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Abstract 

Background Thermal diffusion of dusty fluids has valuable interference in various fields, including waste‑water 
treatment, oil transportation, and power plant pipes. Dusty fluids are used in lots of industrial fields as a result of their 
improved heat transfer and heat management capabilities. These industries range from renewable energy systems 
to aerobic plastic sheet extrusion, manufacturing, and rolling and reaching metal sheet cooling.

Results The work embodied in this paper presents the analytical solution performed to predict the effects of thermal 
diffusion on dusty, viscous, incompressible fluid flows between two porous, parallel vertical plates with a heat source 
or a heat sink. The mathematical equations are solved by the separation of variables and Laplace transform tech‑
niques. The influence of temperature is investigated for various values of Prandtl number and heat source or heat sink 
parameters. Also, the influences of various coefficients like the thermal diffusion coefficient, Schmidt number, Prandtl 
number, and heat source or heat sink coefficient on the concentration are observed. The fluid velocity distribution 
is graphically obtained. The solutions are discussed and exhibited graphically. The influences of the thermal diffusion 
parameter and chemical reaction parameter on fluid and dust particles’ velocities are examined. A parametric study 
on the effect of time on temperature and concentration is made.

Conclusions The exact expressions for temperature, concentration, and velocity variation for fluid and dusty particles 
are obtained analytically. The temperature is inversely proportional to both the Prandtl number Pr and the heat source 
or heat sink parameter Hs . The concentration of the fluid is inversely proportional to the thermal diffusion parameter 
Td and the heat source or heat sink parameter Hs.
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1  Background
Thermal diffusion of dusty fluids has always been a point 
of interest to researchers as well as practitioners owing 
to its valuable interference in various fields, including 
wastewater treatment, oil transportation, and power 
plant pipes. Dusty fluids have paved their way through 
lots of industrial fields as a result of their improved heat 
transfer and heat management capabilities; these indus-
tries range from renewable energy systems to aerobic 
plastic sheet extrusion, manufacturing, and rolling metal 
sheet cooling. Nidhi et al.  [1] have studied the unsteady 
magnetohydrodynamics (MHD) Walter’s-B viscoelas-
tic dust effect of vibration temperature on fluids passing 
through inclined porous plates with thermal radiation.

Farhad et al.  [2] investigated the effects of a magnetic 
field paired with heat transfer on conductive, viscoelas-
tic, incompressible, and dusty fluids moving between two 
non-conductive inflexible plates. Radhika   [3] and   [4] 
have studied the effect of heat transfer on dusty liquids 
with hybrid nanoparticles floating on the molten sur-
face. Bilal et al.   [5] discussed the Couette flow of dusty 
viscoelastic fluid in a rotating frame with heat transfer. 
Mallikarjuna et al.  [6] investigated the effect of radiation 
and thermal diffusion on the MHD heat transfer flow of a 
dusty, viscous, incompressible conductive fluid between 
two parallel plates. Govindarajan et  al.   [7] studied the 
combined impacts of mass and heat transmission on a 
radiant MHD oscillating thin dusty fluid in a fully satu-
rated permeable channel.

The study of chemical reactions and thermal diffusion 
has many applications, including liquid metal cooling of 
nuclear processes, sustained plasma confinement for con-
trolled thermonuclear fusion, and electromagnetic metal 
casting. K. Suneeth et  al.  [8] have studied the effect of 
thermal radiation on the flow of MHD viscoelastic fluid 
through a porous movable plate with a primary chemical 
reaction. Debasish Dey   [9] made a numerical model to 
study and analyze the dusty fluid flowing through a ver-
tical surface with heat-generating and endothermic-type 
chemical reactions. Prasanthi et  al.   [10] have investi-
gated the upshots of chemical reactions and radiations on 
MHD dusty flow over a sloping porous sheet immersed 
in a porous medium.

Furthermore, it is mentioned that other research-
ers studied the influence of pressure gradients on dusty 
fluid flow. Kanaka Lata Ojha et al.  [11] have studied the 
influence of sinusoidal gradients of pressure upon two-
dimensional unsteady viscoelastic hydromagnetic cur-
rents through channels lined by porous materials. Dash 
et al.  [12] have studied the effect of a sinusoidal pressure 
gradient on viscoelastic hydromagnetic flow between 
two porous parallel plates. MHD’s dusty fluid flow has 
witnessed heavy research and has grabbed researchers’ 

