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Abstract 

Background  COVID-19 was declared a pandemic by the World Health Organisation in 2020 after its outbreak 
in December 2019 in Wuhan, China. Since researchers have been working to develop specific drugs to cure COVID-
19. COVID-19 is caused by the severe acute respiratory cornonavirus2 or popularly known as SARS-CoV2 attacking 
the ACE2 receptor in the human respiratory system. The main protease translated by the viral genome is a highly 
conserved protein that plays a crucial role in viral protein replication and transcription. Compounds such as Darunavir 
and danoprevir have been tested to show potential biological activity against the viral protein, but a high mutation 
rate defies a permanent solution to this problem.

Results  In this study, virtual screening of natural ligands (around 170,000 molecules) and FDA-approved repurposed 
drugs retrieved from ZINC Database was carried out against SARS-CoV2 main protease (PDB ID: 7DJR). Molecular 
coupling was performed for the top three ligands, where ZINC70699832 showed a significantly good binding affinity 
of − 11.05 kcal/mol. It has shown an interaction affinity for the residues THR-25, PHE-140, LEU-141, ASN-142, GLY-143, 
SER-144, CYS-145, MET-165, GLU-166, GLN-189 and GLN-192. The molecular dynamic simulation was also performed 
using GROMACS, for all complexes where the ZINC70699832–7DJR complex showed stability in terms of root mean 
square deviation.

Conclusion  The study recommends that ZINC70699832 has great potential to serve as a potent inhibitor of the main 
protease of SARS-CoV2 main protease.

Keywords  COVID19, Main protease, Natural products, ZINC70699832, Molecular docking, Molecular dynamic 
simulations

1 � Background
Coronavirus Disease or COVID-19 had its first reported 
cases in Wuhan, China, in December 2019. It spreads like 
a forest fire and was soon declared a global pandemic by 
the World Health Organization (WHO). A virus causes 

this disease, severe acute respiratory syndrome corona-
virus 2 (SARS-CoV2). SARS-CoV2 is a single-stranded, 
wrapped, unbroken, positive sense RNA virus with about 
30,000 nucleotides coding for 9860 amino acids [1]. The 
appearance of the virus is somewhat like a crown due to 
the presence of the ‘spike’ glycoprotein. The virus genome 
codes for several structural proteins like the spike pro-
tein, membrane proteins, envelope proteins, nucle-
ocapsid proteins, and accessory proteins. The spike (S) 
glycoprotein plays an important role in virus infectivity, 
as one of its prime functions is to be the prime corrupter 
of host immunity and the identification of target receptor 
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[2]. It is observed that for successful entry into cell targets 
of human host the S-Glycoprotein and the host trans-
membrane serine protease 2 (TMPRSS2) play a crucial 
role in binding to the angiotensin-converting enzyme 2 
(ACE2) receptors [3–5]. The SARS-CoV2 genome has 
10 open reading frames (ORF). ORF1a/b consists of 
about 2/3rd of viral RNA that codes for polyprotein 1a, 
polyprotein 1b and 1–16 non-structural proteins. The 
remaining ORFs code for structural proteins, such as 
spike proteins, membrane proteins, envelope proteins, 
nucleocapsid proteins, and accessory proteins. ORF1ab is 
translated into the pp1ab polyprotein through the 1-ribo-
somal frame shift mechanism [6–8] followed by proteo-
lytic processing that results in the formation of the main 
protease Mpro, also called 3C-like protease(3CLpro). Mpro 
is responsible for proteolytic processing [9–12] (cleav-
ing) at 11 sites that take part in the formation of repli-
case transcriptase complex. These complexes are vital for 
virus replication. Mpro is found to be an essential expres-
sion of the viral genome replication and is coded by the 
nsp5 gene in the viral genome [9]. The Mpro protease has 
a mass of around 33.8  kDa [10] and is distinguished as 
a self-cleavage protein [11, 12]. It consists of a homodi-
mer subdivided into two protomers (A and B) that have 3 
well-defined domains (Additional file 1: Fig. S1) [13]. The 
first two domains I and II are made of β-barrels forming 
a chymotrypsin structure and bearing a catalytic couple 
histidine 41 (HIS41), and cysteine 145 (CYS145) [6–14]. 
Domain III is made up of α-helices [15]. For catalytic 
interaction, Mpro needs to dimerize, establishing interac-
tions with both N- and C- terminal domains of the other 
protomer [16].

