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Abstract 

Background  Neuroinflammation is a key pathological feature of a wide variety of neurological disorders, includ-
ing Parkinson’s, multiple sclerosis, Alzheimer’s, and Huntington’s disease. While current treatments for these disorders 
are primarily symptomatic, there is a growing interest in developing new therapeutics that target the underlying 
neuroinflammatory processes.

Main body  Marine invertebrates, such as coral, sea urchins, starfish, sponges, and sea cucumbers, have been 
found to contain a wide variety of biologically active compounds that have demonstrated potential therapeu-
tic properties. These compounds are known to target various key proteins and pathways in neuroinflammation, 
including 6-hydroxydopamine (OHDH), caspase-3 and caspase-9, p-Akt, p-ERK, p-P38, acetylcholinesterase (AChE), 
amyloid-β (Aβ), HSF-1, α-synuclein, cellular prion protein, advanced glycation end products (AGEs), paraquat (PQ), 
and mitochondria DJ-1.

Short conclusion  This review focuses on the current state of research on the neuroprotective effects of compounds 
found in marine invertebrates and the potential therapeutic implications of these findings for treating neuroinflam-
matory disorders. We also discussed the challenges and limitations of using marine-based compounds as therapeu-
tics, such as sourcing and sustainability concerns, and the need for more preclinical and clinical studies to establish 
their efficacy and safety.
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Graphical abstract

1 � Background
The process of neuroinflammation is intricate, encom-
passing the stimulation of immune cells and the dis-
charge of inflammatory substances within the nervous 
system [1]. This process can destroy neurons and induce 
the progression of neurodegenerative diseases, such as 
Parkinson, multiple sclerosis, Alzheimer, and Hunting-
ton. Recently, diseases-related neuroinflammatory has 
become a serious problem. More than 50 million peo-
ple in the world have been affected, and predicted will 
increase to  triple  in  2050 [2]. Studying neuroinflamma-
tion presents significant challenges, as it proves not only 
difficult to study in humans but also presents striking 
differences when modeled in animal systems. However, 
ample evidence suggests that neuroinflammation may 
contribute to various brain disorders, such as Alzheimer’s 
disease, and this area of investigation has been signifi-
cantly overlooked and inadequately supported, resulting 
in a shortage of research in the field [3]. While current 
treatments for these diseases are primarily symptomatic, 
there is a growing interest in developing therapies that 
target the underlying neuroinflammatory processes.

Marine drugs have garnered attention as a promising 
source for developing drugs targeting neuroinflamma-
tion [4]. Scientists are exploring marine organisms as a 
potential source of drugs for neuroinflammatory diseases 
because these organisms have evolved unique defense 
mechanisms against pathogens and predators in their 

aquatic environment. As a result, they produce a wide 
range of bioactive compounds with potential therapeutic 
properties, including anti-inflammatory, antioxidant, and 
neuroprotective effects [5]. Certain marine invertebrate 
compounds have been found to target essential proteins 
and pathways in neuroinflammatory therapy, including 
prions, α-synuclein, and amyloid β, which are known to 
form plaques and directly activate microglia, contrib-
uting to chronic inflammation. According to reports, 
Lamellosterol C from Lamellodysidea cf. Chlorea exhib-
ited a 3 times more potent anti-prion effect than Guana-
benz [6]. Sycosterol A has been found to exert twice the 
inhibitory effect on α-synuclein compared to Epigallocat-
echin-3-gallate, a known potent neuroprotective agent 
[7, 8]. 11-Dehydrosinulariolide regulates several protec-
tive pathways by inducing DJ-1 expression and activat-
ing Akt/PI3K, Nrf2/HO-1, and p-CREB [9]. In addition 
to their high medicinal value, cultivating marine inverte-
brates has economic significance and can be utilized as a 
food source and daily health supplements.

Different types of compounds and marine invertebrates 
have distinct mechanisms of action in addressing neuro-
inflammation. By understanding this topic, researchers 
can identify the most promising combinations of com-
pounds and marine invertebrates for potent neuroin-
flammatory therapy. This review focuses on compounds 
successfully isolated from marine invertebrates as potent 
anti-neuroinflammatory and anti-neurodegenerative 
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agents. The mechanisms of action of these compounds 
are discussed based on the pathophysiology and key 
pathways of neuroinflammation, providing insight into 
the development of new natural-based drugs.

2 � Main body
2.1 � Methodology
To conduct this review, Scopus, PubMed, and Google 
Scholar were utilized as the primary sources of litera-
ture. The search was performed using specific keywords, 
including ‘Marine invertebrates neuroprotection,’ ‘Sea 
urchins neuroprotective compounds,’ ‘Starfish anti-
inflammatory properties,’ ‘Sea cucumbers neurodegen-
erative disorders,’ ‘Neuroinflammation marine-derived 
compounds,’ ‘Neuroprotection natural compounds,’ 
‘Marine invertebrates Alzheimer’s disease,’ ‘Sea urchins 
Parkinson’s disease,’ ‘Starfish Huntington’s disease,’ ‘Sea 
cucumbers neuroinflammation,’ ‘Neurodegenerative 
disorders marine-derived compounds.’ The first search 
yielded 171 articles, with 109 research articles, 56 review 
papers, and 6 book chapters. The initial number of arti-
cles selected was only articles labeled research articles by 
the database (n = 109). Furthermore, a sum of 28 articles 
that consisted of research on the efficacy of marine inver-
tebrate isolates as either anti-neuroinflammation or neu-
roprotection were included. The excluded articles were in 
the form of reviews, were written non-English, and solely 
focused on extracts or fractions activity studies. Studies 
that lack clear explanations and findings regarding the 
mechanism pathways of the utilized substance were also 
excluded. A flowchart of the methodology can be seen in 
Fig. 1.