attention for quite some time. Jadav Konch   [13] has 
developed computer codes to study outcomes at the 
unsteady glide of a viscous dusty fluid beyond an expo-
nentially increased vertical plate with viscous dissipation 
within the existence of a warmth supply and magnetic 
field. Bilal   [14] has numerically discussed the influence 
of Hall currents on the unsteady rotating current of 
carbon nanotubes in a permeable Darcy–Forchheimer 
media with dust grains and nonlinear heat radiation. 
Dawar  [15] has investigated the Hall effect in dual-phase 
radiative dusty nanofluid flow across a stretched sheet. 
Neetu Singh et  al.   [16]] have investigated the effect of 
inertia on dusty fluid in a permeable medium. Chitra 
et al.  [17] have studied the flow of an unsteady dusty fluid 
across an impermeable media in a circular pipe under the 
influence of a magnetic field and a time-varying pressure 
gradient with slip conditions. Sudhir Kumar   [18] has 
studied, using linearized theory, the influences of dust 
particles, rotation, couple stress, and magnetization on 
a thin film of couple stress magnetized fluid’s thermal 
stability. Sasikala   [19] focused on adding dust particles 
between two parallel plates passing through a permeable 
media in the existence of a magnetic field. He observed 
that the upper plate has a uniform suction force, while 
the bottom plate has a constant injection. Farhad Ali 
et al.  [20] have discussed the fluctuating natural convec-
tion of heat-absorbing viscoelastic dust liquid in horizon-
tal channels with the MHD infusion.

Analytical methods are often the preferred approach 
for solving partial differential equations (PDEs)   [21] 
when it is possible to do so. This is because analytical 
solutions are often more accurate than numerical solu-
tions, and they can be more easily generalized to other 
problems   [4, 22]. Some of the most common analytical 
methods for solving PDEs include separation of vari-
ables  [23], Fourier transforms  [24], Laplace transforms, 
and Green’s functions. Marwan Al-Raeei   [24] derived 
the bulk modulus relationship for the Morse interaction, 
by using the Fourier transformation and the mean-spher-
ical approximation.

The purpose of this investigation is to derive an analyti-
cal solution by using the separation of variables method 
to discuss the effect of heat on the unsteady, dusty visco-
elastic fluid in the presence of different pressure gradi-
ents. The problem is formulated and analytically solved, 
and the relevant results are discussed in depth graphi-
cally to explore the influence of various fluid parameters.

2  Method
2.1  Governing equations
The problem considered is a flow of an incompressible vis-
cous dusty fluid between two infinite plates separated by a 
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distance 2h without body force as illustrated in Fig.  1 based 
on the aforementioned assumptions

• The flow is unsteady, laminar, and subjected to pres-
sure gradient varying over time the plate movement

• The flow passes through two parallel plates that are 
vertically heated and have a heat source or sink.

• In the beginning, the fluid and dust particle clouds will 
both be expected to be stationary.

• The dust particles are considered to be homogeneous 
in size with a spherical shape.

• The dust particle number density is assumed to be uni-
form.

• The flow in a porous medium.

The governing equations  [25] are:

(1)

∂u

∂t
=−

1

ρ

∂P

∂x
+ gβ(T − T0)+ gβ(C − C0)

+ γ

(

1− �
∂

∂t

)

∂2u

∂y2
+

kN

γ
(v − u)−

γ

k
u

(2)
∂v

∂t
=

k

m
(u− v)

(3)
∂T

∂t
=

KT

ρCp

∂2T

∂y2
−

Q1

ρCp
(T − T0)

(4)
∂C

∂t
=D

∂2C

∂y2
− α(C − C0)+ DT

∂2T

∂y2

The initial and boundary condition are

where u—fluid velocity (m/s), t—time (s), ρ—fluid den-
sity (kg/m3) , P—pressure of the fluid (N/m2) , x-axis of 
co-ordinates oriented along the flow direction. (m), g—
gravity acceleration (m/s2) , β—coefficient of volumetric 
thermal expansion (1/◦C) , T—fluid temperature (◦C) , To

—initial temperature (◦C) , C fluid concentration (kg/m3) , 
C0—initial uniform concentration at T0 , γ—kinematic 
viscosity (Ns/m2) , �—the diffusing particles’ mean free 
path, y—normal to the plate coordinate axis (m), k—non-
dimensional chemical reaction coefficient, N—the parti-
cle density number of the dust, v—dust particles velocity 
(m/s), m—mass of the dust particles (kg), KT− the fluid’s 
thermal conductivity coefficient (W m −1 K −1) CP− spe-
cific heat at constant pressure (J/kg K), Q1—volumetric 
heat generation or absorption rate (W/m2) , D—rate of 
mass diffusion (m2/s), α—chemical reaction coefficient, 
DT—thermal diffusion coefficient (m2/s). Cw—concentra-
tion at the wall, and Tw—temperature at the wall

Considering the following dimensionless quantities

(5)

t = 0,u = v = 0,T = T0, C = Co, −h < y < h

t > 0,u = v = 0,= To+ (Tw − To) 1− e−at , and

C = Co+ (Cw − Co) 1− e−at , y = ±h

(6)

