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Abstract 

Background Climate change alters modern drought episode patterns by making them longer, more frequent 
and more severe, in particular in arid and semi-arid agroecosystems. Amending soil properties and enhancing its fer-
tility is a needed sustainable strategy for mitigating drought’s damaging effects on crop production and food security. 
Here, we planned to investigate the potential benefits of biochar–compost mixture (B×C) as a biochar-based fertilizer 
(BCF) in enhancing the drought tolerance of rice plants cultivated in low-fertile sandy soil.

Results Under drought stress, rice plants cultivated in unamended soil (no B×C) exhibited severely wilted, rolled 
and discolored shoots. Furthermore, the shoot dry biomass reduction ratio was 73.3% compared to 44.2 and 27.6% 
for plants treated with 5 and 15% B×C, respectively. Root anatomical and architectural traits were significantly 
less impaired in B×C plants and reflected better performance under drought compared to no B×C plants. During 
the induced drought episode, soil moisture content was enhanced by 2.5-fold through adding B×C, compared 
to unamended soil, thereby reducing the negative impact of drought stress. Moreover, the less drought-stressed 
rice plants (B×C-treated) rapidly recovered after rewatering and displayed the unwinding of previously rolled leaves 
and reproduced panicles. On the other hand, no B×C plants failed to recover and eventually perished completely. 
The expression profiles of several drought responsive genes suggest that leaves of more stressed rice plants (no 
B×C) significantly accumulated more cytosolic free calcium (OsCML3) and apoplastic  H2O2 (OsOXO4) which eventu-
ally may trigger fast and prolonged stomatal closure (OsSRO1c). In addition, more drought-stressed plants (no B×C) 
may over-produce the reactive oxygen species (ROS) superoxide anion molecules (OsRbohB), the negative situation 
that has been further complicated by a possible reduction in the activity of the antioxidative enzyme SOD (OsSOD), 
and thus more lipid peroxidation (3.5-fold increase MDA) in drought-stressed (no B×C) plant shoots compared to B×C 
plants.

Conclusion It is suggested that soil amendment B×C (biochar–compost mixture) could promote drought stress 
tolerance in rice plants by retaining more soil moisture content, thereby mitigating the negative effects of drought 
stress, such as the over-production of ROS in leaves, and thus eventually facilitating recovery after rewatering.
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1  Background
Climate change is defined as the shift in climate pat-
terns mainly caused by greenhouse gas emissions pro-
duced  from natural systems and human activities [1]. 
Climate change is expected to directly impose additional 
burdens on global agricultural productivity by elevat-
ing temperature and intensifying drought episodes over 
many agroecosystems. In arid and semi-arid areas, such 
as northern Africa and the Mediterranean regions, cli-
mate change is anticipated to exacerbate drought epi-
sodes by making them, more frequent, longer, and more 
severe [2–4]. Global climate models predict that these 
areas will become drier by the end of the current century 
[5, 6].

Egypt, as a semi-arid area, is one of the most vulner-
able regions to agricultural drought and its negative con-
sequences [7, 8]. Even without climate change, Egypt’s 
water scarcity is already pronounced due to accelerated 
population growth which has necessitated an increase 
in food production (https:// www. world data. info/ africa/ 
egypt/ popul ation growth. php). Land suitable for agri-
culture in Egypt (only 3.5 million hectares, including 
recently reclaimed land) is rather limited when com-
pared to country total area (nearly 100 million hectares), 
in addition to a high annual population growth rate (2%). 
Egypt relies primarily on the Nile for irrigation water 
(95% of Egypt’s water demand) whereby 85% of Nile 
water is consumed by the agricultural sector [9]. There-
fore, managing water resources by maximizing water 
use efficiency per unit of cultivated  land area is criti-
cally needed to avoid uncertain catastrophic scenarios 
affecting local agricultural production and, by extension, 
national food security.

Amending soil is a major sustainable adaptive invest-
ment strategy for enhancing crop productivity under 
undesirable edaphic environmental conditions such 
as drought or salinity [10, 11]. Soil amendments can 
be classified into two distinct categories: (i) organic 
amendments (essential source for carbon and nitrogen) 
including farm crop residues, compost, biochar, and 
biochar–compost mixture, and (ii) inorganic amend-
ments such as gypsum, langbeinite, and zeolite [12]. 
Biochar is a  solid carbonaceous material, synthesized 
by the thermal decomposition (300–700 ℃) of biomass 
in the absence or partial presence of oxygen, a pro-
cess referred to as pyrolysis [13, 14]. Biochar can be 
produced from crop or forest residues, wood process-
ing waste, algae, sewage sludge, and manure. The pri-
mary physical and chemical properties of biochar (pH, 

elemental composition, particle size, surface area, and 
pore size distribution) are strongly influenced by both 
pyrolysis conditions and feedstock type; the two factors 
that ultimately determine its potential beneficial appli-
cations [15].

Biochar can improve soil quality and fertility, 
enhance crop productivity, and mitigate climate change 
by sequestering carbon [3]. Soil properties such as pH, 
bulk density (BD), water-holding capacity (WHC), 
and cation exchange capacity (CEC) may be relatively 
enhanced by optimized biochar addition, providing 
that soil type and mixture are efficiently taken into 
account [7]. Biochar has been repeatedly reported as an 
effective management tool for mitigating drought stress 
impact on crop productivity [16]. Although biochar has 
been used as a soil amendment, its incorporation into 
soil should be managed with utmost caution to avoid 
adverse changes in soil biological, physical, and chemi-
cal properties [17, 18]. Moreover, biochar entails sig-
nificant cost burdens, in particular with large quantities 
for extended cultivated areas [7]. Therefore, the care-
ful assessment of the interaction between biochar and 
the employed agroecosystem is essential for achieving 
superior results.

