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Abstract 

Background  Huntington’s disease is one of the rare neurodegenerative diseases caused because of genetic muta-
tion of the Huntingtin gene. The major hallmarks of the condition include motor impairment, cognitive decline, 
and psychiatric symptoms. With no cure and only symptomatic treatments available, early detection and personalized 
therapy are warranted for managing the disease effectively. Artificial Intelligence has emerged as a transformational 
tool in healthcare, revolutionizing many parts of medical practice and research, thus holding the potential in detect-
ing, monitoring, and managing Huntington’s disease.

Main body of abstract  Artificial Intelligence’s role in Huntington’s disease includes a variety of applications like med-
ical image analysis and predictive analytics. AI-driven algorithms are utilized to analyze brain imaging data in medical 
image analysis. Deep learning and convolutional neural networks (CNNs) aid in the detection of subtle brain changes 
and the identification of illness biomarkers, allowing for the early diagnosis of the disease. Additionally, the predic-
tive analytics capabilities of AI are used to analyze disease development and forecast clinical outcomes. AI models 
can identify illness patterns, estimate the rate of functional decline, and assist doctors in making educated decisions 
about treatment methods and care planning by analyzing patient data.

Conclusions  With clinical practice and research integrated with Artificial Intelligence technologies, we can signifi-
cantly improve the quality of life of individuals affected with Huntington’s disease. This integration holds the poten-
tial to develop effective personalized interventions. Nevertheless, collaborative efforts among doctors, researchers, 
and technology sound developers would be key to the successful implementation of AI in HD.

Keywords  Huntington’s disease, Neurodegenerative disease, Artificial intelligence, Machine learning, Deep learning, 
Numerical simulations
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1 � Background
About 15% of the global population today suffers from 
neurological illnesses, which are the most common cause 
of both physical and mental impairment [21]. The burden 
of chronic neurodegenerative diseases is only expected to 
double over the next 20 years because of the increasing 
aging population in the world. Given this, maintaining 
universal access to neurological treatment will be a tre-
mendous task [67]. Alzheimer’s Disease and Parkinson’s 
Disease are the two most prevalent neurodegenerative 
diseases affecting the elderly population [31].

On the other hand, Huntington’s disease (HD), which is 
not often discussed, is one of the rare neurodegenerative 
diseases having a wide neuropsychiatric clinical spec-
trum [45]. It is a progressive neurodegenerative disorder 
that is mostly characterized by motor incoordination, 
tremors (chorea) and affects cognitive ability. It is caused 
by a mutation in the ‘Huntingtin’ (HTT) gene, located 
on chromosome 4, leading to an expanded CAG (Cyto-
sine, Adenine, and Guanine) repeat sequence [13, 33, 

60]. It has an autosomal dominant pattern of inheritance. 
The typical CAG repetition range length is from 10 to 
35. Patients with 36 to 39 repeats have a low penetrance 
range, whereas those with 40 or more repeats are more 
likely to manifest the condition. Degeneration of neurons 
is observed due to the accumulation of this toxic mutant 
protein [45]. Its prevalence and distribution vary geo-
graphically. The highest prevalence of HD is reported in 
European, Australian, and North American populations 
and lower amongst Asian populations [54, 59].

HD has a complex pathophysiological understanding 
and a complicated diagnosis. Despite enormous attempts 
by the medical community to comprehend and treat 
HD, there is presently no cure, and available treatments 
are mostly symptomatic [66]. Thus suggesting that new 
techniques are required to effectively diagnose, man-
age, and treat this degenerative disease. In this regard, 
Artificial intelligence (AI) has made enormous strides in 
the healthcare industry, revolutionizing several areas of 
medical practice and study. AI is a fast-growing field in 
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computer science that mimics human intelligence includ-
ing memory, learning, analysis, and even innovation 
using computers [27]. AI possesses the potential for auto-
mation of processes requiring human interference hence 
its applications in many fields are possible [69].