P∗ =
P

γρ
, y∗ =

y

h
, x∗ =

x

h

u∗ =
u

h
, v∗ =

v

h
, t∗ =

γ t

h2

a∗ =
ah2

γ
, T ∗ =

T0 − T

T0 − Tw
,C∗ =

C0 − C

C0 − Cw

Fig. 1 Geometry of the flow
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The governing equations are reduced to

The initial and boundary conditions are given by

where Grashof number (1/◦ K) Gr = gβhTw−T0
γ

 , modified 
Grashof number (1/◦ K) Gm = gβhCw−C0

γ
 , visco-elastic 

parameter Ve =
γ �

h2
 , mass concentration of dust particle 

g/m3 l = γm

kh2
 , Prandtl number Pr = µ CP

KT
 , source or sink 

parameter for heat Hs =
Q1
KT

h2 , Schmidt number Sc = γ
D , 

dimensionless parameter of a chemical reaction Cr =
αh2

γ
 , 

parameter of thermal diffusion Td =
DT
D

(

TW−T0
CW−C0

)

 , the 
fluid viscosity µ = γρ , and chemical reaction parameter 
M = K

h2

2.2  Analytical solution
Starting with the homogenous differential equation for 
temperature

it is subjected to non-homogenous boundary conditions

To solve this differential equation by using the method of 
separation of variables, which is one of the most popu-
lar methods for solving partial differential equations, 
and assuming that the solution is separable, that is, the 
final solution can be formulated as a product of different 

(7)

∂u

∂t
= −

∂P

∂x
+ GrT + GmC + γ

(

1− Ve
∂

∂t

)

∂2u

∂y2
+

1

τ
(v − u)−

u

M

(8)
∂v

∂t
=

1

r
(u− v)

(9)
∂2T

∂y2
− Pr

∂T

∂t
−HsT = 0

(10)
∂2C

∂y2
− Sc

∂C

∂t
− CrScC + Td

∂2T

∂y2
= 0

(11)

t = 0,u = v = T = C = 0,−1 < y < 1

t > 0,u = v = 0,T =
(

1− e−at
)

and C =
(

1− e−at
)

, y = ±1

(12)
∂2T (y, t)

∂y2
− Pr

∂T (y, t)

∂t
−HsT (y, t) = 0

(13)
t = 0,T = 0, yǫ(−1, 1)

t > 0,T =
(

1− e−at
)

, y = ±1

functions, each of which is only dependent on a single 
independent variable   [23]. We first transform the non-
homogenous boundary conditions into homogeneous 
ones by assuming that

Substituting Eq. 14 in Eq. 12 we get

where

Equation 15 is a homogenous partial differential equation 
with homogenous boundary conditions that will be ana-
lyzed via the method of separation of variables. We can 
firstly solve the homogenous one

assume

by substituting Eq. 18 in Eq. 17 we get

and

(14)T (y, t) =
(

1− e−at
)cosh

(

m1y
)

cosh (m1)
+ T ∗(y, t)

(15)

∂2T∗(y,t)

∂y2
− Pr

∂T∗(y,t)
∂t −Hs T ∗(y, t) = F(y, t)

at t = 0 T ∗ = 0 y ∈ (−1, 1)
at t > 0 T ∗ = 0 y = ±1

(16)
F(y, t) =

(

γ3 + γ2e
−at

)cosh
(

m1y
)

cosh (m1)
,

γ3 =

(

Hs −m2
1

)

, γ2 = (Pra− γ3)

(17)
∂2T ∗(y, t)

∂y2
− Pr

∂T ∗(y, t)

∂t
−HsT

∗(y, t) = 0

(18)T ∗(y, t) = T ∗(t)T ∗(y)

(19)
T ∗(t)T ∗′′(y)− PrT

∗′(t)T ∗(y)−HsT
∗(t) T ∗(y) = 0

(20)∴

T ∗′′(y)

T ∗(y)
− Pr

T ∗′(t)

T ∗(t)
−Hs = 0

(21)∴

T ∗′′(y)

T ∗(y)
= Pr

T ∗′(t)

T ∗(t)
+Hs = −�

2

(22)∴ T ∗′′(y)+ �
2T ∗(y) = 0

(23)Pr
T ∗′(t)

T ∗(t)
+Hs = −�

2
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The solution of Eq. 22 is

This function is the eigen function for solving the non-
homogeneous partial differential equation

Then the solution is

Substitute Eq. 31 in Eq. 30 we can get

(24)∴ PrT
∗′(y)+

(

Hs + �
2
)

T ∗(t) = 0

(25)

T ∗(y) = l1 cos(�y)+ l2 sin(�y)

at y = 1 T ∗ = 0 → 0 = l1 cos �+ l2 sin �

at y = −1 T ∗ = 0 → 0 = l1 cos �− l2 sin �

Then by addition, we get 2l1 cos � = 0

l1 �= 0 ∴ cos � = 0 → � =
2n− 1

2
π , n = 1, 2, 3, . . .