2.2 � Pathology of neuroinflammation
2.2.1 � Immune cell activation
The activation of immune cells and subsequent release 
of inflammatory mediators in the central nervous sys-
tem (CNS) is a multifaceted pathological process 
known as neuroinflammation [10, 11]. In this process, 
immune cell activation plays a pivotal role [12]. Upon 
exposure of the CNS to external stimuli such as inju-
ries or infections, immune cells, such as microglia and 
astrocytes, get activated and secrete proinflammatory 
cytokines, chemokines, and reactive oxygen species 
(ROS) [13, 14]. Microglia are the primary immune cells 
in the CNS, and they become activated in response 
to inflammatory stimuli such as proinflammatory 
cytokines or damage-associated molecular patterns 
(DAMPs) [15, 16]. Microglia activation is character-
ized by morphological changes, including an increase 
in cell size and the development of processes [17]. Simi-
larly, astrocytes, another type of glial cell, become acti-
vated in response to inflammatory stimuli and release 

cytokines, chemokines, and other inflammatory media-
tors, contributing to the neuroinflammatory response 
[18, 19].

Activated microglia and astrocytes release proin-
flammatory cytokines, such as interleukin-6 (IL-6), 
interleukin-1β (IL-1β), and tumor necrosis factor-α 
(TNF-α) [20, 21]. These cytokines can activate other 
immune cells in the CNS, such as monocytes and neu-
trophils, which can infiltrate the CNS from the blood-
stream [22, 23]. These cytokines can activate neuronal 
receptors, such as NMDA receptors, and increase cal-
cium influx into the neurons [24, 25]. This can lead to 
excitotoxicity, a process in which excessive calcium lev-
els can cause damage and even death of neurons [26]. 
In addition to excitotoxicity, neuroinflammation can 
cause oxidative stress, leading to neuronal damage [27, 
28]. Activated immune cells, particularly microglia, can 
generate reactive oxygen species (ROS), which contrib-
ute to the damage of neuronal and glial cells [29].

If neuroinflammation is left untreated or persists for 
a prolonged duration, it can cause chronic neurodegen-
eration, marked by progressive neuronal damage and 
dysfunction [30, 31]. This can pave the way for vari-
ous neurodegenerative ailments like Alzheimer’s dis-
ease, Parkinson’s disease, and multiple sclerosis [32]. 
Therefore, it is critical to comprehend the impact of 
immune cell activation in neuroinflammation pathol-
ogy to develop effective therapies for these disorders 
[33, 34]. One of the proposed therapeutic strategies for 
neuroinflammatory diseases is inhibiting immune cell 
activation, particularly that of microglia and astrocytes. 
Specific inhibitors of these activation pathways [35] or 
nonsteroidal anti-inflammatory drugs (NSAIDs) [36] 
can be used to achieve this goal.

Fig. 1  Flowchart of the methodology
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Neuroinflammation can also lead to the activation of 
apoptosis, a programmed cell death pathway [37]. Acti-
vated immune cells can release pro-apoptotic factors, 
such as caspases and Bcl-2 family proteins, which can 
activate apoptotic pathways in neurons [38, 39]. This can 
lead to the death of neurons and contribute to the pro-
gression of neurodegenerative diseases [40].

2.2.2 � Blood–brain barrier dysfunction
The blood–brain barrier (BBB) is a highly selective and 
tightly regulated barrier that separates the central nerv-
ous system (CNS) from the peripheral circulation [41, 
42]. The BBB is formed by specialized endothelial cells 
that line the cerebral microvasculature and pericytes, 
astrocytes, and extracellular matrix components [43, 44]. 
The BBB plays a crucial role in maintaining the homeo-
stasis of the CNS by limiting the entry of potentially 
harmful substances into the brain, including immune 
cells [45]. The BBB can become dysfunctional and per-
meable in neuroinflammation, allowing immune cells and 
inflammatory mediators to infiltrate the CNS [46]. This 
can occur through several mechanisms. One mechanism 
is the activation of endothelial cells that form the BBB 
[47]. The expression of adhesion molecules by endothe-
lial cells is a consequence of activation by inflammatory 
mediators, including cytokines and chemokines. Such 
activation enables immune cells to attach and traverse 
the BBB [48]. Additionally, proinflammatory cytokines 
can cause changes in the cytoskeleton of endothelial cells, 
resulting in the formation of gaps between the cells that 
allow molecules and cells to pass through [49, 50].

Another mechanism is the disruption of tight junctions 
between endothelial cells [51]. Tight junctions are spe-
cialized structures that seal the gaps between endothe-
lial cells and prevent the diffusion of molecules and cells 
across the BBB [42]. In neuroinflammation, inflamma-
tory mediators can disrupt tight junctions, leading to 
increased permeability of the BBB [52]. This disruption 
can also be caused by oxidative stress, which damages the 
cytoskeleton and leads to the detachment of tight junc-
tions from the endothelial cells [53]. Finally, immune 
cells themselves can contribute to the disruption of the 
BBB [45]. When activated, immune cells, like microglia 
and astrocytes, secrete inflammatory mediators that 
can harm the endothelial cells comprising the BBB [48]. 
Additionally, immune cells can physically cross the BBB 
and infiltrate the CNS, exacerbating the neuroinflamma-
tory response [54, 55].

The dysfunction of the BBB in neuroinflammation 
has important pathological consequences [47, 56]. The 
infiltration of immune cells and inflammatory media-
tors into the CNS can lead to chronic neuroinflamma-
tion and neurodegeneration, as seen in diseases such as 

Alzheimer’s and Parkinson’s [10, 57]. Additionally, the 
increased permeability of the BBB can allow the entry 
of pathogens into the CNS, contributing to the develop-
ment of infections such as meningitis [58].