A wide range of technologies, including machine learn-
ing, natural language processing, and computer vision, 
are included in AI. These tools can analyze enormous 
volumes of data, finding patterns, and making predic-
tions. Using sophisticated algorithms, AI can learn fea-
tures from a given set of healthcare data, and use the 
insights obtained from this analysis to assist clinicians. 
Based on the feedback mechanism, it can also learn and 
self-correct itself. It can also assist physicians by provid-
ing updated information from journals, clinical practices, 
and textbooks to giving information on patient care. AI is 
also capable of drawing useful information from the data 
of a large population and predicting health risk alerts and 
health outcomes. It also plays a vital role in diagnosis, 
patient monitoring, and care, robotic surgery, electronic 
health records (EHR), development of treatment protocol 
and health management systems [20, 29, 59].

Numerical simulation, sometimes referred to as com-
putational simulation, is a potent method for approxi-
mating and resolving challenging physical, biological, or 
engineering problems by employing mathematical mod-
els and computer algorithms. It enables scientists and 
engineers to investigate systems and phenomena that 
are difficult or impossible to explore using conventional 
analytical techniques. Various mathematical models have 
been developed and have wide applications which are 
emerging, particularly in the fields of medicine and sur-
gery. One of them being the Elzaki Transform Homotopy 
Perturbation Technique (ETHPT) which can solve the 
nonlinear Emden–Fowler systems. The Elzaki Transform 
and the Homotopy Perturbation technique are com-
bined to generate ETHPT. The outcomes demonstrate 
that ETHPT is dependable and efficient in resolving 
these equations. Similar nonlinear equations in numer-
ous branches of science and engineering can be resolved 
using ETHPT [37]. Further, it is possible to solve (1 + 1) 
dimensional mixed-difference integro-differential equa-
tions with variable coefficients under mixed conditions 
using a novel method based on the Bernoulli polynomial 
method and the separation of variables [39, 42]. Addi-
tionally, another analysis involves using Reduced Dif-
ferential Transform Method (RTDM) in order to solve 
systems of fractional order biological systems. The study 
proves the use of this method to be simple and reliable 
with a broad range of application to linear and non-linear 
problems [6].

The interaction between immune system (IS) cells 
and glioblastoma multiforme (GBM) cells is modeled 

in a study using fractional order. To model the disease 
spreading systems, the Caputo–Fabrizio fractional 
derivative kernel is the ideal choice. The proposed 
fractional-order GBM illness paradigm’s stability and 
distinctiveness are established. The Adams–Bash-
forth–Moulton (ABM) approach’s numerical integra-
tions demonstrate how the behavior of the model can 
change as parameters are changed [38]. Another study 
demonstrates that the nonlinear fractional Rubella ill-
ness model may be solved using the numerical tech-
nique using shifted second Chebyshev polynomials 
type (SSCPT) which explores the model’s dynamic 
system and establishes that the fractional model has a 
stable solution both before and after control. Further-
more, the study concludes that the suggested method 
is new and practical for examining the internal meth-
odology of different nonlinear biological models [40, 
41]. Another work, in a similar vein, focuses on using 
the moved Vieta-Lucas polynomials type (SVLPT) 
as part of the basic collocation technique. It analyzes 
and resolves nonlinear Rubella disease tributes using a 
numerical technique. The existence of a continuously 
stable solution, disease equilibrium, and stability bal-
ance points are also covered [40, 41].