Egypt is the largest rice producer in the near east and 
north Africa region with a cultivated area of 554,205 ha 
and a production yield of 3,263,969 tons of milled rice 
in 2020 [19]. Although rice agriculture is simple with 
assured results, its cultivation in Egypt has reached a 
point where limited fresh water resources pose a signif-
icant impact on local production potential. The semi-
aquatic crop is extremely susceptible to drought and 
thus inevitably needs a significant amount of irrigation 
water, approximately 2–3 times higher than is required 
for producing other cereals, such as maize or wheat 
[20]. To address these challenges, Egypt is considering 
cultivating rice, in newly reclaimed land, where fresh 
water scarcity and soil salinity are the most significant 
obstacles encountered. Therefore, we hypothesize that 
amending such type of low-fertile sandy soil is a sus-
tainable investment for expanding national agricultural 
production and thereby contributing to food security 
stabilization. Rice was intentionally selected in this 
study due to its significance as a strategic crop and also 
as a model plant for monocots [21].

Although biochar is a well-acknowledged soil amend-
ment, it is apparently not a fertilizer; therefore, charg-
ing biochar with compost is thought to be beneficial 
for both soil properties and nutrition, and hence crop 

https://www.worlddata.info/africa/egypt/populationgrowth.php
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performance [22]. The main aim of the proposed plan 
is to investigate the potential role of biochar–compost 
mixture (B×C) as a  soil amendment in mitigating the 
negative effects of drought stress on rice seedlings cul-
tivated in infertile sandy soil (representing the common 
type of soil that exists in newly reclaimed land in Egypt, 
desert and semi-desert areas). Using quantitative meas-
urement of several phenological, physiological, and 
molecular parameters, the response of rice seedlings to 
administered treatments was monitored. We hypoth-
esize that biochar–compost mixture (B×C) may aid in 
enhancing rice cultivation (and potentially other cere-
als such as wheat) on newly reclaimed low-fertile sandy 
land (desert and semi-desert) under a water-saving irri-
gation regime.

2  Materials
2.1  Experimental layout, plant materials, and drought 

treatment
Pot experiment was conducted at the greenhouse facili-
ties of  the Agricultural Genetic Engineering Research 
Institute (AGERI), Agricultural Research Center (ARC), 
Giza, Egypt. The used soil mixture was sandy in texture 
(75% medium-sized commercial grade sand, 15% peat 
moss, and 10% pearlite) with a low salinity (EC ranged 
from 1.8 to 2.3 ds   m−1) and slight alkalinity (pH ≈7.5). 
Temperature inside the greenhouse unit was maintained 
at 27 ℃ and light was adjusted to approximately 30,000 to 
35,000 Lux during daytime, ~ 16 h. Seeds of Egyptian rice 
cultivar Sakha 101 were provided by  the  Rice Research 
and Training Center (RRTC), Field Crops Research Insti-
tute (FCRI), Agricultural Research Center (ARC), Egypt. 
The seeds (un-hulled) were surface-disinfected using 50% 
commercial bleaching agent (2.5% NaOCl) for 30 min, 
then washed 5 times thoroughly with water, and then 
kept at 4℃ for two days to achieve a homogenous germi-
nation rate. The seeds were then incubated at room tem-
perature for extra two days.

2.2  Soil potting mixture and biochar–compost mixture 
(B×C) addition

The evenly germinated seeds were further sowed in soil 
boxes for two months and transplanted into pots filled 
with sandy low-fertile soil (≈  5000  cm3) supplemented 
with the following rates of biochar–compost mixture 
(B×C): 0 (no B×C), 5, and 15%  B×C  (v/v). The investi-
gated concentrations of B×C in this work (5, and 15%, 
v/v) were prepared  according to [23] where compost to 
biochar ratio was 50% for each mixture. The transplanted 
rice seedlings were irrigated with maximum soil capac-
ity (approximately 1000 ml per day of tap water) for an 
extra week to recover and adapt after transplantation. For 

inducing drought stress, irrigation was completely sus-
pended for one month, whereas control rice plants were 
irrigated daily with nearly 1000 ml of tap water. The con-
trol or well-watered plants are referred to as WW, while 
drought-stressed plants are referred to as DS.

In this study, rice plants were subjected to six dif-
ferent treatments: (i) fresh tap water irrigation of una-
mended (no B×C) soil, (ii) fresh tap water irrigation of 
soil amended with 5% B×C (v/v), (iii) fresh tap water 
irrigation of soil amended with 15% B×C (v/v), (iv) sus-
pended irrigation of unamended (no B×C) soil, (v) sus-
pended irrigation of soil amended with 5% B×C, and (vi) 
suspended irrigation of soil amended with 15% B×C. The 
biochar–compost mixture was homogeneously mixed 
with the soil to ensure a uniform distribution around the 
cultivated rice root systems.

2.3  Shoot growth measurement
At harvest, following a one-month episode of drought 
stress, shoots of all treated plants were disjunct from 
the root system using sharp and clean garden scissors 
and then dried in an oven at 80 ℃ for three days, and 
then weighed to determine dry biomass. The percentage 
reduction of shoot dry biomass in drought-stressed (DS) 
rice plants compared with well-watered (WW) plants 
was calculated according to the following equation: 
(WW–DS/WW)*100.

2.4  Leaf relative water content (LRWC)
Leaf RWC (relative water content) of all treated rice 
plants was estimated according to [24]. Essentially,  a 
6-cm-long leaf blade  end (third leaf ) was seized from 
all rice plants and immediately weighed to record fresh 
weight (FW), then immersed in distilled water for two 
days and then weighed to determine turgid weight (TW). 
The leaves were then dried in an oven at 80  °C for two 
days and weighed again to determine the dry weight 
(DW). For each treatment, LRWC was calculated accord-
ing to the following equation: LRWC (%) = [(FW–DW) / 
(TW–DW)] * 100.