2.2.3 � Neuronal damage
Another mechanism through which neuroinflamma-
tion can cause neuronal damage is through the release 
of glutamate [59, 60]. Glutamate is a neurotransmitter 
that plays a key role in excitatory signaling in the CNS. 
However, excessive levels of glutamate can cause excito-
toxicity, leading to neuronal damage and death [60]. In 
neuroinflammation, immune cells can release glutamate 
and contribute to the excitotoxicity that damages neu-
rons [61].

2.2.4 � Neurodegeneration
Prolonged or severe neuroinflammation may bring about 
chronic neurodegeneration through several means. 
Microglia, the CNS’s resident immune cells, play a sig-
nificant role in this process [10, 11]. Upon exposure to 
inflammatory agents, microglia become activated and 
release various harmful substances, including reac-
tive oxygen species, nitric oxide, and proinflammatory 
cytokines, which can directly harm neurons, leading 
to their demise [20, 21]. Additionally, chronic neuroin-
flammation can promote the accumulation of misfolded 
proteins in neurons and glia, a characteristic feature of 
several neurodegenerative diseases. Misfolded proteins 
can trigger the innate immune system’s activation, lead-
ing to chronic inflammation and further protein misfold-
ing and aggregation [62], generating a self-sustaining 
loop of neuroinflammation and neurodegeneration [63].

In addition, chronic neuroinflammation can impair the 
brain’s ability to clear toxic substances such as amyloid-β 
in Alzheimer’s disease and α-synuclein in Parkinson’s 
disease, leading to their accumulation in the brain and 
further worsening neuroinflammation, neuronal dysfunc-
tion, and death [64, 65]. Moreover, chronic neuroinflam-
mation can interfere with neurotrophic support, which 
is vital for neuronal survival and function. Neurotrophic 
factors like brain-derived neurotrophic factor (BDNF) 
play a crucial role in promoting neuronal growth, differ-
entiation, and survival [66, 67]. However, chronic neu-
roinflammation can reduce the production and release 
of neurotrophic factors, leading to neuronal dysfunction 
and death [68].

In summary, chronic neuroinflammation can contrib-
ute to neurodegeneration by activating microglia, accu-
mulating misfolded proteins, impairing clearance of toxic 
substances, and disrupting neurotrophic support. Gain-
ing knowledge about these mechanisms can offer valuable 
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information in devising therapeutic interventions for the 
management of neurodegenerative disorders.

2.3 � Marine invertebrate
Marine invertebrates are diverse animals that lack a 
backbone and inhabit the ocean environment [69]. They 
include many organisms, from simple forms such as 
sponges, jellyfish, and sea anemones, to more complex 
organisms such as crustaceans, molluscs, and echino-
derms. Marine invertebrates are found in all ocean habi-
tats, from shallow coral reefs to the deep sea floor, and 
they play important ecological roles in marine ecosys-
tems [70]. For example, some species of marine inver-
tebrates, such as sea urchins and certain molluscs, are 
important herbivores, while others, such as crustaceans 
and cephalopods, are important predators [71]. Marine 
invertebrates have developed a variety of adaptations that 
allow them to survive and thrive in the ocean environ-
ment [72]. For example, some marine invertebrates have 
evolved unique structures, such as stinging cells or hard 
shells for protection, while others have developed spe-
cialized appendages for locomotion or feeding.

Cultivating and conserving marine invertebrates can be 
challenging, but several strategies can help promote their 
growth and survival [73]. Different marine invertebrates 
have different requirements for survival, so it is impor-
tant to research the species’ specific needs [74]. Factors 
such as water temperature, salinity, and lighting can all 
affect their health and growth. To thrive, marine inver-
tebrates need a suitable habitat that mimics their natu-
ral environment [73]. This may include a specific type of 
substrate, such as sand or rocks, or the presence of other 
organisms that they interact with in the wild. Water qual-
ity is also critical for the health of marine invertebrates 
[75]. Regular testing and maintenance of water param-
eters such as pH, temperature, and nutrient levels can 
help ensure a stable environment for your organisms. 
Many marine invertebrates require specific types of food 
to thrive [76]. For example, some corals require plankton 
or other small organisms, while certain sea urchins feed 
on algae. It is important to research the dietary require-
ments of the organisms and provide appropriate food 
sources.

Many marine invertebrates can be cultivated success-
fully, depending on the location and environmental con-
ditions [77]. Coral reefs are found in many tropical and 
subtropical regions worldwide, and many different spe-
cies of coral can be successfully cultivated in aquariums 
or the wild [78]. Some popular species for cultivation 
include brain coral, mushroom coral, and stony coral. 
Oysters are grown commercially in many coastal regions 
and are an important food source [79, 80]. They are typi-
cally grown in mesh bags or cages suspended in the water 

and are harvested when they reach maturity [81]. Sea 
urchins are commonly cultivated in aquaculture systems 
in many regions, particularly in Japan, where they are an 
important food source [82]. They require specific envi-
ronmental conditions, including cool water temperatures 
and high-quality seawater. Clams are another important 
food source that can be cultivated in many coastal regions 
[83–85]. They require specific conditions for growth, 
including a sandy or muddy substrate and high-quality 
seawater. Lobsters are commercially harvested in many 
regions, particularly North America and Europe [86, 87]. 
They require specific environmental conditions, includ-
ing cool water temperatures and rocky substrate for 
shelter [88]. Sea cucumbers are cultivated commercially 
in many regions, particularly in Asia, where they are an 
important food source [89, 90]. They require specific 
environmental conditions, including a sandy substrate 
and high-quality seawater. The specific types of marine 
invertebrates that can be cultivated successfully depend 
on the environmental conditions and available resources 
in a particular region. With proper research and manage-
ment practices, many different types of marine inverte-
brates can be grown successfully and sustainably.