Other models include replicating the Kernel Hilbert 
space method, which is used to solve fuzzy Fredholm–
Volterra integrodifferential equations. To model the 
actual situations involving uncertainty, the study of fuzzy 
IDEs with fuzzy beginning conditions is helpful [1]. In a 
different work, a brand-new and effective technique for 
solving three-dimensional mixed Volterra–Fredholm 
integral equations of the second class (3D-MVFIEK2) 
using Lucas polynomials are presented. These equations 
are converted into a system of linear algebraic equations 
using this method. The Lucas polynomial method pro-
duces better results when compared to other numerical 
techniques, particularly the Haar wavelet technique. In 
conclusion, this approach may be modified to solve sin-
gular 3D-VFIEK2 and can also be modified to use the 
finite difference method to solve different kinds of inte-
gral equations [42]. Another study suggests numerical 
analytical methods for examining fuzzy approximations 
of nonlinear fuzzy solutions using the extended repro-
ducing kernel Hilbert space method, duffing oscillators 
and fuzzy fractional differential equations [5]. In other 
similar study, the replicating kernel technique is used to 
solve groups of fuzzy fractional integrodifferential equa-
tions with Atangana-Baleanu-Caputo fractional dis-
tributed order derivatives [2]. Thus while dealing with 
complicated and ambiguous patient data, the application 
of fuzzy mathematical models and AI techniques can 
result in disease detection systems that are more accurate 
and understandable.
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Recent advances involving computational models and 
simulations are also used to study brain function, neural 
connectivity, and neurological disorders. Brain simula-
tions help to understand illnesses like epilepsy and aid in 
the development of brain-computer interfaces [7]. The 
role of AI and numerical simulations in neurodegenera-
tive diseases is multifaceted and holds significant promise 
for improving our understanding, diagnosis, treatment, 
and management of these complex conditions. AI algo-
rithms can analyze diverse data sources, such as genetic 
information, neuroimaging scans, and clinical assess-
ments, to identify early biomarkers and patterns indica-
tive of neurodegenerative diseases. The development of 
computational models of disease progression is aided 
by numerical simulations, which also assist research-
ers comprehend the subtle changes that take place in 
the pilot stages and enable prompt diagnosis [12, 49]. 
Machine learning, which aims at developing algorithms 
to discover repetitions or trends in present data and 
form new prediction data, the repetitive motor, histori-
cal patterns, and other features of HD could be used to 
predict the disease. It can also classify HD from other 
neurodegenerative disorders and provide information 
on the progression of the disease, as well as measure the 
effectiveness of the drug thereby confirming medication 
adherence. This could only be done by computational sta-
tistics and mathematical optimization [15, 74].

Thus, this review aims to elucidate various methodolo-
gies of AI that have been implemented or are being devel-
oped for the determination of HD and its contribution to 
patient care. A disease such as HD requires regular and 

frequent observation by clinicians, but irregularities are 
seen in real conditions. Hence, the collection of such 
medical data using sensors along with analysis and man-
agement of the huge amount of generated data is carried 
out with the help of artificial intelligence. In the following 
sections, we have highlighted the recent studies utilizing 
AI and classified them based on different biomarkers of 
HD such as motor impairment, neuroimages and EEG, 
emotional imbalance, speech disability, and eye move-
ments which are collected with the help of simple medi-
cal devices that are cost-effective and easy to use.

2 � Main text
2.1 � Methodologies of AI
AI is classified into two main branches: virtual and physi-
cal as shown in Fig.  1. The physical branch of AI com-
prises medical devices and robots that assist in complex 
surgeries and healthcare delivery. The virtual branch 
majorly consists of machine learning (ML) and deep 
learning (DL). ML is further classified into 3 types: (1) 
Unsupervised learning (2) Supervised learning and (3) 
Reinforcement learning. [35, 69]

ML is a learning and predictive technique that finds a 
meaningful pattern in each set of data with little human 
interference. However, a part of ML is dependent on 
human knowledge for the selection of features in data, 
multitasking, and transferring knowledge [22]. The 
major difference between the three subclasses of ML is 
the data interpretation method. For supervised learn-
ing techniques, the data, which is labeled with features 
can only be interpreted, however for the unsupervised 