0 = l1 cos �− l2 sin �

0 = C cos

(

2n− 1

2
π

)

+ l2 sin

(

2n− 1

2
π

)

∴ l2 = 0

(26)∴ T ∗(y) = l1 cos

(

2n− 1

2
π

)

y

(27)T ∗(y, t) =

∞
∑

n=1

T ∗
n (t) · cos

(

2n− 1

2
π

)

y

(28)

∂2T ∗(y, t)

∂y2
− Pr

∂T ∗(y, t)

∂t
−HsT

∗(y, t) = F(y, t)

(29)F(y, t) =

∞
∑

n=1

Fn(t) · cos

(

2n− 1

2
π

)

y

(30)

∂2T ∗(y, t)

∂y2
− Pr

∂T ∗(y, t)

∂t
−HsT

∗(y, t)

=

∞
∑

n=1

Fn(t) · cos

(

2n− 1

2
π

)

y

T ∗ = 0 at t = 0

T ∗ = 0 at y = ±1

(31)T ∗(y, t) =

∞
∑

n=1

T ∗
n (t) · cos

(

2n− 1

2
π

)

y

where

By orthogonality

For

(32)

∞
∑

n=1

−

(

2n− 1

2
π

)2

T ∗
n (t) cos

(

2n− 1

2
π

)

−

∞
∑

n=1

Pr
dT ∗

n (t)

dt
cos

(

2n− 1

2
π

)

y

−Hs

∞
∑

n=1

T ∗
n (t) cos

(

2n− 1

2
π

)

y

=

∞
∑

n=1

Fn(t) · cos

(

2n− 1

2
π

)

y

(33)F(y, t) =

∞
∑

n=1

Fn(t) cos

(

2n− 1

2
π

)

y

(34)

∫ 1

−1

F(y, t) cos

(

2m− 1

2
π

)

ydy =
∑

n=1

∫ 1

−1

Fn(t)

{

cos

(

2n− 1

2
π

)

y

}

{

cos

(

2m− 1

2
π

)

y

}

dy

(35)

m = n

∫ 1

−1
cos

(

2n− 1

2
π

)

y cos

(

2m− 1

2
π

)

ydy = 1

m �= n

∫ 1

−1
cos

(

2n− 1

2
π

)

y cos

(

2n− 1

2
π

)

ydy = 0

∴ Fn(t) =

∫ 1

−1
F(y, t) cos

(

2n− 1

2
π

)

ydy

Fn(t) =

∫ 1

−1

[

(

X3 + γ2e
−at

)coshm1y

coshm1

]

cos

(

2n− 1

2
π

)

ydy

=
2
[

γ3 + γ2e
−at

]

coshm1

∫ 1

0
cosh

(

m1y
)

cos

(

2n− 1

2
π

)

ydy

(36)

Fn(t) = γ1γ3 + γ2γ1e
−at

Where γ1 =
(−1)n−1(2n− 1)π

m2
1 +

(

2n−1
2 π

)2
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From Eq. 34

By orthogonality, we can get

where ∝=
Hs+

(

2n−1
2 π

)2

Pr
 , Then

at t = 0 T ∗
n (t) = 0 then    l1 = γ1

Pr

[

γ3
α
+

γ2
(∝−a)

]

Substituting Eq. 42 in 10 to get

To solve Eq.  43 by separation of variables method we 
first transform the non-homogenous boundary con-
ditions to homogenous one. Let C(y, t) =

(

1− e−at
)

 
cosh (m2y)
cosh (m1)

+ C∗(y, t) For t = 0 C = 0 ∴ C
∗ = 0, t > 0

C =
(

1− e−at
)

at y = ±1 ∴ C∗ = 0

(37)

∞
∑

n=1

[

Pr
d

dt
T ∗
n (t)+

(

Hs +

(

2n− 1

2
π

)2
)

T ∗
n (t)

]

cos

(

2n− 1

2
π

)

= −

∞
∑

n=1

Fn(t) cos

(

2n− 1

2
π

)

y

(38)dT ∗
n (t)

dt
+

(

Hs +

(

2n−1
2 π

)2
)

Pr
T ∗
n (t) = −

Fn(t)

Pr

(39)
dT ∗

n (t)

dt
+ ∝ T ∗

n (t) =
−Fn(t)

Pr

(40)T ∗
n (t) = e−∝t

∫

−Fn(t)

Pr
eαtdt + l1e

−∝t

(41)

Tn(t) =
γ1

Pr

[

−
γ3

α

(

1− e−∝−t
)