It is well known that the main protease (Mpro) of SARS-
CoV-2 plays a crucial role in the maturation of several 
viral proteins like such as RNA-dependent RNA poly-
merase (RdRp), and Nsp4-Nsp16. The dependency of the 
virus on Mpro, and given that no human proteases share 
similarity with it, makes this protein an optimistic drug 
target [17–19], and it is highly preserved (96.1% similar-
ity) among coronaviruses [20]. Hence, there have been 
efforts to discover therapeutic candidates targeting Mpro 
using various computer aided drug designing methods 
like virtual screening methods based on pharmacoph-
ore, molecular docking, and molecular dynamic simula-
tion [21–28]. Drugs such as Danoprevir, which is legally 
used for the treatment of chronic Hepatitis C in China, 
and Darunavir, which inhibits the maturation of virus 
particles by obstructing polypeptide cleavage in infected 
cells [29], have been used as repurposed drugs to inhibit 
virus protease clinically [30, 31]. Su et al. [32] have repur-
posed the inhibitory potential of Shuanghuanglian oral 
preparation a traditional Chinese patented medicine for 
3CL protease, where Baicalein an active compound from 

the extract was observed productively embedded in the 
core of the substrate-binding pocket by interacting with 
two catalytic residues acting as a ‘blockade’ in front of 
the catalytic dyad, preventing substrate access within the 
active site. Similarly, Al-Zahrani [33] obtained 51 phy-
tochemicals from the extract of Juniperus procera and 
docked them against the main protease of COVID-19. 
Among them, rutin (Additional file 1: Fig. S2) and lopina-
vir emerged as the best performing molecules.

Rutin, or rutoside or sophorin, is a glycoside that 
combines the flavonol quercetin and the disaccharide 
rutinose. Rutin and many other flavonols are under ini-
tial clinical research for their potential biological activity 
in post-thrombotic syndrome, venous insufficiency, and 
endothelial dysfunction. However, there was no prime 
evidence for safe and effective use as of 2018 [34–36]. 
Compared to other flavonols, rutin has a lower bio-
availability due to poor absorption, high metabolism, 
and rapid excretion, making it unsuitable for therapeu-
tic use [34]. Although many in silico studies have been 
conducted for the therapeutic applications of Rutin 
for the main protease SARS-CoV-2 [37–41], there is 
an acute need to conduct more experiments towards 
bioavailability.

2 � Methods
The graphical representation of the materials and method 
can be expressed as in Fig. 1.

2.1 � Protein selection and structure preparation
Natural compounds were analysed using in silico 
approaches using the crystal structure of SARS-CoV-2 
main protease (no ligand) (PDB ID–7DJR) [42] involved 
in viral replication of the SARS-CoV-2 genome that were 
downloaded in PDB format from the RCSB Protein Data 
Bank website (https://​www.​rcsb.​org/) R-value work was 
0.166. R-value free was 0.201 with a resolution of 1.45 Å 
selected for the present study. Specifically, this protein 
was chosen because not enough in silico studies have 
been performed using this protein and sole intention of 
the study is to inhibit the disease in its premature state, 
i.e. the monomer state. 7DJR has only one chain used 
to prepare macromolecules, and other coexisting water 
molecules and non-standard residues were removed 
using Biovia Discovery Studio 2021 Client. To produce 
a protonated state at physiological pH, build up geom-
etry optimisation, addition of polar hydrogen, Kollman 
charges and Gasteiger charges, one uses Autodock4.2.