Marine invertebrates are important sources of food, 
medicine, and other resources for humans. For example, 
many molluscs and crustaceans are commercially har-
vested for food, while some marine invertebrates, such 
as sponges and corals, contain compounds with potential 
medicinal properties. Overall, marine invertebrates are a 
fascinating and important group of organisms that con-
tribute to the diversity and functioning of marine ecosys-
tems and have significant value to human societies.

2.4 � Therapeutic targets of marine invertebrate bioactive 
compounds

Marine invertebrates have become a fascinating source 
for discovering bioactive compounds with therapeutic 
potential. These organisms have evolved a wide range of 
mechanisms to protect themselves against predators and 
to interact with their environment. Scientists have dis-
covered that some of these compounds can target spe-
cific molecular pathways involved in different diseases, 
including neuroinflammation and neurodegenerative dis-
orders. Table  1 provides an overview of the therapeutic 
activities of marine invertebrate bioactive compounds, 
highlighting their potential as a source of new treatments.

Marine invertebrate bioactive compounds have shown 
potential therapeutic activities in treating neurological 
disorders. Table  1 summarizes the therapeutic activities 
of these compounds, which target essential proteins and 
pathways involved in neuroinflammatory and neuro-
degenerative processes. However, a better understand-
ing of the underlying mechanisms is needed to harness 
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Table 1  Therapeutic activities of marine invertebrate bioactive compounds

No Species Compound Mechanism Refs

Coral

1 Pseudopterogorgia elisabethae Pseudopterosin A (1) Modulate synaptic function during oxidative 
stress

[91]

2 Sinularia flexibilis 11-Dehydrosinulariolide (2) Increase the expression of mitochondria DJ-1 [92]

3 Sinularia polydactyla Nebrosteroid A (3) Neuroprotective activity on neuron-like SH-
SY5Y cells

[93]

7β-acetoxy-cholest-5-en-3β,19-diol (4)

4 Sarcophyton boettgeri Sarboettgerin A-E (5–9) LPS-induced NO release in BV-2 microglial 
cells

[94]

Sea Urchin

5 Scaphechinus mirabilis Echinochrome A (10) Reduce acetylcholinesterase (AChE) [95]

6 Urechis unicinctus Hecogenin (11) Inhibit the human β-site amyloid cleaving 
enzyme (BACE1)

[96]

Cholest-4-en-3-one (12)

Sea Cucumber

7 Cucumaria frondosa Eicosapentaenoic acid (13) Neuroprotective on oxidative stress [97]

8 Acaudina molpadioides Sea Cucumber cerebrosides (14) Neuroprotective on oxidative stress 
and inhibit Amyloid-β accumulation

[98–100]

9 Cucumaria frondosa Frondoside A (15) Reduce α-synuclein aggregates and 6-OHDA-
induced DAergic neurodegeneration

[101]

10 Panax notoginseng Ginsenoside Rg3 (16) Reduce 6-OHDA-induced DAergic neurode-
generation

11 Holothuria scabra HSEA-P1 and HSEA-P2 (17–18) Reduce α-synuclein aggregates [102]

12 Holothuria scabra 2-Butoxytetrahydrofuran (19) Inhibit Amyloid-β accumulation [103]

Star fish

13 Asterias amurensis Star Fish Cerebrosides (SFC) (20) Neuroprotective on oxidative stress [100]

Sponge

14 Thorectandra sp Asterubine (21) Binding activity to α-synuclein [104]

15 Spongionella sp Gracilin A (22) Neuroprotective on oxidative stress [105]

Gracilin H (23)

Gracilin J (24)

Gracilin K (25)

Gracilin L (26)

Tetrahydroaplysulphurin-1 (27)

16 Xestospongia testudinaria Mutafuran H (28) Reduce acetylcholinesterase (AChE) [106]

Xestospongic acid (29)

29-hydroperoxystigmasta-5,24(28)-dien-3β-ol 
(30)

17 Siliquariaspongia mirabilis
Stelletta clavosa

Mirabamides A-H (31–38) Inhibit AGEs formation [107]

18 Inflatella sp (22E)-24-nor-cholesta-5,22-diene-3β,7β-diol 
(39)

Reduce 6-hydroxydopamine (OHDA) 
in the cell model of Parkinson’s disease

[108]

19 Jaspis stellifera Stellettin B (40) Reduce 6-hydroxydopamine (OHDA) [109]

20 Narrabeena nigra Narrabeenamine B (41) Neuroprotective on oxidative stress [110]

5,6-Dibromo-7-methoxykynuramine (42)

7-bromoquinolin-4(1H)-one (43)

5,6-dibromo-N,N-dimethyltryptamine (44)

5,6-dibromotryptamine (45)

6-bromo-N-methyltryptamine (46)

3-bromo-4-methoxytyramine (47)

5,6-dibromo-N-methyltryptamine (48)

6-bromotryptamine (49)
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their potential as natural drug candidates fully. Figure 2 
provides an overview of the anti-neuroinflammatory and 
anti-neurodegenerative mechanisms of these marine 
invertebrate compounds, highlighting their potential as a 
source for developing new drugs to combat neurological 
disorders.