Fig. 1  Various branches of artificial intelligence



Page 5 of 11Parekh et al. Beni-Suef Univ J Basic Appl Sci           (2023) 12:87 	

technique,the interpretation is conducted based on learn-
ing and data structure. In the case of reinforced learning, 
the algorithm learns from its own experiences in an inter-
active system with the data with the help of a feedback 
loop [11, 65, 73]. Supervised learning consists of various 
regression and classification algorithms such as logis-
tic regression, linear regression, decision trees, random 
forest, K-nearest and support vector machine (SVM). In 
order to split the data points into distinct classes or fore-
cast their values, SVM, a prominent machine learning 
technique for classification and regression issues, seeks 
to identify the best hyperplane. The maximization of 
margin, linear separability, margin and support vectors, 
cost parameter, kernel trick, convex optimization, binary 
and multiclass classification, and scalability are some of 
the rules of the SVM. Clustering algorithms in unsuper-
vised learning consist of k-means, and hierarchical clus-
tering are a few examples [8, 35].

DL is a part of ML that employs multiple-layer artifi-
cial neural networks (deep architectures) to learn and 
represent complicated patterns in data. The structure 

and function of the human brain, notably the linked 
neurons that process and send information, influenced 
the design of these deep neural networks. Artificial 
Neural Network (ANN) involves the unidirectional flow 
of information from the input layer to the output layer 
via the hidden layers. A deep Neural Network (DNN) 
is an extension of ANN with multiple hidden layers. 
Adding more layers helps in learning and representing 
complex data patterns. Convolutional Neural Networks 
(CNN) are specially designed for image and video anal-
ysis. Convolutional layers are used to automatically 
learn and extract spatial hierarchies of features from 
images. These scan the input image to detect local pat-
terns, edges, and textures [14, 35].

Description of methodologies of AI as discussed 
above and a few other approaches used in HD diagnosis 
and assessment are described in Table 1 below.

Thus, by utilizing such techniques as discussed above, 
AI can detect patterns in the huge set of provided data. 
Prediction and stages of classification of disease help 
in early and accurate diagnosis and better patient care 
[35].

Table 1  List of various AI techniques and Huntington’s disease scale

Sr. no AI method or various approach Description References

1 Regression Finding a correlation between independent and dependent variables [16]

2 Decision tree Divides the data into two or more homogenous sets [64]

3 Random forest (RF) Classification of a new object from a set of data which is a forest, and each 
tree is classified from that collection

[44]

4 KNN (k- Nearest Neighbor Sorting is done by storing all cases which are available and then classifying 
via k-neighbor majority voting

[23]

5 Logistic regression Deals with the probable finding of the occurrence of an event through a logi-
cal function

[26]

6 K-mean Classification of a set of data using a cluster [62]

7 Naive Bayes Prediction is done by an assumption of the existence of a unique feature 
in a set that is different from other features

[17]

8 Support Vector Machine (SVM) Classifies labeled data into two groups employing the n-dimensional hyper-
plane

[56]

9 Deep Learning (DL) Used for huge data sets. The required features are automatically selected 
by the algorithm, unlike other techniques of ML

[34]

10 Artificial Neural Networks (ANN) It is a technique where computational units are like neurons of the brain. 
ANN can perform complex analyses including multiple factors

[68]

11 Deep Neural Network (DNN) It is a type of ML algorithm that can be trained. Here layers of the neural 
network are stacked to form a deep structure

[63]

12 CNN (Convolutional Neural Network) Designed for analyzing multidimensional images such as 2D. Hence these are 
applied to data with a spatial arrangement

[34]

13 Linear Discriminant Analysis (LDA) It is a technique to reduce the dimension and perform class separation [48]

14 Adaptive Neuro-fuzzy Interference System (ANFIS) Combination of neural network adaptive capabilities and the fuzzy logic 
qualitative approach

[70]

15 Long Short-term Memory (LSTM) Deep model based on a ’memory cell’ that can maintain information 
for a prolonged period

[72]

16 Unified Huntington’s disease Rating Scale 
(UHDRS)—Total Motor Score

Used for rating eye movements, gait, speech, bradykinesia, dystonia, and rap-
idly alternating movements

[25]
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2.2 � Use of AI methodologies in Huntington’s disease 
studies