The three-dimensional structures of all the Natu-
ral Products and FDA-approved [43, 44] were retrieved 
from the ZINC database (https://​zinc.​docki​ng.​org) 
[45]. Energy minimisation, geometrical conforma-
tion, and hydrogen bond were made and the file format 

https://www.rcsb.org/
https://zinc.docking.org
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was converted from SDF to PDBQT using the Open 
Babel programme [46]. In the complete study, rutin 
(ZINC4096846) along with the FDA-approved drugs was 
considered as reference molecules.

2.2 � Virtual screening
In order to investigate biological activity, the prime 
objective of molecular docking was to assess the binding 
interaction between the protein and ligand molecules. 

Fig. 1  Working pipeline for proteomic investigation
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For the primary screening of the library, AutoDock 
Vina [47, 48] (an open-source programme for molecu-
lar docking) was used. Due to the massive size of the 
library, the process had to be automated. For automa-
tion purposes, a shell script was written that iterates 
the process of screening and stores results in a different 
directory.

2.3 � Molecular docking
AutoDock4 [49] was used to perform individual molec-
ular docking of top-screened ligand molecules (that is, 
natural products and FDA drugs) to gain confidence in 
the results. All the molecular docking was performed 
using a Genetic Algorithm, and exhaustiveness (or no. 
of runs) was set to 100. The size of the grid was adjusted 
according to the receptor binding pocket at coordinate X, 
Y, Z that were set around the centroid of the active site 
to centre X = 10.430, Y = − 0.021, Z = 20.536 and dimen-
sion coordinates at X = 72, Y = 64, Z = 60 (as in Addi-
tional file 1: Fig. S4). The complexes of all the files were 
obtained and were visualised with the help of PyMOL.

2.4 � Molecular dynamic simulation
Molecular dynamics simulation studies were carried out 
by using GROMACS [50]. Swiss Param (https://​www.​
swiss​param.​ch/) [51] server was used for ligand topology 
generation. The MOL2 coordinates of the ligand molecule 
were uploaded and the server provided the zip file for the 
ligand topology. The force field was set to CHARMM27 
[52], the water model was TIP3, the box type was set to 
be cubic for the apo-protein and the dodecahedron for 
the complexes, respectively, the salt type was NaCl, the 
energy minimisation steps were set to be 50,000, the equi-
libration of NPT and NVT was carried out at 300 K with 
a simulation time of 100 ns. This process was repeated for 
all of the complexes, including the reference molecule, 
i.e. Rutin, FDA drug, and the apo-protein as well. All the 
results were then individually analysed.

2.5 � Physiological parameters
Pharmacokinetic studies and toxicological characteris-
tics are an important criterion for the selection of poten-
tial drug candidates. As an alternative to clinical trials, 

Fig. 2  Top three screened ligands (A ZINC70669786, B ZINC70699832, C ZINC85893430)

https://www.swissparam.ch/
https://www.swissparam.ch/
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computational methods were developed to assess the 
bioactivity of a potential drug candidate [53]. ADMET-
lab 2.0 (https://​admet​mesh.​scbdd.​com/) [54] is an online 
ADME predictor that takes smile notation as input and 
tabulates the result of physiological characters.

3 � Results
3.1 � Virtual screening and molecular docking
The results observed for virtual screening were recorded 
considering the exhaustiveness to 8, and the substan-
tial data set was tabulated, and the ZINC85893430, 
ZINC70699832 and ZINC70669786 (structures given 
below Fig.  2) were recorded as top 3 molecules with 
−  12.8, −  11.7 and −  11.5  kcal/mol ΔG◦, respectively. 
These three top molecules were utilised for further 
experiments against SARS-CoV-2 Mpro. Whereas rutin 
and danoprevir (Additional file  1: Table  S1) had signifi-
cantly less the binding affinity of −  7.39  kcal/mol ΔG0 
and − 9.8 kcal/mol ΔG0.