2.5  Determination of lipid peroxidation in shoots
Lipid peroxidation of shoots was estimated in terms of 
MDA (Malondialdehyde) using the thiobarbituric acid 
(TBA) method as described by [25]. Briefly, 500 mg of 
rice shoots were thoroughly homogenized using mor-
tar and pestle in 1 ml of 0.1% TCA (trichloroacetic acid, 
w/v). The homogenate was then centrifuged for 20 min 
at 10,000 g, then 800 µl of the supernatant was added to 
1 ml of 0.5% TBA dissolved in 20% TCA. The mixture 
was incubated in a boiling water bath for 60 min using 
thick-wall glass test tubes and then transferred to an ice 
bath for 10 min to stop the reaction. The mixtures were 
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individually transferred into regular plastic microcen-
trifuge tubes and then centrifuged for 15 min at 12,000 
g. The absorbance of the supernatant of each sample 
was spectrophotometrically determined at 532 nm and 
600 nm as specific and non-specific values, respectively. 
The value of the non-specific absorption at 600 nm was 
subtracted. The amount of MDA-TBA complex (red pig-
ment) was calculated from the extinction coefficient 155 
 mM−1cm−1.

2.6  Root anatomical and architectural measurements
The root systems of treated rice plants were extracted 
from the soil in the greenhouse using a high-pressure 
water stream, and then delicately washed in  the labora-
tory several times using tap water to remove any possi-
ble traces of soil granules, and then stored at 4 ℃ in 70% 
ethanol for subsequent root traits investigations. For 
studying anatomical traits, root segments from the basal 
position were hand-sectioned using sharp mid-thickness 
blades, and stained with 1.5% Toluidin Blue O for 5 min 
then washed 2–3 times with distilled water [26]. The 
transverse sections were examined and imaged using the 
stereoscope SZ61 (Olympus, Japan) supplied with a high-
resolution digital camera DP23 (Olympus, Japan). Using 
the software ImageJ, the cross section area and stele 
area were measured. For architectural traits: nodal root 
number and total root length were also determined. The 
ethanol- preserved root samples were rinsed briefly with 
distilled water and then dried in a regular oven at 80 °C 
for two days to record root dry biomass. Root biomass 
reduction ratio was calculated for each sample as follows: 
(WW–DS/WW) * 100.

2.7  Determination of soil moisture content
50 g of soil samples that were subjected to drought stress 
(no B×C or amended with B×C) were retrieved from 
middle depth of each pot, then soil samples were oven-
dried at 65 ℃ for 4 days until reaching a constant weight. 
Soil moisture content (%) was calculated according to the 
following equation: [(weight of fresh soil sample − weight 
of oven-dried soil) / weight of oven-dried soil] *100 [27].

2.8  Total RNA isolation and cDNA synthesis
Total RNA was isolated from rice shoots, and genomic 
DNA was in-column digested using Direct-zol™ RNA 
MiniPrep (Zymo Research, USA) according to the man-
ufacturer manual. The quantity and purity of RNA sam-
ples were confirmed to be highly acceptable by using 
 NanoDrop® spectrophotometer (Thermo Scientific, 
USA). Additionally, RNA was visualized on agarose gel 
(1.3%, w/v) stained with ethidium bromide (1 mg/ml final 
concentration) to examine integrity and the absence of 
genomic DNA contamination. cDNA was synthesized 

from 400 ng of total RNA using Cosmo cDNA synthesis 
kit (Willowfort, England) according to the supplied pro-
tocol from the manufacturing company. The synthesized 
cDNA was diluted 1:5 with nucleases-free water and used 
for subsequent gene expression analysis.

2.9  Quantifying gene expression profile
The molecular quantification of several stress marker 
genes was carried out by the quantification of mRNA 
levels relative to a reference gene. This was achieved 
by quantifying the PCR amplicons integrated density 
(IntDen) using the Gel express method developed by 
Hazman [28]. The sequences of forward and reverse 
primers are provided in  the Additional file  1: Table  S1. 
For setting up PCR reactions, a 25 μl mixture for each 
reaction  was prepared as follows: 12.5 μl of amaR PCR 
master mix (GeneDireX, Taiwan), 5 μl of diluted cDNA 
(1:5), 1 μl forward primer (10 μM), 1 μl reverse primer 
(10 μM), and nuclease-free water was added up to 25 μl. 
The thermal cycling protocol used with T100™ Thermal 
Cycler (Bio-Rad, USA) was as follows: initial denatura-
tion step 95 ℃ for 3 min, 30 cycles of denaturation step at 
95 ℃ for 30 s, annealing step at 58 ℃ for 1 min, extension 
step at 72 ℃ for 1 min. The final extension step was done 
at 72 ℃ for 5 min. The reaction was stopped by incubat-
ing the tubes at 4 ℃ for 30 min. The PCR product was 
electrophoresed and then visualized on a 1.5% agarose 
gel stained with ethidium bromide (1mg/ml final con-
centration). The agarose gel was photographed by the gel 
documentation system (Bio-Rad, USA).

2.10  Experimental design and statistical analysis
The experiment plots were arranged in a complete ran-
domized design (CRD). SPSS (IBM Statistics, USA) 
software was used for statistical tests including mean 
separations by Duncan’s multiple range test (DMRT), 
with a significance level of P ≤ 0.05. All analyzed data rep-
resented three independent biological replications.

3  Results
3.1  Morphological response of rice plants under drought 

stress
Drought stress was induced by suspending irrigation 
(for four weeks) applied to rice plants (9 weeks old) cul-
tivated in low-fertile sandy soil supplemented with two 
different rates of biochar–compost mixture (B×C): 5 and 
15% (v/v) in addition to an  unamended soil treatment 
containing no B×C. Both B×C treatments (5 and 15%, 
v/v) appeared to mitigate the negative effects of drought 
stress compared to the non-amended drought-stressed 
plants (no B×C) with respect to exogenous  wilting and 
necrosis symptoms (Fig. 1a). Figure 1b demonstrates that 
the leaf blades of rice plants grown in soil lacking B×C 
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amendment were obviously shrunken, dehydrated, and 
wilted, in contrast to plants grown in soil containing 5 
and 15% B×C, where shoots were less wilted. Generally, 
applying a drought stress regime by suspending irrigation 
for one month had a negative effect on the growth shape 
of Sakha 101 rice shoots; however, the damage was more 
apparent in the rice plants grown with no B×C compared 
to rice plants cultivated in B×C-amended soil.