HD includes characteristic symptoms such as psychiatric 
decline, cognitive impairment, and movement disorders 
like chorea (involuntary and jerky movements), motor 
incoordination, and bradykinesia [25]. Detection or diag-
nosis of HD at an early stage is difficult and mostly the 
symptoms are considered the normal symptoms of aging 
and dismissed. In addition to this, the similarity in symp-
toms of major neurodegenerative diseases also makes it 
difficult to correctly diagnose a particular disease [28]. At 
present, one of the commonly used methods for identifi-
cation and assessment of HD is questionnaires of various 
kinds which is more of a subjective approach. Hence it is 
crucial to objectively evaluate the patient’s physical func-
tions for clinical use which can assist clinicians to make 
better clinical decisions and develop suitable treatment 
algorithms. Recently, different AI techniques includ-
ing machine learning, methods of feature extraction, 
and methods of classification have been developed and 
employed to make an automatic and more precise diag-
nosis using available clinical data [70].

Additionally, Genetic Algorithms (GAs) and Swarm 
Intelligence could also be utilized in HD diagnosis and 
management. GAs is influenced by biological evolution 
and natural selection. They emulate the ideas of genetic 
heredity and the survival of the fittest to solve optimi-
zation and search challenges. GAs can be utilized for 
genetic risk assessment, illness progression modeling, 
feature selection, and medication development in the 
context of HD. GAs can detect high-risk genotypes, help 
simulate illness progression, choose pertinent genetic 
features, and assist in refining chemical molecules for 
potential therapeutic interventions by analyzing different 
combinations of genetic markers. Each member of the 
population that GAs represent as potential answers to 
the optimization problem has a different potential solu-
tion to the problem. Fitter people are more likely to pass 
on their inherited features, simulating the natural selec-
tion process. Through crossover (recombination), GAs 
enables the combining of advantageous features from 
several individuals, and through random mutations, they 
increase population diversity. The GA continues for a 
predetermined number of generations or until a stopping 
requirement is satisfied, and it improves over time [24].

Swarm intelligence is an AI approach that takes its 
cues from social insects, in which groups collaborate to 
complete challenging tasks. It helps with solving optimi-
zation issues. Swarm intelligence can improve param-
eter tuning, illness progression modeling, ideal treatment 
approaches, and image analysis in the study of HD. It is 
possible to fine-tune computational models to describe 
disease dynamics or therapeutic results as accurately 

as possible. Swarm intelligence can calibrate computer 
models to empirical data to forecast how the disease will 
develop. By simulating the results of various interven-
tions, it helps improve treatment regimens for patients. 
In order to identify alterations caused by the disease 
and track the evolution of the condition in HD patients, 
swarm intelligence can segment and analyze brain images 
[30, 55].

Additionally, to understand the role of AI in HD, we 
have described different studies using AI techniques and 
have classified them according to the biomarkers of the 
disease discussed below.

2.2.1 � Motor impairment
Gait pattern and mobility are affected in HD and obser-
vation of changes in the trend can be used for assess-
ment. A few early motor signals of HD include a balance 
disorder, slowness, and random jerking movements [4, 
53]. For classification and measurement of the sever-
ity of the disease, data is gathered, selected, then pre-
processed followed by extraction of certain features, and 
then assessment of features is conducted to support the 
decision-making process. Data is attained with the help 
of several sensors. A few of the common classifiers used 
are linear, non-linear, Bayes, SVM, and Random For-
est among many more. A fusion of various classifiers to 
obtain more accurate results has also been observed [28, 
70]. Along with sensors, wearable and non-wearable 
devices incorporating accelerometers, photo sensors, and 
gyroscopes can also be used to gather data. The applica-
tion of smartphones could be for data collection, remind-
ers, or drug-intake reports by the patient itself and 
evaluating patient compliance [15].