2.4.1 � Oxidative stress
Oxidative stress is a condition that arises when the pro-
duction of reactive oxygen species (ROS) exceeds the 
cell’s capacity to detoxify them [115]. This can harm 
various parts of cells, such as proteins, lipids, and DNA, 
causing cells to malfunction or die [116, 117]. Oxidative 
stress can be triggered by hydrogen peroxide (H2O2) 
and tert-butyl hydroperoxide (t-BHP), both types 
of ROS that damage mitochondria [118]. The dam-
age to mitochondria can lead to the release of lactate 

Table 1  (continued)

No Species Compound Mechanism Refs

21 Penares sp 3β-hydroxy-7β,8β-epoxy-5α-lanost-24-en-
30,9α-olide (50)

Inhibit Paraquat (PQ) toxicity [111]

29-nor-penasterone (51)

Penasterone (52)

Acetylpenasterol (53)

22 Acanthostrongylophora ingens Acanthocyclamine A (54) Inhibit Amyloid β [112]

23 Fascaplysinopsis sp 9-methylfascaplysin (55) Inhibit Amyloid β [113]

24 Lamellodysidea cf. chlorea Lamellosterol A (56) Inhibit prion and α-synuclein [6]

Lamellosterol B (57) Inhibit prion

Lamellosterol C (58) Inhibit prion

225 Polycarpa procera Procerolide A-D (59–62) Inhibit prion [114]

Procerone A-B (63–64)

26 Sycozoa cerebriformis Sycosterol A (65) Inhibit α-synuclein [8]

Fig. 2  Anti-neuroinflammation and anti-neurodegenerative mechanism of marine invertebrate compounds. Note: blue text labeled as ‘Comp. 
followed by number’ represents the compound responsible for the mechanism. Meanwhile, red text indicates the adverse effects associated 
with neurological disorders
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dehydrogenase (LDH) and a decrease in the overall 
antioxidant capacity (T-AOC) and activity of superox-
ide dismutase (SOD) [119].

The cell has two key antioxidant defense systems, 
namely total antioxidant capacity (T-AOC) and super-
oxide dismutase (SOD), that help to safeguard it from 
oxidative harm [120]. The regulation of these antioxi-
dant enzymes is determined by various factors, among 
which Nrf2 plays a crucial role [121]. Nrf2 binds to 
the promoter region of the SOD gene, leading to an 
upsurge in its expression and subsequently, SOD activ-
ity [122]. Moreover, Nrf2 also regulates the expression 
of other genes that participate in the oxidative stress 
response, such as catalase and glutathione peroxidase 
[123].

When there is oxidative stress, the mRNA level of 
Bcl-2 may decrease, which tips the balance in favor of 
pro-apoptotic proteins like Bax [124]. Bax can cause the 
release of cytochrome c from the mitochondria, kick-
starting the caspase cascade [125]. In the intrinsic path-
way of apoptosis, caspase-9 plays the role of the initiator 
caspase, and its activation leads to the activation of other 
effector caspases, including caspase-3. The end result of 
this pathway is cell death [126].

Compound 13 shows potential as a neuroprotective 
agent by blocking the mitochondrial dysfunction induced 
by H2O2 or t-BHP, limiting the release of lactate dehy-
drogenase (LDH) caused by H2O2 or t-BHP, and increas-
ing intracellular total antioxidant capacity (T-AOC) 
and superoxide dismutase (SOD) activity compared to 
the H2O2 or t-BHP group [97]. Together with 13, Sea 
Cucumber cerebrosides (14) and Star Fish Cerebrosides 
(20) have been found to increase the activity of SOD 
and reduce the content of NO, NOS, 8-OHdG, 8-oxo-
G, and MDA. They can also increase the survival rate 
of PC12 cells, recover cellular morphology, and regulate 
the expression of caspase-9, cleaved caspase-3, total cas-
pase-3, Bax, and Bcl-2, indicating their potential as neu-
roprotective agents [98–100].

Compounds 15, 16, 39, and 40 were shown to reduce 
6-hydroxydopamine (6-OHDA). 6-OHDA is a neuro-
toxin commonly used to destroy dopaminergic neurons 
in the brain selectively. 6-OHDA is often used in animal 
models of Parkinson’s disease to simulate the degenera-
tion of these neurons in human disease [101, 108, 109]. 
Compound 40 has been discovered to have the ability 
to reverse the downregulation of the PI3K/Akt signal-
ing pathway induced by 6-OHDA and boost the translo-
cation of Nrf2 to aid downstream protein translation of 
HO-1 and SOD-1. Moreover, it was observed to impede 
the cleavage of caspase-3 protein by increasing the lev-
els of p-Akt and p-ERK and reducing the levels of p-P38. 
These findings suggest that compound 40 might be a 

promising therapeutic agent for treating neurodegenera-
tive diseases [109]. Marine invertebrate compounds regu-
lating ROS can be seen in Fig. 3.

2.4.2 � Acetylcholinesterase
Acetylcholinesterase (AChE) is an enzyme that plays a 
critical role in regulating cholinergic neurotransmission 
[127]. This substance is mainly located within the synap-
tic clefts of cholinergic neurons, and its primary function 
is to quickly break down the neurotransmitter acetylcho-
line (ACh) into choline and acetate [128]. In Alzheimer’s 
disease, the activity of AChE is often increased, leading to 
ACh’s breakdown and the depletion of cholinergic neu-
rotransmission [129]. This depletion of cholinergic neu-
rotransmission is thought to contribute to the cognitive 
deficits seen in Alzheimer’s disease. Therefore, AChE is 
an important enzyme that regulates the activity of the 
cholinergic system and plays a critical role in normal 
nervous system function [130]. It is also involved in the 
pathogenesis of certain neurological disorders, making it 
an important target for therapeutic interventions.

Previous studies investigated anti-AChE from active 
compounds of sea urchins, Scaphechinus mirabilis (10), 
and sponge, Xestospongia testudinaria (28) (see Fig.  4) 
[95, 106]. Compound 28 calculated significant IC50 of 
AChE inhibition (0.64  μM) [106]. Furthermore, com-
pound 10 is a strong acetylcholinesterase (AChE) inhibi-
tor, and its mode of inhibition is both uncompetitive and 
irreversible [94].