3.2  Shoot biomass reduction ratio, leaf RWC, and lipid 
peroxidation levels

The induced drought stress significantly reduced dry bio-
mass of rice shoots in the presence and absence of B×C 
soil amendment (Fig.  2a). However, the reduction ratio 
was significantly higher in rice plants cultivated in soil 
without B×C (73.3%) compared to soil amended with 
B×C ratios of 5 and 15% (44.2 and 27.6%, respectively) 
as shown in Fig.  2b. Under drought stress,  the reduc-
tion ratios in shoot biomass were comparable in both 
B×C blending ratios, of 5 and 15%. Figure  2c illustrates 
the determined levels of leaf relative water content (Leaf 
RWC) under control and drought stress conditions in the 
presence and absence of B×C in sandy low-fertile soil. It 
is observed that drought stress significantly reduced leaf 
RWC in rice plants grown in no B×C soil compared with 
control well-watered conditions by a reduction ratio of 
nearly 41%, whereas the reduction ratios in cases of 5 
and 15% B×C were only 13.7 and 6.9%, respectively. The 
leaf RWC levels were not significantly different under 
drought stress in plants cultivated in both 5 and 15% 
B×C-amended soil (Fig. 2c). On the basis of lipid peroxi-
dation, the extent of oxidative damage is determined in 
Fig.  2d. Expectedly, the shoots of drought-stressed rice 

plants in no B×C soil accumulated 3.56-fold more MDA-
TBA complex (68.8 nmol/gFw) than the leaves of well-
watered plants (19.3 nmol/gFw). MDA-TBA complex 
levels showed no significant difference in B×C-treated 
plants in well-watered and drought stress conditions.

3.3  Root anatomical and architectural traits
Figure 3a, b demonstrates that the mean root cross sec-
tion area of B×C-treated  plants was reduced by 23% as 
a result of the induced drought stress compared to well-
watered conditions. In contrast, no B×C rice plants 
demonstrated a more significant reduction in root cross 
section area by 64.5%  under drought stress relative to 
well-watered conditions. Similarly, the stele area of all 
rice plants decreased in response to drought (Fig.  3c). 
With no B×C plants, the reduction ratio was 57%, 
whereas it was around 26% with B×C-treated rice plants. 
For root architectural traits, the entire root systems of 
rice plants were extracted, delicately washed, and pre-
sented in Fig. 4a, where it appears that B×C addition sub-
stantially alleviated the negative effects of drought stress 
on the root system. All drought-stressed plants exhibited 
a significant reduction in total root length, but the reduc-
tion ratio in the absence of B×C was greater than in the 
presence of B×C (mean value), 55.3% and 37.2%, respec-
tively, as shown in Fig. 4c. Similarly, nodal root number 
diminished by 70% in the absence of B×C compared 
with 42.5% in B×C-treated plants, relative to control 
conditions (Fig.  4c). Root dry biomass was significantly 
reduced in drought-stressed plants compared with well-
watered plants, yet B×C plants showed a lower reduction 
ratio (72%) compared with plants grown in unamended 

Fig. 1 Phenotyping of Egyptian rice cultivar Sakha 101 (13 weeks old) in response to drought stress (four weeks of suspended irrigation), 
and cultivated in soil amended with biochar–compost mixture (B×C): 0, 5 and 15% (v/v). a Rice plant shoots (13 weeks old) subjected to a drought 
stress episode of four-weeks suspended irrigation, b The third leaf of 13-week old rice plants cultivated in low-fertile sandy soil amended with 0, 5 
and 15% B×C under well watering (WW) and drought stress (DS) conditions
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sandy soil (88%) (Fig. 4d). Root/shoot dry biomass ratio 
of all drought-stressed plants decreased significantly 
compared with well-watered plants, yet with comparable 
values in no B×C and B×C soil treatments (Fig. 4e). 

3.4  Elevated soil moisture content ratio after short‑term 
drought episode in B×C‑amended soil

The percentage of soil moisture was calculated accord-
ing to the following equation: soil moisture content 
% = [(weight of fresh soil sample − weight of oven-dried 
soil) / weight of oven-dried soil] *  100. Figure  5 demon-
strates that the moisture content of B×C-amended soil 
was substantially greater than that of unamended soil by 
a factor of 2.4. Furthermore, the percentage of soil mois-
ture in the 15% B×C-amended soil was lower (although 
not significant) than the 5% B×C-amended soil.

3.5  Biochar–compost mixture (B×C) facilitates 
the recovery of drought‑stressed plants 
after rewatering

As previously indicated, at the late vegetative stage, an 
induced drought stress episode affected rice plants cul-
tivated in B×C-amended soil less severely than in una-
mended soil, where the latter were significantly stunted 
(Fig.  1a, b). Furthermore, we examined whether rewa-
tering drought-stressed B×C-treated rice plants would 
restore normal growth and facilitate development to the 
reproductive stage. After one week of daily base rewa-
tering, previously drought-stressed B×C plants with 
partially wilted leaves (Fig. 6a) were able to eventually re-
extend and reproduce panicles (Fig.  6b). In response to 
drought, the number of panicles and panicle length val-
ues were markedly reduced compared to well-watered 
plants (data not shown). In contrast, no B×C drought-
stressed rice plants were not able to recover and ulti-
mately perished (Fig. 6b).