Another method used for gait classification is Adap-
tive Neuro-Fuzzy Interference System (ANFIS). Various 
gait dynamics are taken into consideration such as stride 
intervals, stance intervals, and double support intervals 
and these were used as inputs for classification models. 
Here sensitivity, accuracy, and specificity were consid-
ered using the leave-one-out-cross validation method 
where one subject is left out and used for testing while 
the remaining subjects are used to train the data [70]. 
Few factors play a role in gait analysis including fatigue, 
hence one of the methods includes this parameter for gait 
recognition using a deep model based on Long Short-
term Memory (LSTM) for analysis where a combination 
of time series and force series is included [72]. Arm gait 
analysis (arm choreiform movements) is also done for 
diagnosis using ANN [4].

The severity of chorea can also be determined clini-
cally using the UHDRS– Total Motor Score. In one of 
the methods used, the measurement of chorea was con-
ducted with the help of a smartwatch and a smartphone 
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for in-house and in-clinic study. The volunteer’s smart-
watch accelerometer data were collected daily, and his/
her smartphone accelerometer and gyroscope data were 
collected during chorea assessments. A rating of chorea 
was given by both volunteers and doctors. A two stacked 
random forest classifier model was used for chorea pre-
diction in this method. All data from both the smart-
watch and smartphone sensors, output from the initial 
models (single smartwatch or single smartphone model) 
was used for assessment. With the use of these devices 
and the model, the progression of HD was evaluated and 
adherence to medication by patients was found out [25].

The use of UHDRS-TMS is also seen as another 
method where matching of the upper and lower limb 
with impaired isometric force is conducted. In this 
method, the subject is evaluated for generating and main-
taining isometric forces with the use of a force transducer 
which is pre-calibrated. The different target levels are 
displayed on the monitor as a straight black line for the 
subject concerning force applied by him/her depicted as 
a moving red line. The matching of the target must be 
for at least 20  s. The generated data were analyzed for 
decision-making [46]. UHDRS is used for scoring finger 
tapping and pronation/supination with the use of a tailor-
made smartphone having an in-built motion sensor and 
gravity detection software. It recognizes and counts the 
number of taps on the screen at a particular time. It also 
senses the rotation performed if the smartphone is held 
while performing the task. The generated data was sent 
to a software program and database on a laptop nearby. 
The number of taps, pronation/supination cycles, and 
the time during the interval were recorded and plotted 
as a graph. This task is beneficial in differentiating an HD 
patient from a healthy individual [10].

Motor diagnosis is one of the important bases for HD 
determination. Most of the gait analysis distinguishes 
HD from other neurodegenerative disorders, whereas 
sensor-enabled medical devices are used for measur-
ing the severity of the disease along with monitoring 
patient compliance. However, sensors attached device 
at the ankle and finger-tapping study are specifically 
used to determine HD. The motor activity of subjects is 
an important parameter for HD and hence it should be 
considered for better diagnostic purposes. A study dem-
onstrates that individuals with neurological movement 
disorders like HD can have their functional capacity level 
and stage of reaction predicted by a hybrid model that 
combines an artificial neural network and a fuzzy logic 
system [32]. In another study, it was discovered that com-
bining age at study admission, clinical factors, and the 
length of the cytosine-adenine-guanine (CAG) repeats 
significantly improves the accuracy of the motor diagno-
sis in HD patients. The data analysis, which employed the 

machine learning technique known as random survival 
forests (RSF), discovered that anticipated probabilities 
can be utilized to describe the advancement level and 
support the selection of study samples in the future [36].

Other clinical studies using motor impairment are 
summarized in Table 2 below.