2.4.3 � Amyloid‑β accumulation
Amyloid beta (Aβ) is a protein that accumulates in 
the brains of patients with Alzheimer’s disease (AD) 
[131]. Aβ is produced by the cleavage of a larger protein 
called amyloid precursor protein (APP) by β-secretase 1 
(BACE1) and gamma-secretase [132]. The accumulation 
of Aβ in the brain is thought to play a central role in the 
pathogenesis of AD. BACE1 is an enzyme that cleaves 
APP to generate Aβ, and its activity is essential for pro-
ducing Aβ. Inhibiting BACE1 activity has been proposed 
as a therapeutic strategy for AD [133]. Neuroprotective 
effects against Aβ1–42-induced synaptic dysfunction are 
related to preventing the loss of synaptic function and 
neuronal damage that occurs in AD [134]. Several stud-
ies have demonstrated that certain compounds and inter-
ventions can protect against Aβ1–42-induced synaptic 
dysfunction [99, 135]. For example, resveratrol, a natural 
compound found in grapes, has been shown to protect 
against Aβ1–42-induced synaptic dysfunction by reduc-
ing oxidative stress and inflammation [136].

The inhibition of Aβ toxicity by preventing its aggrega-
tion through an autophagic pathway regulated by HSF-1 
involves the activation of heat shock factor 1 (HSF-1). 
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HSF-1 is a transcription factor that controls the expres-
sion of genes involved in the cellular stress response 
[103]. Studies have demonstrated that activating HSF-1 
can enhance the clearance of Aβ aggregates through 

autophagy, leading to a decrease in Aβ toxicity. Some 
active compounds from marine invertebrates were inves-
tigated for inhibitors of Aβ, including 11, 12, 14, 19, 54, 
and 55 [96, 98–100, 103, 112, 113]. Compound 14 has 

Fig. 3  Marine invertebrate compounds regulating reactive oxygen species. Pseudopterosin A (1); Sarboettgerin E (9); Eicosapentaenoic acid (13); 
Frondoside A (15); Ginsenoside Rg3 (16); Gracilin A (22); Gracilin H (23); Gracilin J (24); Gracilin K (25); Tetrahydroaplysulphurin-1 (27); (22E)-24-nor-
cholesta-5,22-diene-3β,7β-diol (39); Stellettin B (40); Narrabeenamine B (41); 5,6-Dibromo-7-methoxykynuramine (42); 7-bromoquinolin-4(1H)-one 
(43); 5,6-dibromo-N,N-dimethyltryptamine (44); 5,6-dibromotryptamine (45); 6-bromo-N-methyltryptamine (46); 3-bromo-4-methoxytyramine (47); 
5,6-dibromo-N-methyltryptamine (48); and 6-bromotryptamine (49)

Fig. 4  Structure of Echinochrome A (10) and Mutafuran H (28) as acetylcholinesterase inhibitors
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been found to have neuroprotective effects against Aβ1–
42-induced synaptic dysfunction in the rat hippocampus, 
possibly by promoting synaptic function and protect-
ing against neuronal damage through the upregulation 
of proteins involved in synaptic plasticity and neuronal 
survival [98–100]. Compound 54 inhibits amyloid β-42 
production induced by aftin-5 [112]. Compound 19, con-
versely, demonstrated that can safeguard C. elegans from 
the harmful effects of Aβ by inhibiting its aggregation 
through an autophagic pathway regulated by HSF-1. As 
a result, this compound could be a potentially valuable 
therapeutic option for Alzheimer’s disease [103].

Finally, compounds 11 and 12 from Urechis unicinctus 
were studied for anti-BECE-1 in  vitro [96]. Compound 
55 has been found to directly reduce Aβ oligomer forma-
tion and produce less neuronal toxicity in SH-SY5Y cells, 
indicating its potential as a therapeutic agent for AD 
[113]. Despite different mechanisms of action, all com-
pounds have demonstrated potential as treatments for 
Alzheimer’s (Fig. 5).

2.4.4 � α‑synuclein aggregations
The involvement of α-synuclein in the degeneration of 
dopaminergic neurons within the substantia nigra is 

believed to contribute to the motor-related symptoms 
seen in Parkinson’s disease [137]. α-synuclein aggrega-
tion is believed to cause neuronal dysfunction and death 
by disrupting normal cellular processes, including mito-
chondrial function, vesicle trafficking, and protein deg-
radation [138]. On the other hand, reducing α-synuclein 
levels has been shown to improve dopamine-dependent 
behavioral functions. Dopamine is a neurotransmit-
ter critical in regulating movement and reward, and its 
depletion is a hallmark of PD [139]. Studies have sug-
gested that reducing α-synuclein levels may increase 
dopamine release and improve dopaminergic neuron 
function, thereby improving movement and other dopa-
mine-dependent behaviors [140, 141].

Reduction of α-synuclein levels can be achieved 
through various mechanisms, including the activation 
of autophagy [142]. Autophagy is critical in maintaining 
cellular homeostasis and is essential for neuronal sur-
vival. Autophagic signaling mediated through lgg-1 and 
atg-7 activity has been shown to reduce α-synuclein lev-
els and protect dopaminergic neurons in animal models 
of PD [143]. The activation of autophagy promotes the 
clearance of misfolded or aggregated proteins, including 
α-synuclein, thereby reducing their toxicity.

Fig. 5  Marine invertebrate compounds inhibiting Amyloid-β aggregation. Hecogenin (11); Cholest-4-en-3-one (12); 2-Butoxytetrahydrofuran (19); 
Acanthocyclamine A (54); and 9-methylfascaplysin (55)
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Compounds from Holothuria scabra (17 and 18) 
may have therapeutic potential through their effects on 
autophagic signaling mediated through lgg-1 and atg-7 
activity [102], while compounds like 21, 56, and 65 have 
been investigated for the treatment and monitoring of 
α-synuclein-mediated neurodegeneration and suggested 
potential strategies.