Fig. 2 Effect of amending low-fertile sandy soil with biochar–compost mixture on growth and physiological parameters of rice plants in response 
to drought stress. a Determination of shoot dry biomass of rice plants, b represents calculated shoot biomass reduction ratios, c calculated leaf 
relative water content (Leaf RWC), and d for estimated amounts of MDA-TBA complex as a marker for lipid peroxidation due to oxidative stress. 
Values represent the means of three replications ± SE. Means with the same letters are not significantly different according to Duncan’s multiple 
range test (DMRT) (p ≤ 0.05)
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Fig. 3 Effect of drought stress on root anatomical traits in the presence and absence of soil amendment biochar–compost mixture (B×C). 
a Toluidine Blue O staining (1.5%) of hand-made cross sections of fresh basal nodal root segments (5 cm from root base) of cultivar Sakha 
101 under drought stress in 0, 5, and 15% B×C. b Effect of B×C addition on cross section area of basal nodal root segment in well-watered 
and drought-stressed rice plants. c Effect of B×C addition on stele area of basal nodal root segment in well-watered and drought-stressed rice 
plants. Values represent the means of three replications ± SE. Means with the same letters are not significantly different according to Duncan’s 
multiple range test (DMRT) (p ≤ 0.05)

Fig. 4 Effect of adding B×C to low-fertile sandy soil on shaping rice root architectural traits under drought stress. a Exogenious shape of extracted 
whole root system of drought-stressed rice plants (13 weeks old), adding B×C with 5 or 15% could enable developing a better root system 
compared with no B×C plants. b The response of root total length, c nodal root number, d root dry biomass, and e root/shoot dry biomass ratio. 
Values represent the means of three replications ± SE. Means with the same letters are not significantly different according to Duncan’s multiple 
range test (DMRT) (p ≤ 0.05)
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3.6  Relative gene expression profiling of several stress 
marker genes

We quantified the expression of twelve (12) stress 
marker genes in an effort to elucidate potential molecu-
lar responses of rice plants under less drought stress 
(cultivated in B×C soil) versus greater drought stress 
(cultivated in soil without B×C). Agarose gel images, rep-
resenting quantified PCR amplicons, are presented in 
Figs.  7a, 8a, 9a. Figure  7 presents the expression pro-
file of OsSOD, OsCML3, OsSRO1c, and OsJAR1. 
The expression of OsSOD (encodes the antioxidant 
enzyme superoxide dismutase) was elevated in leaves 
of all drought-stressed plants relative to well-watered 

conditions, however at a higher level in B×C plants ver-
sus unamended plants  under drought stress (Fig.  7b). 
On the other hand, the expressions of both OsCML3 
(encodes calmodulin like protein) and OsSRO1c 
(encodes similar to radical-induced cell death one pro-
tein) were significantly elevated in no B×C plant shoots 
(Fig. 7c, d). The relative abundance in mRNA of OsCML3 
and OsSRO1c in no B×C plant shoots were a 289.7- and 
127.5-fold increase compared to mean values of B×C-
treated plants  under drought stress, respectively. The 
expression of OsJAR1 gene (encodes enzyme Jasmonate 
Resistant 1) was significantly diminished by a reduc-
tion ratio of 93.22% in no B×C under drought compared 
to unamended well-watered plants, and by 38.9% in 5% 
B×C stressed plants compared to well-watered 5% B×C-
amended plants (Fig.  7e). It is worth noting that under 
drought stress, amended plants with 5 and 15% B×C 
showed a higher OsJAR1 mRNA level relative to no B×C 
plants with a 16.3- and 8.4-fold increase, respectively.  

The transcripts of OsRbohB, (encodes ROS produc-
ing enzyme NADPH oxidase), were greatly induced in 
response to drought stress, however, the level was sig-
nificantly higher in B×C plants compared with no  B×C 
plants  by a mean value increase of 1.8-fold (Fig.  8b). 
OsPXA (Peroxidase) gene was over-expressed in no 
B×C plants under drought compared to well-watered 
conditions, while both drought-stressed B×C-treated 
plants displayed comparable transcript levels relative 
to well-watered B×C-treated plants (Fig.  8c). Similar 
to the profile of OsCML3 and OsSRO1c, the expres-
sion of OsOXO4 (encodes the  H2O2 producing enzyme 
oxalic acid oxidase 4) was strongly upregulated in no 

Fig. 5 Soil moisture content of low-fertile sandy soil amended with 5 
and 15% B×C compared to no B×C soil. Full irrigation was applied 
and then drought stress was induced by suspending water for two 
weeks, then samples were taken from the middle soil strata 
of the pot (10 cm from top soil). Values represent the means of three 
replications ± SE. Means with the same letters are not significantly 
different according to Duncan’s multiple range test (DMRT) (p ≤ 0.05)

Fig. 6 The effect of B×C amendment on the recovery of Egyptian rice japonica cultivar Sakha 101 post a drought stress episode of one month. 
a Phenotype of rice plants under drought stress grown in no B×C and B×C-amended soil (presented in Fig. 1a). b Phenotype of the same 
drought-stressed rice plants in “a” after irrigation with fresh tap water for two weeks (daily base, full soil irrigation). Red arrows point at the severely 
stunted rice plants after exposure to drought stress episode of one month in “a” and the completely deceased plants after recovery in “b”. White 
arrows point at the wilted rice leaf blade under drought in “a” and in “b” where the leaf blades recovered after rewatering, and the blue arrow in “b” 
points at the panicles reproduced from recovered B×C plants
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B×C plants under drought (147-fold) compared to well-
watered plants, while drought-stressed B×C treated 
plants showed comparable levels with well-watered 
conditions (Fig.  8d). OsAPX (encodes the antioxida-
tive enzyme Ascorbate peroxidase) transcripts were 

significantly downregulated under drought stress relative 
to well-watered conditions, whereas the reduction ratio 
in no B×C plants was 99.8% and approximately 69% for 
mean values of  B×C-treated plants (Fig.  8e). It is worth 
noting that the addition of B×C to soil resulted in a 74.7% 

Fig. 7 The relative expression profile of selected stress marker genes in response to drought stress in shoots of Egyptian rice variety Sakha 101 
plants under the effect of amending soil with biochar–compost mixture (B×C) with rates of 0, 5 and 15% (v/v). a Agarose gel electrophoresis 
(inverted color image) showing the migration of PCR product of each studied target gene and the reference gene, M 100 bp DNA ladder. 
Quantified gene relative expression of b OsSOD (encodes enzyme Superoxide dismutase), c OsCML3 (encodes Calmodulin like protein), d OsSRO1c 
(encodes Similar to radical-induced cell death one protein), and e OsJAR1 (encodes enzyme Jasmonate resistant 1). Values represent the means 
of three replications ± SE. Means with the same letters are not significantly different according to Duncan’s multiple range test (DMRT) (p ≤ 0.05)
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reduction in the level of OsAPX transcripts under well-
watered conditions.