2.2.2 � Neuroimaging and EEG (electroencephalogram)
The use of MRIs (Magnetic Resonance Imaging), fMRI 
(Functional Magnetic Resonance Imaging), EEG, and 
qEEG (Quantitative EEG) as biomarkers for HD has 
proven to be valuable in the diagnosis and evaluation of 
HD. MRI scans could be defined as imaging formed due 
to the magnetic field (typically brain images), whereas 
fMRI takes images of resting and active states of the brain 
separately. Hence fMRI can give information on dynamic 
brain activity. Many regions of the brain suffering from 
any kind of neurodegenerative disorder are depicted as 
signal-intensity abnormalities on MRIs. The presence of 
specific patterns of such signal intensity abnormalities in 
MRI or such an indication at a specific location suggests 
a particular kind of disease [61]. One of the potential 
markers for HD is MRI measurement of grey and white 
matter along with functional MRI (fMRI). Character-
istic neurodegeneration of sub-cortical features within 
the basal ganglia, early striatal atrophy, abnormalities in 
grey regions, white matter, and fMRI signals have been 
observed in HD and pre-HD patients [58].

Another technique, EEG, is used to understand sub-
cortical pathology. Quantitative electroencephalography 
acts as a technique to provide parameters for evaluating 
sub-cortical malfunctioning which is observed earlier 
or is accompanied by motor or cognitive impairment in 
HD. With the use of clinical measures [UHDRS-TMS, 
TFC, Symbol Digit Modalities Test (SDMT) Stroop 
Word Reading (SWR) and Beck Depression Inventory-
II (BDI-II)] and EEG recordings along with a classifier, 
the subjects are divided for diagnosis of HD. The SDMT 
and SWR measure neurocognitive functions in HD, inde-
pendent of motor impairments [18, 50]. Distinguishing 
HD patients from control and progression of the disease 
is also done using neuroimaging data by implementing 
SVM and Linear Discriminant Analysis (LDA) [51, 58]. 
Here novelty in analysis methods has been implemented 
using machine learning techniques to examine these neu-
roimaging datasets in new ways, hence ML could be used 
as a technique to successfully assist clinicians in making 
decisions. A few clinical studies using neuroimaging and 
EEG are shown in Table 3 below.

2.2.3 � Oculomotor performance
As generally observed, one of the pre-symptoms of HD 
is a change in oculomotor performance. Quantified 
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performance of eye movements could be used as a bio-
marker for diagnosis and progression of HD in pre-symp-
tomatic and early symptomatic HD patients. Clinical data 
of HD patients have shown increased saccade latencies 
and directional error errors. These results suggest the use 
of saccadic movement as a biomarker for HD.

In a study, saccade latency and duration along with 
errors conducted in performing oculomotor tasks are 
considered for assessment in fifty patients. SVM is used 
for the classification and prediction of groups provided 

to the classifier. The participants performed four sac-
cadic tasks in a fixed order: prosaccade, antisaccade, 1- 
or 2-back memory prosaccade, and 1- or 2-back memory 
antisaccade. In all these tasks, the time taken by HD 
patients to perform the task was longer than for a healthy 
individual. Direction errors (like prosaccades initiated 
towards stimulus) or timing errors (like in 1-or 2-back 
memory prosaccade, the eye movements made before 
the signal was given) are greater in HD subjects. The task 
is followed by the identification of valid trials where the 

Table 2  Clinical studies involving motor impairment for HD determination

Serial No Characteristic symptom No. of 
subjects 
involved

Method used Outcome References

1 Gait discrimination 59 Linear, Non-linear, Bayes Classification from Alzheimer’s, 
Parkinson, and ALS (Amyotrophic 
Lateral Sclerosis)

[28]

2 Gait Dynamics 64 K*, RF Classification of HD and other neu-
rodegenerative diseases (ND)

[9]

3 Gait rhythm 64 SVM, RF, kNN, MLP (Multilayer 
Perceptron neural network)

Classification of HD and other 
neurodegenerative diseases

[70]

4 Remote digital trials 17 Intel® Pharma Analytics Platform 
(In association with Teva Pharma-
ceuticals)

Measure patient compliance [15]

5 Quantification of motor function 17 RF, Logistic regression Patient adherence, assisting 
in treatment decisions

[25]

6 Abnormal movements 39 UHDRS Differentiation of HD patients 
from control

[10]