These compounds have been tested for α-synuclein 
aggregation inhibitory activity using the Thioflavin T 
(ThT) dye assay method and demonstrated significant 
α-synuclein aggregation inhibitory activity [6, 8, 104]. 
Compound 15 was able to decrease the aggregation of 
α-synuclein, increase the lifespan in NL5901, and pro-
mote the upregulation of regulators of protein degrada-
tion, such as ubh-4, hsp-16.2, hsp-16.1, and hsf-1 [101]. 
Structure of these compounds can be seen in Fig. 6.

2.4.5 � Prion aggregations
The activity of prions in the brain can lead to the forma-
tion of protein aggregates, which are toxic to neurons and 
can cause neurodegeneration [144, 145]. These protein 
aggregates can disrupt the brain’s normal function and 
lead to symptoms such as cognitive impairment, motor 
dysfunction, and behavioral changes [146]. This enzyme 
is usually linked to the transformation of regular cellu-
lar prion protein (PrPc) into the abnormal and infectious 
form (PrPSc) [147]. PrPSc is resistant to degradation by 
cellular machinery and can accumulate in the brain over 

time [148]. The aggregation of PrPSc results in the for-
mation of plaques and fibrils, which are believed to be 
responsible for the damage to neurons and subsequent 
neurodegeneration [149].

Prion diseases can be transmitted through ingestion, 
contact with infected tissue or blood, or genetic inherit-
ance [150]. Prion diseases have no cure, and treatment 
options are limited [151]. Therapeutic approaches focus 
on reducing prion activity, such as inhibiting the con-
version of PrPc to PrPSc or promoting the clearance of 
PrPSc from the brain [152].

Lamellosterols A-C (56–58) were examined for their 
ability to inhibit prion activity and were found to be more 
effective than the known anti-prion compound guana-
benz. The EC50 values for these compounds as anti-prion 
agents against the [PSI+] yeast prion were 12.7, 13.8, and 
9.8 μM, respectively [6]. Similarly, procerolide A (59) and 
procerone A (63), isolated from the Ascidian Polycarpa 
procera, showed potential anti-prion activity against the 
[PSI+] yeast prion with EC50 values of 23 and 29  μM, 
respectively [114]. PrPSc can form protein aggregates 
in the yeast S. cerevisiae, including Sup35, related to the 
[PSI+] phenotype. Several studies have also shown that 
PrPSc can interact with Sup35 in the yeast S. cerevisiae 
and can influence the formation of protein aggregates 
caused by Sup35 [153]. However, the exact connection 
between PrPSc and [PSI+] remains unclear, and addi-
tional investigation is necessary. Structure of these com-
pounds can be seen in Fig. 7.

Fig. 6  α-synuclein regulators from marine invertebrate. Frondoside A (15); HSEA-P1 (17); HSEA-P2 (18); Asterubine (21); Lamellosterol A (56); 
and Sycosterol A (65)
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2.4.6 � Advanced glycation end products (AGEs) formation
Advanced glycation end products (AGEs) refer to a clus-
ter of molecule created by the reaction of amino groups 
of proteins, lipids, and nucleic acids with reducing sug-
ars, independent of enzymatic activity [154, 155]. These 
molecules can accumulate in tissues over time and are 
believed to play a role in the development of chronic ill-
nesses, including neurodegenerative conditions such as 
Alzheimer’s disease and Parkinson’s disease (PD) [156]. 
AGEs can have several deleterious effects on the brain, 
including increased oxidative stress, inflammation, and 
disruption of normal cellular function [157]. In neurode-
generative disorders, AGEs can contribute to the aggre-
gation of misfolded proteins, such as amyloid β in AD 
and α-synuclein in PD [158]. AGEs can also impair the 
clearance of these proteins, leading to their accumulation 
and subsequent neurodegeneration [159].

Furthermore, AGEs have the ability to activate a vari-
ety of signaling pathways, including RAGE and NF-kB, 
which are implicated in inflammation and cell death pro-
cesses [160]. The activation of these pathways can result 
in the discharge of harmful substances such as proinflam-
matory cytokines and reactive oxygen species, intensify-
ing the progression of neurodegenerative disorders [161]. 
Compounds 31–38 are mirabamides isolated from Sili-
quariaspongia mirabilis and Stelletta clavosa. These com-
pounds have shown calculations via Conceptual Density 
Functional Theory (DFT) to generate information about 
the reactive nature of these compounds and the active 
points for electrophilic, nucleophilic, and radical attacks 

and the Solvation Model based on the Density (SMD) for 
the molecular and structural properties of compounds 
[107]. The computational results accurately predict the 
compounds’ ability to inhibit the formation of AGEs, 
which could be valuable in developing drugs for combat-
ing diseases like Parkinson’s and Alzheimer’s [162, 163]. 
Structure of these compounds can be seen in Fig. 8.

2.4.7 � Paraquat activity
Paraquat is an herbicide commonly used that has been 
linked to the occurrence of Parkinson’s disease and 
other neurodegenerative diseases [164]. The compound 
is extremely harmful and induces oxidative stress by 
generating reactive oxygen species (ROS), resulting in 
neuronal damage and ultimately leading to neurodegen-
eration [165]. The mechanisms by which PQ induces 
neurodegeneration are complex and multifaceted. PQ 
can accumulate in the brain and cause damage to dopa-
minergic neurons, which are particularly vulnerable to 
oxidative stress [166]. PQ can also induce the formation 
of protein aggregates, such as α-synuclein, a hallmark 
of PD pathology [167]. In addition to its direct effects 
on neurons, PQ can induce inflammation and activate 
microglia, immune cells in the brain [168]. Microglia that 
have been activated can secrete cytokines that promote 
inflammation, as well as molecules that are neurotoxic 
and reactive oxygen species, all of which can worsen neu-
rodegeneration. Compound 53 increased the survival of 
Neuro-2a cells when exposed to PQ and decreased the 
number of harmful ROS within these cells. Additionally, 

Fig. 7  Anti-prion agents from marine invertebrate. Lamellosterol A (56); Lamellosterol B (57); Lamellosterol C (58); Procerolide A (59); 
and Procerone A (63)
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acetylpenasterol induced the expression of Hsp70, a pro-
tein that helps protect cells from stress, in PQ-treated 
cells. Furthermore, it was observed that acetylpenasterol 
prevented the loss of neurites and increased the number 
of cells with neurites in PQ-exposed cells [111] (Fig. 9).

