, 6, 15, 33, 35, 7, 27, 22, 8, 41, 14, 36, 28, 19, 25 37, 40, 18, 17, 10, 29, 24, 9, 39, 38, 26, 16, 30, 44, 23, 3, 12, 1, 
11, 42, 4, 13

Calcium 75 32, 34, 31, 20, 35 33, 15, 37, 36, 27, 22, 25, 28, 19, 30, 29, 6, 44, 24, 9, 39, 8, 3, 10, 
40, 41, 38, 26, 18, 7, 12, 1, 4, 14, 16, 11, 17, 42, 13, 23

Sodium 200 31, 32, 34, 35, 33, 36, 37 20, 15, 27, 28, 22, 14, 44, 30, 38, 17, 19, 24, 41, 18, 16, 25, 29, 
40, 9, 39, 7, 6, 8, 26, 10, 23, 1, 42, 12, 3, 4, 11, 13

Aluminum 0.2 3, 41, 28, 38, 22, 27, 40, 35, 39, 20, 26, 36, 14, 11, 30, 19, 16, 
44, 15, 25, 31, 32, 37, 17, 24, 29, 9, 7, 6, 8, 10, 1, 42, 12, 4, 13

23, 18, 34, 33

Cadmium 0.003 10, 18, 3, 41, 28, 27, 40, 35, 20, 36, 14, 30, 16, 44, 15, 25, 23, 
34, 33, 31, 24, 9, 7, 42, 13

12, 19, 1, 26, 6, 37, 11, 8, 29, 32, 22, 39, 17, 38, 4

Cobalt – – –

Chromium 0.05 All samples –

Copper 0.05 All samples –

Iron 0.3 42, 13, 31, 38, 20, 28, 29, 6, 40, 35, 7, 11, 32, 30, 19, 1, 37, 10, 
12, 12, 26, 8, 22, 17, 4, 3, 41, 27, 24, 9

39, 23, 18, 25, 16, 36, 44, 34, 15, 33, 14

Manganese 0.05 20, 7, 1, 41, 22, 17, 32, 38, 31, 8, 19, 40, 39, 10, 35, 37, 18, 4, 
30, 16, 11, 36, 25, 34, 23, 9, 28, 6, 29, 42, 24, 26

27, 44, 33, 3, 13, 12, 15, 14

Molybdenum – – –

Nickel 0.02 3, 13, 39, 44, 31, 41, 16, 18, 19, 40, 25, 20, 7, 1, 35, 37, 9, 33, 
12, 28, 6, 24

23, 36, 42, 17, 8, 10, 22, 11, 14, 15, 38, 27, 32, 30, 34, 29, 26, 4

Lead 0.01 23, 17, 22, 32, 26, 4, 39, 41, 16, 19, 40, 20, 1, 33, 12 38, 14, 35, 37, 28, 25, 15, 30, 6, 3, 13, 36, 29, 9, 42, 27, 11, 7, 10, 
18, 44, 24, 34, 31, 8

Zinc 3.0 All samples –

Table 4 Guide to the use of saline waters for livestock and poultry (National Academy of science (NAS) and National Academy of 
Engineering (NAE) [55])

Salinity (TDS), mg/l Classification Characters

Less than 1000 Excellent Excellent for all classes of livestock and poultry
Sample Nos. (20, 31, 32, 33, 34 and 35)

1000 to 3000 Very satisfactory Very satisfactory for all classes of livestock and poultry. May cause temporary and mild diarrhea in livestock not 
accustomed to them or watery dropping in poultry
Sample Nos. (15, 19, 22, 27, 28, 36 and 37)

3000 to 5000 Satisfactory Satisfactory for livestock but may cause temporary diarrhea or be refused at first by animals not accustomed 
to them. Poor water for poultry often causes water faces, increased mortality, and decreased growth, espe-
cially in turkeys
Sample Nos. (6, 7, 8, 9, 10, 14, 16, 17, 18, 24, 25, 26, 29, 30, 38, 39, 40, 41 and 44)

More than 5000 mg/l Not acceptable Unfit for poultry and probably for swine. Considerable risk in using for pregnant or lactating cow, horses or 
sheep, or for the young of these species
Sample Nos. (1, 3, 4, 11, 12, 23 and 42)
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Fig. 9 Evaluation of groundwater in delta Dahab watershed for different purposes a Suitability of groundwater for livestock and poultry. b 
Suitability of groundwater for domestic and laundry uses based on hardness values. c Evaluation of groundwater based on salinity for irrigation. d 
Evaluation of groundwater based on sodium percent (Na%) for irrigation
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the appropriateness of natural waters for irrigation. 
Sodium percent in groundwater samples determines its 
suitability to irrigation purposes (Table 6). Based on the 
Na% of the collected groundwater sample it is clear that 
84% of groundwater samples in the alluvial aquifer are 
outside the diagram because their electrical conductiv-
ity (EC) exceeds 5000 μmohs/cm and are unsuitable for 
irrigation (Figs.  9c, d and 10). While 3% fall into per-
missible to doubtful (No.20), 3% go into the doubtful to 

unsuitable category (No. 15), and 10% fall into unsuit-
able category (22, 27 and 28).