+
γ2

(∝ −a)

(

e−∝t − e−at
)

]

(42)

∴ T (t, y) =

[

(

1− e−at
)coshm1y

coshm1

]

+

∞
∑

n=1

γ1

Pr
[−

γ3

α

(

1− e−αt
)

+
γ2

(∝ −a)

(

e−αt − e−at
)

]

cos

(

2n− 1

2
π

)

y

(43)

∂2C(y, t)

∂y2
− Sc

∂C(y, t)

∂t
− CrScC(y, t) = −Td

∂2T (y, t)

∂y2

at t = 0 C = 0 For y ∈ (−1, 1)

at t > 0 C =
(

1− e−at
)

For y = ±1

(44)

∴

∂2C∗(y, t)

∂y2
− Sc

∂C∗(y, t)

∂t
− CrScC

∗(y, t) = Fc(y, t)

which can be written as

By orthogonality, we can get

(45)

Fc(y, t) =
(

γ4 + γ5e
−at

)cosh
(

m2y
)

cosh (m2)

− Td(m1)
2
(

1− e−at
)cosh

(

m1y
)

cosh (m1)

+ Td

∞
∑

n=1

(

2n− 1

2
π

)2

Tn(t)

· cos

(

2n− 1

2
π

)

y

(46)

Fc(y, t) =

∞
∑

n=1

Fnc(t) · cos

(

2n− 1

2
π

)

y

By orthogonality

∴ Fnc(t) =

∫ 1

−1
F(y, t) cos

(

2n− 1

2
π

)

ydy

Fnc(t) =
(

γ4 + γ5e
−at

)

γ6 − γ7γ8
(

1− e−at
)

+ γ9TnT (t)

γ4 =

(

CrSc −m2
2

)

, γ5 =

[

m2
2 + Sca

2 − CrSc

]

γ6 =
(−1)n−1(2n− 1)π

m2
2 +

(

2n−1
2 π

)2
, γ7 = γ1 =

(−1)n−1(2n− 1)π

m2
1 +

(

2n−1
2 π

)2

γ8 =

(

−Tdm
2
1

)

, γ9 =

[

(

2n− 1

2
π

)2

Td

]

∴

∂2C∗(y, t)

∂y2
− Sc

∂C∗(y, t)

∂t
− CrSc

C∗(y, t) =

∞
∑

n=1

Fnc(t) · cos

(

2n− 1

2
π

)

y

(47)C∗(y, t) =

∞
∑

n=1

Tnc(t) · cos

(

2n− 1

2
π

)

y

(48)

dTnc(t)

dt
+

(

CrSc +
(

2n−1
2 π

)2
)

Sc
Tnc(t) = −

Fnc(t)

Sc

(49)

Tnc(t) =
−1

Sc

β4

α1

(

1− e
−α1t

)

−
1

Sc

β5

(α1 − a)

(

e
−at − e

−α1t
)

−
β6

Sc(α1 − α)

(

e
−αt − e

−α1t
)
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where β1 =
[

γ1
Pr

]

, β2 =
[

γ3
α

]

, β3 =

[

γ2
α−a

]

,β4 = γ4γ6

−γ7γ8 + β1β2γ9,β5 = γ5γ6 + γ7γ8 − β1β3β9,β6

= β1β3γ9 − β1β2γ9,α1 =
CrSc+

(

2n−1

2
π

)2

Sc

Solve Eq. 8 for u in to get

Substitute Eq. 51 into Eq. 8 to get

by substituting v(y, t) =
∑∞

n=1 Tnv(t) cos
(

2n−1
2 π

)

y

From Eq. 54 by using orthogonality

(50)

∴ C(y, t) =

[

(

1− e−at
)coshm2y

coshm2

]

+

∞
∑

n=1

Tnc(t) · cos

(

2n− 1

2
π

)

y

(51)u = τ
∂v

∂t
+ v

(52)

τ
∂2v

∂t2
+

∂v

∂t
=

dp

dx
+ GrT + GmC

+

(

1− Ve
∂

∂t

)(

τ
∂3v

∂t∂y2
+

∂2v

∂y2

)

− L
∂v

∂t
−

1

M

(

τ
∂v

∂t
+ v

)

(53)

τVe
∂4v

∂t2∂y2
+ Ve

∂3v

∂t∂y2
− τ

∂3v

∂t∂y2
−

∂2v

∂y2

+

(

1+
τ

M
+ L

)∂v

∂t
+

v

M
+ τ

∂2v

∂t2

= GrT + GmT −
dp

dx

(54)

∞
∑

n=1

{

a2T
′′
nv(t)+ b2T

′
nv(t)+ l2Tnv(t)

}

· cos

(

2n− 1

2
π

)

y

=
(

1− e−at
)