To increase the confidence in the observed bind-
ing affinities, another docking with an iteration of 
100 Genetic Algorithms run was performed and the 
results obtained for the above molecules were tabulated 
(Table 1).

The complexes received were uploaded to the protein–
ligand interaction profiler (PLIP) [55], an online web 
server to study the protein–ligand interaction. The out-
put “. pse” file was visualised using PyMOL (Fig. 3),

3.2 � Molecular dynamic simulation
The molecular dynamic simulation of all the samples was 
carried out on GROMACS using the CHARM27 force-
field, water model was TIP3, the box-type was Cubic and 
Dodecahedron, the salt-type was NaCl, the energy mini-
misation steps were set to be 5000, NPT and NVT equi-
libration was carried out at 300 K with a simulation time 
of 100 ns. The results obtained are shown below (Figs. 4, 
5, and 6).

Table 1  Table showing a summary of molecular docking performed on AutoDock4 (Bold residues are Hydrogen bond interactions)

Sl. No Small molecules Binding energy (ΔG°) 
in (kcal/mol)

Estimated inhibitory 
constant (Ki)

Interacting residues (bold are 
hydrogen residues)

Residues in 
hydrophobic 
regions

1 ZINC70669786 − 12.03 1.52 nM (nanomolar) CYS-44 THR-25,
MET-49,
MET-165,
GLU-166

2 ZINC70699832 − 11.05 3.69 nM (nanomolar) PHE-140,
ASN-142,
GLY-143,
SER-144,
CYS-145,
GLU-166,
GLN-192
HIS-41 (π-stacking)

THR-25,
LEU-141,
ASN-142,
MET-165,
GLN-189

3 ZINC85893430 − 10.91 10.01 nM (nanomolar) ARG-4,
LYS-5,
LYS-137,
HIS-172

LYS-5,
LYS-137,
SER-284,
PHE-291

4 Danoprevir − 9.8 1.75 nM (nanomolar) 237-TYR​ 237-TYR,
238-ASN,
276-MET,
286-LEU

5 ZINC4096846 (Rutin) − 7.39 3.84 µM (micromolar) THR-26,
HIS-41 (Salt-bridge),
SER-46,
GLY-143,
SER-144,
CYS-145,
HIS-163,
GLU-166

MET-165,
GLU-166

https://admetmesh.scbdd.com/
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Fig. 3  Complex formed by A ZINC70699832, B ZINC70669786, C ZINC85893430, D ZINC4096846 (Rutin), E Danoprevir (FDA drug) visualised 
in PyMOL
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Fig. 4  RMSD comparison of protein–ligand complexes with the apoprotein. A ZINC70699832, B ZINC70669786
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Fig. 5  RMSD Comparison of protein–ligand complexes with the apo-protein. A ZINC85893430, B Danoprevir (highest screened FDA drug)
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3.3 � Physiological parameters
The physiological quality or ADMET scores of the ZINC 
molecules were examined and tabulated from ADMET-
lab 2.0 on the basis of molecular weight, Log P, and Lipin-
ski drug likeliness. From Table  2, the data suggest that 
among all the compounds ZINC70699832 has the high-
est potency to be a drug molecule due to least violations.

4 � Discussion
4.1 � Molecular docking
It is observed that among complexes (Fig.  3) 
ZINC70669786 has the highest binding energy of 
−  12.03  kcal/mol but due to its large size and sterically 
strained structure it is not able to fit itself in the active 
cavity and thus, has very few hydrogen bonds. Therefore, 

Fig. 6  RMSD Comparison of protein–ligand complexes with the apo-protein. A ZINC4096846 (Rutin)

Table 2  Physiological parameters checked in ADMETlab2.0

Sl. No Small molecules Molecular weight 
(g/mol)