OsWR1 (encodes for wax synthesis regulator pro-
tein 1) was highly expressed in both B×C plants under 
drought  relative to well-watered conditions, while no 

B×C plants showed comparable levels (Fig. 9b). We fur-
ther investigated the response of two genes related to 
nitrogen assimilation in plants, OsNR (nitrate reduc-
tase) and OsNOS1 (nitric oxide synthase 1). Figure  9c 
shows that OsNR was strongly downregulated in 

Fig. 8 The relative expression profile of selected stress marker genes in response to drought stress in shoots of Egyptian rice variety Sakha 101 
plants under the effect of amending soil with biochar–compost mixture (B×C) with rates of 0, 5 and 15% (v/v). a Agarose gel electrophoresis 
(inverted color image) showing the migration of PCR product of each studied target gene and the reference gene, M 100 bp DNA ladder. Quantified 
gene relative expression of b OsRbohB (encodes enzyme NADPH oxidase), c OsPXA (encodes enzyme peroxidase), d OsOXO4 (encodes enzyme 
oxalate oxidase), and e OsAPX (encodes enzyme Ascorbate peroxidase). Values represent the means of three replications ± SE. Means with the same 
letters are not significantly different according to Duncan’s multiple range test (DMRT) (p ≤ 0.05)
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response to drought in case of 0 and 5% B×C plants by 
a reduction ratio of 66.6 and 60%, respectively. Under 
well-watered conditions, the expression of OsNR 
gene in 15% B×C-treated plants was downregulated 
by a reduction ratio of 56.6% and 51.8% compared to 

unamended (no B×C) and amended plants with 5% 
B×C, respectively. On the other hand, OsNOS1 tran-
scripts were elevated under drought stress only in 
the case of 5% B×C-treated plants by nearly a six  fold 
increase compared to well-watered 5% B×C plants 

Fig. 9 The relative expression profile of selected stress marker genes in response to drought stress in shoots of Egyptian rice variety Sakha 101 
plants under the effect of amending soil with biochar–compost mixture (B×C) with rates of 0, 5 and 15% (v/v). a Agarose gel electrophoresis 
(inverted color image) showing the migration of PCR product of each studied target gene and the reference gene, M 100 bp DNA ladder. 
Quantified gene relative expression of b OsWR1 (encodes Wax regulator protein 1), c OsNR (encodes enzyme Nitrate reductase), d OsNOS1 
(encodes Nitric oxide synthase 1), and e OsACS2 (encodes enzyme 1-aminocyclopropane-1-carboxylic acid synthase). Values represent the means 
of three replications ± SE. Means with the same letters are not significantly different according to Duncan’s multiple range test (DMRT) (p ≤ 0.05)
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(Fig.  9d). The expression of OsACS2 (encodes ethyl-
ene biosynthesis key enzyme) was strongly elevated 
in no B×C plants by an 8 and  36-fold increase under 
drought compared to well-watered no B×C conditions 
and drought-stressed B×C plants, respectively (Fig. 9e).

4  Discussion
Biochar has been widely used to improve poor soil 
quality and thus acclimating crops to edaphic stresses 
such as drought. This is particularly relevant for sandy 
loam soil, which is commonly found in newly reclaimed 
land in Egypt, and is characterized by a low level of fer-
tility and high porosity [11]. Nevertheless, if biochar 
is applied exclusively, it can have limitations due its 
nutrient deficiency; therefore, deploying biochar-based 
fertilizers (BCFs) is a sustainable necessity for amend-
ing soil and enhancing its fertility [29]. In this study, 
we intended to examine the effect of biochar–compost 
mixture (B×C) as a biochar-based fertilizer on enhanc-
ing drought stress tolerance in rice; a strategic univer-
sal crop that is notoriously susceptible to drought, and 
considered as a well-acknowledged  model plant for 
monocots [21].

Rice (Oryza sativa L.) is a semi-aquatic plant with 
a fibrous root system and the lowest water use effi-
ciency in comparison to other cereal crops such as 
maize, wheat and barley [26]. Therefore, soil proper-
ties are crucial for rice performance in agroecosystems 
with limited water input [30]. In this study, we applied 
a one-month drought stress episode in pots, under 
greenhouse-controlled conditions, to severely chal-
lenge rice seedlings of Sakha 101 as a drought-sensitive 
rice variety  [31]. The drought-sensitive cultivar Sakha 
101 was selected for this study to establish a realistic 
parameter to evaluate whether the applied soil amend-
ing agent (biochar–compost mixture, B×C) effectively 
enhanced plant drought tolerance.

As expected, the induced drought stress episode 
strongly damaged rice shoots in the form of wilted and 
rolled leaf blades, whereas the B×C-treated rice plants 
were more effective in enhancing drought stress toler-
ance, i.e., alleviating visible severe drought stress damage 
(Fig.  1a, b). The presented phenotypical results corre-
late with a lower ratio of shoot biomass reduction and a 
higher leaf relative water content in rice plants treated 
with B×C and subjected to drought (Fig.  2a, b and c). 
Sadegh-Zadeh et  al. [32] reported that applying a bio-
char–compost mixture to calcareous sandy soil could 
enhance rice plant growth and grain yield. Similarly, a 
biochar–compost mixture promoted shoot dry biomass 
of sweet pepper under a dry irrigation strategy, thereby 
enhancing plant growth [33]. The level of lipid peroxida-
tion, which represents  the oxidative damage  level, was 

substantially elevated in no B×C rice leaves exposed to 
drought stress (Fig.  2d). This is consistent with Yildirim 
et  al. [34] who reported that amending soil by biochar 
could reduce lipid peroxidation level in cabbage seedlings 
under drought stress. Reactive oxygen species (ROS) are 
generated in large amounts within plants subjected to 
drought as a result of imbalanced gas exchange through 
partially closed stomata. ROS target several highly-crit-
ical molecules such as DNA, proteins and lipids of cell 
membranes via a process termed lipid peroxidation [35]. 
Lipid peroxidation (in terms of MDA accumulation, see 
methodology) is a stable marker for osmotic stress (or 
drought) in rice compared to other abiotic forms of stress 
such as salinity and alkalinity [36].