(

Gr
coshm1y

coshm1

+ Gm
coshm2y

coshm2

)

+

∞
∑

n=1

(GrTnT (t)+ GmTnc(t)) cos

(

2n− 1

2
π

)

y−
dP

dx
Where

a2 = τ

(

1− Ve

(

2n− 1

2
π

)2
)

,
dP

dx
= P(t),

b2 =

(

1+ L+
τ

M

)

+ (τ − Ve) ·

(

2n− 1

2
π

)2

l2 =
1

M
+

(

2n− 1

2
π

)2

,TnT (t) = β1β2

+ (β1β3 − β1β2)e
−∝t − β1β3e

−at

Tnc(t) = −
β4

∝ Sc
−

β6

(α1− ∝)Sc
e−∝t −

β5

(α1− ∝)Sc
e−at

+

(

β5

Sc(α1 − a)
+

β6

Sc(α1− ∝)

)

e−α1t

Consider the homogenous one

The auxiliary equation and its roots are

For non-homogenous one, the particular solution is

(55)

∫ 1

−1

cos

(

2n− 1

2
π

)

y cos

(

2m− 1

2
π

)

ydy =

{

0 m �= n

1 m = n
∫ 1

−1

cos

(

2m− 1

2
π

)

y
coshm1y

coshm1

dy =
(−1)n(2n− 1)π

m2
1 +

(

2n−1
2

π

)2
= γ7

∫ 1

−1

cos

(

2m− 1

2
π

)

y
coshm2y

coshm2

ydy =
(−1)n(2n− 1)π

m2
2 +

(

2n−1
2

π

)2
= γ8

∫ 1

−1

P(t) cos

(

2m− 1

2
π

)

ydy = 2P(t)
(−1)n−1

(

2n−1
2

π

)

= P(t).γ15, γ15 =
2(−1)n−1

(

2n−1
2

π

)

a2T
′′
nv(t)+ b2T

′
nv(t)+ l2Tnv(t) = γ11 + γ12e

−at

+ γ13e
−αt + γ14e

−α1t − P(t)γ15

Where

γ11 =

[

(γ7 + β1β2)Gr +

(

γ8 −
β4

αSc

)

Gm

]

γ12 −

[

(γ7 − β1β3)Gr + Gm

(

γ8 −
β5

(α1 − a)Sc

)]

e−at

γ13 =

[

Gr(β1β3 − β1β2)− Gm

(

β6

(α1 − α)Sc

)]

e−αt

γ14 =

[

β5

Sc(α1 − α)
+

β6

Sc(α1 − α)

]

Gme
−α1t

(56)a2 T
′′
nv(t)+ b2 T

′
nv(t)+ C2 Tnv(t) = 0

(57)

a2m
2 + b2m+ l2 = 0,

m1 =
−b2 +

√

b
2

2
− 4a2l2

2a2
,

m2 =
−b2 −

√

b
2

2
− 4a2l2

2a2

(58)∴ Tnvh(t) = l1e
m1t + l2e

m2t

(59)

Tnvp(t) =
1

a2D2 + b2D + l2

[

γ11 + γ12e
−at + γ13e

−αt

+γ14e
−α1t − γ15P(t)

]
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Case 1: P(t) = a0e
−a1t a0, a1 are constants. The expo-

nential pressure variation arises because of the no-slip 
boundary condition, which states that the fluid sticks to 
the plates and has zero velocity at the plates’ surface. As 
a result, fluid particles near the plates experience a higher 
drag force than those far away from the plates. This dif-
ference in drag force creates a pressure gradient that 
drives the fluid flow. The particular solution is

The general solution is

where

(60)
Tnv(t) = γ16 + γ17e

−at + γ18e
−∝t + γ19e

−α1t − γ20e
−a1t

(61)
Tnv =C1e

m1t + C2e
m2t + γ16 + γ17e

−at

+ γ18e
−αt + γ19e

−α1t − γ20e
−a1t

(62)

γ16 =
γ11

l2
, γ17 =

γ12
(

a2a2 − b2a+ l2
) , γ18 =

γ13
(

a2α2 − b2α + l2
) ,

γ19 =
γ14

(

a2α
2
1 − b2α

2
1 + l2

) , γ20 =
γ15a0

(

a2a
2
1 − b2a1 + l2

)

∵ at t = 0 Tnv = 0,∴ 0 = l1 + l2 + γ16 + γ17 + γ18 + γ19 − γ20

∵

aInv

dt
= 0 ∴ 0 = m1l1 +m2l2 − aγ17− ∝ γ18 − α1γ19 + a1γ20

∴ l1 =
1

(m2 −m1)
(−m2γ16 − (m2 + a)γ17 − (m2+ ∝)γ18 − (m2+ ∝1)γ19 + (m2 − a1)γ20)

∴ l2 =
1

(m2 −m1)
(m1γ16 + (m1 + a)γ17 + (m1+ ∝)γ18 + (m1 + α1)γ19 − (m1 − a1)γ20)

v(y.t) =

∞
∑

n=1

Tnv(t) cos

(

2n− 1

2
π

)

y

Case 2: P(t) = a3 + a4t , a3, a4 are constants. This case 
describes a uniform pressure gradient along the flow 
direction. The linear pressure variation arises when the 
fluid flow is in the fully developed region, i.e., when the 
velocity distribution has evolved completely and is main-
tained constant along the flow direction. In this case, the 
pressure drop proportionates to the distance between the 
plates, and the pressure variation is linear.