5.5.2  Sodium adsorption ratio (SAR)
The SAR is a measurement of the suitability of water 
for use in agricultural irrigation purposes. High sodium 
ions concentration decreases the permeability of the 
soil and soil structure [77]. When the SAR value is high, 
salt in irrigation water may replace  Ca2+ and  Mg2+ ions 
in the soil, potentially inflicting significant harm. To 
evaluate waters for irrigation, a monogram is frequently 
utilized. The specific conductivity (mhos/cm), a func-
tion of the groundwater salinity against SAR, is plotted 
in this monogram. The water is divided into sixteen dif-
ferent quality classes (C1-S1, C1-S2, C1-S3, etc.) based 
on four salinity classes (C1 to C4) and four SAR classes 
(S1 to S4) (Table 7, Fig. 11).

84 percent of the groundwater samples from the allu-
vial aquifer are not represented on the graph because 
their Electrical conductivity (EC) values, calculated 
using US standards, are greater than 5000 mhos/cm. 
The classification of groundwater includes a salinity 
hazard graph. The groundwater samples plotted out-
side of the diagram are deemed unfit for irrigation, and 
9% of samples in the alluvial aquifer are categorized as 
intermediate water class (C4-S2), 7% as moderate water 
class (C3-S2) and (C4-S1) (Fig. 12).

5.5.3  Permeability index (PI)
Since its creation in 1964 [16], the permeability index 
(PI) has been primarily used to assess a water’s suit-
ability for irrigation. Three categories for PI were 
established,Class I and II waters are regarded as appro-
priate for irrigation; however, class III waters are not.

The classification system based on the PI has been 
used to determine the suitability of groundwater for 
irrigation. The alluvial aquifer’s documented PI values 
range from 51.76 to 101.40, with an average of roughly 
73.4. According to the values for the permeability index, 
69% of groundwater samples from the alluvial aquifer 
are out of curve because their Electrical conductivity 
(EC) is greater than 5000 mhos/cm, 3% are classified as 
class 2, and 13% are classified as class 1 (Fig. 12).

5.5.4  Potential salinity (PS)
The increase of potential salinity (PS) is a function of 
the dissolved chloride and sulfate (meq/L) in irriga-
tion water. The higher SP value increases the osmosis 
soil pressure, greatly affects the plant roots soil water 

Table 5 Suitability of water for laundry usage according to its 
total hardness [67]

Classification Total hardness 
(mg/l as  CaCO3)

Soft < 75

Moderately hard 75–150

Hard 150–300

Very hard > 300

Table 6 Classification of groundwater based on Na% (Wilcox 
[82])

Water quality Sodium (%)

Excellent < 20

Good 20–40

Permissible 40–60

Doubtful 60–80

Unsuitable > 80

Fig. 10 Groundwater classification for irrigation concerning EC and 
sodium percent (Na%)
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uptake, and damages the root system [12, 16, 64, 78]. 
The estimated SP values for the groundwater tap-
ping the Quaternary aquifer range between 11.2 and 
805  meq/L, with a mean value of 148.9  meq/L and a 
median of 56.6  meq/L. Based on 42 classifications, all 

Table 7 Classification and interpretation of the water quality for irrigation according to the U.S. Salinity Laboratory Staff [100]

Conductivity (EC) Degree Range (ppm) Usage

(A) Based on salinity concentrations

C1 Low salinity 100–250 Used for irrigation with most crops on most soil

C2 Medium salinity 250–750 Used if moderate leaching occurs

C3 High salinity 750–2250 It cannot be used with restricted drainage

C4 Very high salinity 2250–5000 Not suitable for irrigation under ordinary condition

Sodium percent Degree Range (ppm) Usage

(B) Based on Sodium concentrations

S1 Low Sodium 0–10 Can be used for all soils

S2 Medium Sodium 10–18 Preferably used with good permeability

S3 High Sodium 18–26 Good soil management essential

S4 Very high Sodium 26–100 Unsuitable for irrigation except at low salinity

Fig. 11 US. Lab. of irrigation water for the groundwater in Delta Wadi 
Dahab

Fig. 12 Groundwater classification for irrigation based on PI

Table 8 Classification of groundwater based on SP values

Aquifer Salinity potential Classes % of Samples

Quaternary < 5 Good to excellent 0

5 < SP < 10 Medium 0

> 10 Poor 100
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the Quaternary groundwater samples consist of poor 
water class (Table 8).