Roots are the primary target to drought stress where 
soil moisture rapidly declined, in particular at the top 
soil strata where roots are connected to the shoot system. 
Since roots and shoots are interdependent, the healthy 
shape of shoots reflects on roots. In this study, we exam-
ined and evaluated several root anatomical and archi-
tectural traits under well-watered and drought-stressed 
conditions. Under drought stress, root cross section area 
and stele area of B×C-treated plants were larger than 
those cultivated in no B×C soil (Fig. 3b, dc). In a previ-
ous study conducted on several Egyptian rice varieties, 
Hazman and Brown [26] reported that traits such as 
cross section and/or stele area are associated with shoot 
dry biomass and root length. In the current study, B×C-
treated plants exhibited the highest value of root length 
compared to unamended soil plants (no B×C) under 
drought stress (Fig. 4a, b). There is a significant reduction 
in nodal root number and root dry biomass in no B×C 
compared to B×C-amended soil (both 5 and 15% rates), 
under drought stress (Fig.  4c, d). Interestingly, several 
reports explained such reduction as an adaptive response 
to save resources and metabolic costs (e.g., root respira-
tion) under stress rather than as mere damage symptoms 
[37, 38].

Root/shoot biomass ratios were statistically com-
parable in drought-stressed plants cultivated in B×C-
amended or unamended soil (Fig. 4e). Root/shoot ratio is 
a well-acknowledged trait for monitoring plant response 
to drought stress in terms of estimating relative biomass 
allocation between roots and shoots [39]. Although shoot 
and root dry biomass values were enhanced with the 
addition of B×C to soil (Figs. 2a and 4d), root/shoot ratios 
were statistically comparable across all B×C treatments. 
This could possibly be attributed to fact that B×C addi-
tion could evenly promote both shoot and root growth. 
The situation could be further explained by the elevated 
moisture ratio in B×C-amended soil with a mean 2.5-
fold increase in comparison to soil without B×C amend-
ment (Fig. 5). It has been demonstrated that biochar can 
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induce soil physical properties by several aspects includ-
ing enhancing water-holding capacity (WHC) or soil 
moisture, therefore, making water more abundant in the 
rhizosphere for a much longer period during drought 
episodes, in particular in coarse or sandy soil [7, 11]. The 
elevated soil moisture content in B×C-treated soil accel-
erated the recovery of stressed plants following rewa-
tering. B×C-treated plants recovered rapidly, with the 
unwinding of previously rolled leaf blades and the repro-
duction of panicles. On the other hand, in the absence of 
B×C amendment, drought-stressed plants perished even 
after two weeks of daily-based rewatering (Fig. 6a, b).

The molecular tools for stress perception, signal-
ing and adaptation  to applied stress are further investi-
gated through the quantification of several stress marker 
genes (Figs.  7, 8, 9). The most notable observation is 
the strongly upregulated transcripts of OsCML3 (cal-
cium sensing), OsSRO1c (stomatal closure), OsOXO4 
(apoplast hydrogen peroxide production), and OsACS2 
(Ethylene biosynthesis) exclusively in the shoots of no 
B×C plants under drought (Figs. 7c, d, 8d, 9e). Calcium 
is a second messenger possessing extracellular stimuli 
with a robust intracellular response, yet the exact role 
of calcium in plant response to drought is still not fully 
understood [40]. It is suggested that calcium ions are 
trans-allocated from roots to shoots for better interpre-
tation in drought stress signature, probably through cell 
influx via the mechanosensitive calcium channel OSCA1 
(reduced hyperosmolality-induced  [Ca2+] Increase 1) 
which is gated by hyperosmotic stress [41].  Ca++ entry 
into cells can trigger apoplast  H2O2 production by the 
activation of membrane-located NADPH oxidases so that 
the primary calcium influx is followed (probably with 
some delay) by a transient oxidative burst [42]. Indeed, 
in this work, the level of OsRbohB transcripts was sig-
nificantly higher in no B×C rice shoots compared with 
B×C drought-stressed rice plants (Fig. 8b). Furthermore, 
it is suggested that  H2O2 was produced in large amounts 
by the enzyme oxalate oxidase as represented by the 
upregulated OsOXO4 gene expression under no B×C 
treatment but not in B×C-treated plants which seemed 
to be less stressed (Fig. 8d) [43]. The over-production of 
extracellular  H2O2 is thought to be driven by the elevated 
intracellular level of calcium ions, however,  H2O2 would 
further elevate cytosolic free calcium that eventually can 
promote stomatal closure [44, 45]. This assumption is in 
line with our findings; OsSRO1c gene (related to stoma-
tal closure) was strongly upregulated in no B×C drought-
stressed plants compared to B×C-treated plants (Fig. 7d). 
The over-expression of OsACS2 is thought to be associ-
ated with arrested growth of the more drought-stressed 
plants (no B×C). Ethylene  (C2H2) as a gaseous stress hor-
mone could be over-produced to inhibit growth in order 

to manage the balance between drought tolerance mech-
anisms and growth arrest, a fine-tuned trade-off strategy 
that is recently reported [46].