(63)

Tnu(t) =τ
dTnv

dt
+ Tnv = l1(1+ τm1)e

m1t

+ l2(1+ τm2)e
m2t + γ16 + (1− τa)γ17e

−at

+ (1− τ ∝)γ18e
−∝t + (1− τ ∝1)γ19e

−α1t

− (1− a1τ )γ20e
−a1t

(64)u(y, t) =

∞
∑

n=1

Tnu(t) cos

(

2n− 1

2
π

)

y

where

(65)

1
(

a2D2 + b2D + l2
)γ15P(t) =

1

a2(D −m1)(D −m2)
γ15P(t)

=
1

a2(m1 −m2)

(

1

D −m1
−

1

D −m2

)

γ15P(t)

=
1

a2(m1 −m2)

[

−1

m1

(

1−
D

m1

)−1

+

1

m2
(1− D/m2)

−1

]

P(t)γ15

(66)

1
(

a2D
2 + b2D + l2

)γ15P(t) =
1

a2

[(

a3

m1m2

+
a4(m1 +m2)

(m1m2)
2

)

+
a4

m1m2

t

]

γ15 = [a5 + a6t]γ15

By applying the boundary conditions at t = 0 T = 0,
dT
dt

= 0,weget

(67)

a5 =

[

a3

m1m2a2
+

a4(m1 +m2)

(m1m2)2a2

⌋

∗
1

a2
,

a6 =
a4

m1m2a2
∗

1

a2
Tnv(t) = l1e

m1t + l2e
m2t + γ16

+ γ17e
−at + γ18e

−∝t + γ19e
−α1t + (a5 + a6t)γ15

(68)

l1 =
1

(m2 −m1)
[−m2γ16 − (m2 + a)γ17 − (m2+ ∝)γ18

−(m2+ ∝1)γ19 − a5m2γ15 + a6γ15]

l2 =
1

(m2 −m1)
[+m1γ16 + (m1 + a)γ17 + (m1+ ∝)γ18

+(m1 + α1)γ19 + a5m2γ15 − a6γ15]

Tnv(t) =l1e
m1t + l2e

m2t + γ16 + γ17e
−at + γ18e

−αt

+ γ19e
−α1t + (a5 + a6t)γ15
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3  Results
The analytical solutions for partial differential equa-
tions have been carried out, and results are displayed 
for temperature, concentration, and velocity profiles 
for two different cases of pressure distribution. The 

(69)v(y, t) =

∞
∑

n=1

Tnv(t) cos

(

2n− 1

2
π

)

y

(70)

Tnu(t) =τ
dTnv

dt
+ Tnv = l1(τm1 + 1)em1t

+ l2(τm2 + 1)em2t + γ16 + (1− τa)γ17e
−at

+ (1− τ ∝)γ18e
−αt + (1− τ ∝1)γ19e

−α1t

+ (a5 + a6t + τa6)γ15

(71)u(y, t) =

∞
∑

n=1

Tnu(t) cos

(

2n− 1

2
π

)

y

calculation of flow rate for a constant pressure gradient 
is easier than for an exponential pressure gradient. As 
opposed to that, the exponential pressure gradient is 
more realistic than the constant pressure gradient. The 
exponential pressure gradient can lead to more stable 
flow conditions than the constant pressure gradient.

The physical quantities for engineering applica-
tions, local Nusselt number Nu = −(δT/δy)y=0 , 
and local Sherwood number Sh = −(δC/δy)y=0 are 
defined as   [26]. The current results are compared 
with the previously published available results for dif-
ferent cases, which obtained numerically by Abass 
et  al.  [26], in order to investigate the validity of the 
current results and procedures. The values are shown 
in Table  1. Nusselt and Sherwood numbers have been 
compared for various parameters. The current results 
showed good agreement.