5.5.5  The Kelly ratio (KR)
The Kelly’s ratio [44] indicates the effect of an overabun-
dance of dissolved sodium ions in irrigation water. With 
a mean value of 2.2 meq/L and a median of 1.6 meq/L, 
the predicted KR ratio ranges from 0.8 to 8.9 meq/L. 9.6% 
of the samples are appropriate for irrigation, according 
to the estimated KR values for the Quaternary ground-
water, whereas the remaining samples (90.4) are deemed 
unsuitable (Table 9).

5.5.6  Magnesium ratio
Since calcium and magnesium are often in equilibrium in 
water, the magnesium hazard index (MH) was created by 
Paliwal [61]. The crop production suffers due to the high 
magnesium hazard value (> 50%) when the soil becomes 

more alkaline. Magnesium hazard values for the alluvial 
aquifer range from 5.57 to 82.19%. 16% of groundwater 
samples in the alluvial aquifer are appropriate for irriga-
tion, according to the computed MH values in Table  1, 
whereas 84% are unsuitable and could reduce agricultural 
productivity.

5.6  Water Quality Index for all uses using Water Quality 
Index (WQI)

Water Quality Index integrated with statistics have been 
used to evaluate groundwater aquifers in arid regions for 
drinking and irrigation [7, 33, 34]. For various purposes, 
the groundwater quality in Delta Wadi Dahab has been 
rated using the Water Quality Index (WQI) program ver-
sion 1.0. Three groups of groundwater in the study area 
have been identified (Figs.  13, 14). Group I for coastal 
saltwater is situated near desalination plants and is 
mostly impacted by the infusion of reject water. Group 
II describes the brackish groundwater samples located at 
the main channel of the flooding path and the upstream 
groundwater samples. Group III defined groundwater 
samples near granitic rocks at the uphill mountainous 
terrain in the northern regions of the study area. The 
model’s output demonstrates that the groundwater in 
Group I is marginal and unfit for cattle irrigation, human 

Table 9 Classification of groundwater based on KR values

Aquifer KR Water quality % of Samples

Quaternary KR < 1 Good for irrigation 9.6

KR > 1 Not suitable 90.4

Fig. 13 Suitability of groundwater for different uses based on WQI values a Group [I], b Group [II], and c Group [III]
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drinking, aquatic activities, or enjoyment. Although good 
for recreation, Group II groundwater samples are mar-
ginal for irrigation and cattle. They are not acceptable 
for drinking or aquatic use. Group III groundwater is 
great for recreation, mediocre for irrigation, inappropri-
ate for drinking and aquatic use, and acceptable for cat-
tle. Group III has relatively acceptable groundwater, and 
these groundwater samples receive significant recharge 
from the basement-fractured mountainous igneous 
racks.

6  Conclusion
Groundwater is the main source of human potable uses 
and agriculture in the Delta Wadi Dahab, southeast Sinai. 
The results show that the groundwater salinity exceeds 
the recommended international standard limit for human 
drinking. The major and minor elements (Si, B, Br, and Sr) 
give good insights into delineating the recharge sources 
and investigate the geochemical processes affecting 
groundwater quality in coastal arid groundwater aquifers. 
The main recharge for the delta alluvial aquifers comes 
mainly from the northeastern side of the fractured base-
ment granitic rocks in the upstream watershed. The water–
rock interaction, seawater mixing, and implications of 
brine reject water decline the groundwater quality in the 
delta. According to the World Health Organization, stand-
ard limits, most groundwater samples in the alluvial aqui-
fer (91%) are unsuitable for drinking. 10% of aluminum, 

38% of Cadmium, 23% of iron, 8% of manganese, 36% of 
nickel, and 62% of lead concentrations in the alluvial aqui-
fer exceed the permissible limit. Chromium, copper, and 
zinc concentrations in all groundwater samples tapped in 
the alluvial aquifer are below the allowable limit. To evalu-
ate the suitability of groundwater for livestock and poultry, 
15% of the alluvial aquifer groundwater samples have an 
excellent class, 18% are considered very satisfactory, 49% 
are satisfactory, and 18% are considered as water having a 
risk class for livestock and poultry. Based on SAR, Na %, 
MH, and PI, 82% of total samples are unsuitable for irriga-
tion. The reverse osmosis brackish groundwater desalina-
tion is crucial for providing sustainable freshwater and 
cost-effective for human drinking and other purposes.
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