2.4.8 � Mitochondria DJ‑1 expression
The protein DJ-1 is present in both the cytoplasm and 
mitochondria of cells [169] and plays a crucial role in 
maintaining mitochondrial function and safeguarding 

cells against oxidative stress and mitochondrial dys-
function [170]. Its dysfunction or loss may cause neu-
rodegenerative diseases like PD by compromising 
mitochondrial function and elevating oxidative stress. 
In addition to its role in maintaining mitochondrial 
function, DJ-1 is also involved in the Akt signaling 
pathway, which is essential for cell survival and growth 
[171]. Research has shown that DJ-1 is capable of acti-
vating the PI3K/Akt pathway, which promotes cell 
survival and reduces cell death [172]. Conversely, the 

Fig. 8  Advanced glycation end products inhibitors from marine invertebrate. Mirabamides A (31); Mirabamides B (32); Mirabamides C (33); 
Mirabamides D (34); Mirabamides E (35); Mirabamides F (36); Mirabamides G (37); and Mirabamides H (38)
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loss or dysfunction of DJ-1 can lead to a decrease in 
Akt activity and an increase in susceptibility to oxida-
tive stress and apoptosis [173]. These findings suggest 
that the interaction between DJ-1 and the Akt pathway 
is crucial for the neuroprotective effects of DJ-1. Fur-
ther exploration of this relationship could potentially 
uncover new targets for the treatment of neurodegen-
erative diseases.

11-Dehydrosinulariolide (compound 2, see Fig. 10) is 
a natural compound that has been extracted from the 
soft coral Sinularia leptoclados and has been found to 
have multiple biological effects. One of its mechanisms 
for providing neuroprotection is its ability to increase 
DJ-1 expression. According to one research, the treat-
ment of SH-SY5Y human neuroblastoma cells with 2 
increased the expression of DJ-1 in a dose-dependent 
manner and also stimulated mitochondrial complex 
I activity [92]. Another study reported that 2 could 

activate p-CREB and the downstream of Akt/PI3K and 
promote Nrf2/HO-1 translocation in SH-SY5Y cells [9].

2.5 � Author perspective
From our perspective, this review article on using marine 
invertebrate compounds for anti-neuroinflammation and 
anti-neurodegenerative purposes provides an opportu-
nity to shed light on an emerging area of drug discovery 
research. The potential benefits of marine invertebrates 
as a source of novel therapeutic agents for neurodegener-
ative diseases are increasingly recognized by researchers 
[174]. However, several challenges must be addressed to 
harness the potential of marine invertebrate compounds 
fully. One of the main challenges is optimizing the bioa-
vailability and activity of these compounds. Many marine 
invertebrate compounds have poor solubility and bio-
availability, which can limit their effectiveness as thera-
peutic agents [175]. Targeted delivery systems that can 
improve these compounds’ bioavailability and therapeu-
tic efficacy could solve this problem.

Moreover, combining several compounds with different 
action mechanisms may result in a more potent, efficient, 
and low side-effect therapy. Implementing a multicom-
partment delivery system would be beneficial to regulate 
the release and maintain the stability of the biomolecular 
mixture during storage. For instance, liposomes, novas-
omes, and polymers could also be an option for multi-
delivery synergistic drug biomolecules [176–182]. As 
derived from marine sources, invertebrate extracts or 
isolates typically have a less appealing aroma and taste. 
Instant granule technology and practical dosage forms 
must also be implemented to mask the unpleasant aroma 
and taste [115, 183].

Another challenge is identifying more effective and 
selective compounds that target specific neuroinflam-
matory and neurodegenerative pathways. While several 
promising compounds have been identified from marine 
invertebrates, further research is needed to understand 
their mechanisms of action and potential clinical appli-
cations fully. There is also a need for more extensive 
in vitro and in vivo studies to evaluate the safety, efficacy, 
and pharmacokinetic properties of marine invertebrate 
compounds. This could involve investigating the effects 
of these compounds on animal models of neurodegen-
erative diseases and conducting clinical trials to evaluate 
their potential as therapeutic agents.

3 � Conclusion
Based on the reviewed literature, it is evident that 
compounds isolated from marine invertebrates have 
shown potential therapeutic mechanisms in inhibit-
ing neuroinflammation caused by amyloid β, paraquat, 

Fig. 9  Acetylpenasterol (53) as a potent anti-paraquat agent

Fig. 10  Structure of 11-dehydrosinulariolide (2) as a mitochondria 
DJ-1 inductor
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α-synuclein, AGEs, prion activity, and oxidative stress. 
These bioactive compounds have demonstrated prom-
ising anti-neuroinflammatory and anti-neurodegenera-
tive properties through various pathways and proteins 
such as DJ-1, Akt/PI3K, p-CREB, Nrf2/HO-1, Nrf-1, 
and HSF-1. Therefore, marine invertebrates can serve 
as a valuable source for developing natural compounds 
that could be utilized to treat neuroinflammatory disor-
ders. Further research and investigation are needed to 
explore these bioactive compounds’ full potential and 
underlying mechanisms for developing novel therapeu-
tic drugs.
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