No. of hydrogen bond 
acceptor

No. of hydrogen 
bond donor

Log P Lipinski 
rule (No. of 
violations)

1 ZINC70669786 604.95 4 2 9.07 2; MOW > 500,
logP <  = 5

2 ZINC70699832 548.49 6 3 3.24 1; MOW > 500

3 ZINC85893430 792.87 10 0 2.98 2; MOW > 500,
NorO > 10

4 Danoprevir 731.30 14 3 3.77 2; MOW > 500,
NorO > 10

5 Rutin (reference) 610.52 16 10 − 1.29 3; MOW > 500,
NorO > 10,
NHorOH > 5
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ZINC70669786 cannot interact with the crucial residues 
such as GLU-166 responsible for dimerisation of the pro-
tein [56], GLN-189 which is responsible for catalysis [57], 
HIS-41 and CYS-145 responsible for the formation of the 
catalytic dyad at the N and C terminal of the protein [6–
14]. On the other hand, ZINC70699832 has shown a bind-
ing affinity of − 11.05 kcal/mol and interactions at all the 
critical active site residues, while ZINC4096846 (Rutin, ref-
erence) has also interacted with critical residues but failed 
to interact with GLN-189 responsible for catalysis, unlike 
ZINC70669832 and also has a very low binding affinity of 
− 7.39 kcal/mol. Both of the molecules have a perfect fit-
ting in the active site cavity. In addition to conventional 
hydrogen bonds and hydrophobic interactions reported in 
the active site cavity, a π-stacking and a salt bridge forma-
tion over HIS-41 residue can also be seen. π-stacking is a 
non-bonding interaction, whereas a salt bridge is an ionic 
interaction both seemingly increase the stability of the 
complexes formed. ZINC85893430 and the FDA-approved 
drug danoprevir have a binding affinity of − 10.91 kcal/mol 
and − 9.8 kcal/mol, respectively, but due to their large size 
and sterically strained structure, ZINC85893430 and dano-
previr are unable to fit themselves in the active site cavity. It 
attaches itself to a completely different position on the pro-
tein that may have some unknown function.

4.2 � Molecular dynamic simulation
Figure  4 depicts the RMSD comparison of complexes 
formed by ZINC70699832 and ZINC70669786 having a 
stable deviation under 2 Å and 4 Å, respectively. The spikes 
in the graphs can be explained by the high presence of loops 
in the protein structure. Complex like ZINC85893430 due 
to their steric properties and massive size was not able to 
pull off a stable simulation and has shown considerable 
high deviation like 40 Å as shown in Fig. 5A. Control set-
ups like danoprevir  have shown a stable RMSD graph in 
Fig. 5B, but the stability difference is much higher (around 
10 Å) from that of the apoprotein molecule, thus deeming 
it unfit to be a repurposed drug. The other control mole-
cule ZINC4096846 or rutin has a seemingly unstable simu-
lation pattern as shown in Fig. 6A. The RMSD differences 
between the apoprotein and protein-rutin complexes are 
not very high, but the complex struggled to attain stability 
throughout the simulation. From the above representation 
of RMSD graphs, judging an explicit drug molecule might 
be a difficult task but among the complexes, and it is evi-
dent that ZINC70699832 has shown better stability than 
the rest of the samples as well as control molecules.

5 � Conclusion
This study mainly focuses on a swift pipeline for drug dis-
covery. The proposed molecule ZINC70699832 has an 
optimum binding affinity of −  11.05  kcal/mol, covering 

almost all the important residues in the active site cavity of 
the protein like GLN-189, GLU-166, HIS-41, CYS-145 just 
like the reference molecule. The protein-ZINC70699832 
complex has also shown a stable molecular dynamic simu-
lation rather than a protein-reference complex. Drug likeli-
ness of this compound is also higher than the others. This 
molecule can be used as a lead in a pharmacophoric study 
to produce even better results than ZINC70699832.
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