The response of antioxidative enzyme genes was also 
examined in this work. Modulating ROS levels by anti-
oxidative enzymes is an essential protective strategy for 
ROS detoxification and modulation of stress signaling 
[36]. OsSOD (encodes superoxide dismutase) is found to 
be upregulated in response to drought stress in 0, 5 and 
15% B×C-treated plants, although with a greater magni-
tude in the less drought-stressed plant shoots, i.e., cul-
tivated in 5 and 15% B×C-amended soil (Fig.  7b). SOD 
is a vital antioxidative enzyme in regulating ROS accu-
mulation in rice in response to different types of abiotic 
stress, such as salinity and osmotic stress. It is essen-
tial in detoxifying superoxide anion molecules, which if 
highly  accumulated could damage cell and mitochon-
drial membranes [47, 48]. Since drought-stressed rice 
plants grown in unamended soil (no B×C) could access 
and thus uptake less water relative to B×C plants, it is 
expected that drought stress could negatively impair the 
performance of several antioxidative enzymes within the 
cell, such as SOD. Additionally, the significant reduction 
in the expression of OsAPX (encodes Ascorbate per-
oxidase) under drought could be possibly attributed to 
drought negative impact on basal metabolism of plants, 
in particular for sensitive species such as rice [36]. In the 
same context, Hazman et al. [49] found that salinity stress 
unexpectedly inhibited the activity of the antioxidant 
enzyme catalase (CAT) compared to control fresh water 
conditions. The higher expression of OsAPX in no B×C 
than B×C plants under well-watered conditions might be 
an adaptive response to a possible higher level of  H2O2 
in shoots (originally could be produced in roots and 
translocated to shoots) due to severe nutrient depriva-
tion after long-term growth in low-fertile sandy soil [50]. 
We suggest that no B×C rice plants under drought stress 
accumulated higher amounts of ROS (primarily superox-
ide anion  O2

−) through NADPH oxidase, the action that 
was accompanied with a lower SOD activity (as proposed 
by gene expression profile data), thus a higher magnitude 
of damaging cell membranes in no B×C plants under 
drought (see high lipid peroxidation in Fig. 2d).

Drought-stressed rice plants cultivated in no B×C 
soil (unamended soil) severely inhibited the expression 
of OsWR1 (related to wax biosynthesis). It is suggested 
that the severe drought damage effect observed in these 
plants is due to less synthesized wax in the leaves which 
can promote better tolerance during extended drought 
episodes by reducing water loss (Fig. 9b, see also Fig. 1) 
[51]. OsJAR1 (encodes Jasmonate Resistant 1) is essen-
tial in producing Jasmonile isoleucine (JA-Ile), the active 
biological form of the plant hormone jasmonic acid. The 
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role of jasmonic acid or its derivative JA-Ile in abiotic 
stress response is not well understood [52]. Although 
not entirely verified, JA-Ile is thought to be associated 
with enhanced drought tolerance in rice, therefore, we 
assume that the less drought-stressed rice plants (B×C) 
might accumulate higher amounts of JA-Ile (high OsJAR 
expression), thus better adaptive response to drought 
(Fig. 7e) [53, 54].

Nitrogen assimilation-related genes (OsNR and 
OsNOS1) could highlight the possible differences 
between 5% B×C and 15% B×C plants in terms of behav-
ior under well-watered and stress conditions (Fig.  9c, 
d). It is suggested that the higher ratio of applied B×C 
(15%) to sandy soil may delay the nitrogen uptake from 
soil due to biochar-induced elevated cation exchange 
capacity (CEC) [7, 10]. The expression of OsNR (nitro-
gen assimilation key enzyme nitrate reductase) was sig-
nificantly inhibited in the shoots of plants cultivated in 
15% B×C-amended soil under well-watered conditions 
compared to no B×C and 5% B×C plants. On the other 
hand, OsNOS1 (nitric oxide synthase 1) was solely over-
expressed in 5% B×C plants in response to drought stress 
by a 6.11-fold increase compared to well-watered plants, 
suggesting better nitric oxide (NO) production. NOS 
enzyme activity is associated with nitrogen availability 
and uptake (ammonia in particular), and is reported to 
be elevated in response to osmotic stress, a basic single 
stressor type of complex syndromes such as drought and 
salinity. NO contributes to adaptation to drought stress 
by facilitating stress signaling and adaptive responses 
such as stomatal closure, alleviation of toxic effects 
caused by various stressors by modulating oxidative 
stress, antioxidant defense mechanism, metal transport, 
and ion homeostasis. [55, 56].

5  Conclusion
Amending low-fertile sandy soil with biochar–compost 
mixture (B×C) can be beneficial in alleviating the detri-
mental impacts of drought stress on rice plants. Plants 
cultivated in B×C-treated soil outperformed untreated 
plants in terms of shoot and root system growth traits 
under drought stress. The applied B×C rates (5 and 15%, 
v/v) successfully enhanced soil ability to retain mois-
ture under drought and thus facilitated a rapid recovery 
post soil rewatering. Based on gene expression profiles, 
we hypothesize that the more stressed plants (no B×C) 
accumulated more ROS with weaker antioxidative enzy-
matic ability, eventually developing unrecoverable dam-
age symptoms. Furthermore, the excessive use of B×C 
is assumed to relatively reduce nitrogen uptake under 
well-watered and drought-stressed conditions, empha-
sizing the necessity to optimize the efficient application 
rate  of B×C. Collectively, we propose improving sandy 

low-fertile soil in newly reclaimed land or in greenhouses 
by incorporating a biochar–compost mixture amend-
ment, which could facilitate the cultivation of strate-
gic or cash crops using water-saving irrigation regimes. 
We interpret these findings in a model for revealing rice 
molecular response to drought stress in the presence and 
absence of biochar–compost mixture (Fig. 10). We must 
emphasize that additional research is required to assess 
the impact of a single high-dose of biochar–compost 
mixture after several years in the open field or in green-
houses facilities.
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BCFs  Biochar-based fertilizers
B×C  Biochar–compost mixture
cDNA  Complementary deoxyribonucleic acid
CEC  Cation exchange capacity

Fig. 10 Schematic model for the molecular basis of rice plant 
response to severe drought or restricted water-saving irrigation 
regime after amending soil with a biochar–compost mixture (B×C). 
The observed phenotype of less-stressed rice plants that are 
able to recover rapidly after rewatering could be associated 
with the improved moisture content in B×C-amended soil 
throughout the induced drought episode. The enhanced rice 
resilience in B×C-amended soil could be associated with less stress 
signal perception  (Ca++ and  H2O2), and attributed to better gas 
exchange quality due to partial stomatal closure, better nitrogen 
assimilation, and ROS/antioxidants balance under stress
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