The analytical results for temperature, concentra-
tion, fluid velocity, and dust velocity showed good 
agreement with Madhura and Kalpana   [25] as shown 
in Tables 2 and 3

Table 1 Comparison of Nusselt number and local Sherwood number

γ Gm Sc Gr Pr Nusselt number Sherwood number

Present Abbas et al. 2023 Present Abbas et al. 2023

0.8 5.0 0.4 8.0 0.4 0.688 0.686 1.452 1.467

0.8 5.0 0.4 8.0 0.4 0.276 0.278 1.812 1.998

0.8 5.0 0.4 8.0 0.4 0.388 0.385 1.511 1.510

1.6 3.0 0.4 5.0 0.6 0.398 0.396 1.983 1.981

1.6 3.0 0.4 5.0 0.6 0.249 0.247 2.911 2.864

1.6 3.0 0.4 5.0 0.6 0.512 0.513 2.879 2.821

Table 2 Comparisons of temperature and concentration

Temperature Concentration

Y Present Madhura and Kalpana 
2013

% error Present Madhura and Kalpana 
2013

% error

0.2 0.124 0.125 0.8 0.162 0.164 1.2

0.5 0.144 0.146 1.4 0.168 0.169 0.6

0.8 0.196 0.193 1.6 0.189 0.191 1

Table 3 Comparisons of fluid and dust velocities

Fluid Velocity Dust Velocity

Y Present Madhura and Kalpana 
2013

% error Present Madhura and Kalpana 
2013

% error

0.2 1.53 1.51 1.3 0.52 0.51 2

0.5 1.94 1,91 1.6 1.21 1.19 1.7

0.8 1.51 1.52 0.7 1.22 1.21 0.8
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4  Discussions
Figures 2 and 3 show the influence of Prandtl number Pr 
and the heat source or heat sink coefficient Hs on tem-
perature. It has been noted that the more temperature 
increase, the more Pr and Hs decrease. Figures  4 and 5 
confirm that the concentration of the fluid increases 
when the thermal diffusion parameter Td increases 
and the Schmidt number Sc decreases, respectively. 
Figure  6 confirms that the concentration of the fluid 
increases when the heat source or heat sink coefficient Hs 
decreases. Figure 7 confirms that the concentration of the 
fluid increases when the Prandtl number Pr increases. 
Figures  8, 9, 10, and 11 represent the fluid and dust 
velocities profiles. These figures confirm that fluid and 
dust velocities increase as Td increases. Figures  12, 13, 
14, and 15 show that the fluid and dust velocities increase 
when Cr decreases. Figures 16 and 17 represent the influ-
ence of time on the temperature and the concentration, 

Fig. 2 Variation of temperature with Hs

Fig. 3 Variation of temperature with Pr

Fig. 4 Variation of concentration with Sc

Fig. 5 Variation of concentration with Td

Fig. 6 Variation of concentration with Hs
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Fig. 7 Variation of concentration with Pr

Fig. 8 Variation of fluid velocity with Td‑case 1

Fig. 9 Variation of dust velocity with Td‑case 1

Fig. 10 Variation of fluid velocity with Cr‑case 1

Fig. 11 Variation of dust velocity with Cr‑case 1

Fig. 12 Variation of fluid velocity with Td‑case 2
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respectively. The temperature and concentration increase 
as time increases. The graphs are based on the following 
values:

5  Conclusion
The exact expressions for temperature, concentration, 
and velocity profiles for fluid and dusty particles are 
derived analytically. Results are displayed graphically for 
the various values of parameters. The key discovery may 
be summed up as follows:

cr = 0.4, a = 0.2,Hs = 0.2, t = 1,Pr = 0.4,

Sc = 0.6,M = 10, l = 0.1,D = 1,Ve = 0.3,

τ = 0.9,Gm = 5,Gr = 10n = 2, a0 = 2.5,

a1 = 0.3, a3 = 2.5, a4 = 0.2 andm2 = 1.5

Fig. 13 Variation of dust velocity with Td‑case 2

Fig. 14 Variation of fluid velocity with Cr‑case 2

Fig. 15 Variation of dust velocity with Cr‑case 2

Fig. 16 Variation of temperature with time

Fig. 17 Variation of concentration with time
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• The temperature is inversely proportional to both 
the Prandtl number Pr and the heat source and sink 
parameter Hs.

• The concentration of the fluid is inversely propor-
tional to the thermal diffusion parameter Td and the 
heat source or heat sink parameter Hs.

• The fluid concentration is proportional to Schmidt’s 
number Sc and Prandtl’s number Pr

• Fluid and dust particle velocities increase as Td 
increases.

• Fluid and dust particle velocities increase as Cr 
decreases.

• If the dust particles are very fine, i.e., the mass of the 
dust particles is very small, and as τ− > 0 the veloci-
ties of the fluid and dust particles will be the same.

• The temperature and concentration increase with 
time.

The proposed analytical method will be used to study 
more complex problems that include chemical, ion slip, 
and magnetohydrodynamic effects on dusty fluid flow 
with mass and heat transfer in a porous media.
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