7 Movement sensors in the ankle 14 iPhone sensors HD patient classification [3]

8 Gait dynamics 64 Fuzzy logic, SVM Classification of HD and other 
neurodegenerative diseases

[53]

9 Gait dynamics via deterministic 
learning

64 Radial Basis Function (RBF) neural 
network

Classification of HD and other 
neurodegenerative diseases

[71]

10 Finger Tapping 10 Fuzzy logic, ANN HD determination [32]

11 Upper and lower limb assessment 53 UHDRS-TMS Severity of HD

12 Multi-feature extraction in gait 64 LTSM Classification of HD and other 
neurodegenerative diseases

[72]

13 Motor diagnosis for 12 years 1078 Random survival forest Variables other than CAG repeat 
length and age (and their interac-
tion) enhanced the prediction 
of HD

[36]

14 Gait classification using sensors 42 SVM, UHDRS Discriminate abnormal gait pat-
terns

[43]

Table 3  Clinical studies involving neuroimaging and EEG for HD determination

Serial No Characteristic symptom Number of 
subjects involved

Method used Outcome References

1 Subclinical brain electrical 
activity changes

26 ANN HD determination [19]

2 Imaging biomarkers 64 SVM, LDA Classify between pre-HD and controls [58]

3 EEG 51 UHDRS-TMS Separate HD gene carriers from healthy con-
trols with good specificity and sensitivity

[50]
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errors are excluded. The extraction of 9 features of each 
task for each participant is done followed by classification 
and prediction by SVM based on these features [47].

2.2.4 � Use of acoustic and lexical features
Speech impairment is one of the characteristic symp-
toms of HD and it could be used for distinguishing HD 
patients and determining the stage of the disease. In this 
study, data were collected from sixty-two subjects. Fea-
tures of speech such as filler features (i.e., uh, um, etc.), 
pauses, speech rate, and Goodness of Pronunciation 
(GoP) were used for classifying the available data. In this 
method, data were obtained from human transcripts, 
speaker audio, and Grandfather Passages. The Grandfa-
ther Passage is a paragraph that is phonetically balanced 
and is used as a standard reading passage for speech-lan-
guage analysis. It consists of 129 words and 169 syllables 
and helps to determine the number of utterances along 
with their size. Static features (calculated by applying sta-
tistics) and dynamic features (utterance level) were taken 
into consideration for analysis. Static feature sets were 
modeled using k-NN and DNN whereas dynamic fea-
ture set was modeled using k-NN and Long-Short-Term 
Memory Networks (LSTM). [52]

Another study involved the collection and analysis of 
126 forward and backward-counting audio samples from 
103 HD gene carriers. 60 speech features were extracted 
from blindly annotated samples. Machine learning mod-
els were implemented to combine various speech charac-
teristics to predict clinical markers at an individual level. 
Combining speech characteristics and demographic vari-
ables allowed us to make better predictions of individual 
cognitive, motor, and functional scores compared to the 
predictions involving genetics and demographic infor-
mation. From the study, standard deviation and mean of 
pause durations during backward counting samples and 
clinical scores correlated with striatal atrophy [57].

3 � Conclusion
The incorporation of AI in the field of HD is an enticing 
and transformational strategy to address the difficulties 
of this neurodegenerative disorder. Significant progress 
has been made in understanding HD, enabling early iden-
tification, and extending new therapy pathways because 
of AI’s tremendous skills in numerical simulations, mod-
eling, and data analysis. The most widely utilized bio-
marker in many research involving many biomarkers are 
motor impairment, followed by neuroimages and EEG. 
The increased emphasis on these biomarkers could be 
related to their ease of measurement and prominence. 
Studies utilizing machine learning algorithms have been 
widely incorporated among the various AI methodolo-
gies. Less usage of deep learning, which could be due to 

low data availability because HD is one of the rare disor-
ders, implies more research especially involving different 
biomarkers is further warranted. AI gives more accuracy 
and credibility to the physician’s decisions and hence 
both can work in synchronization to achieve desirable 
outcomes. A transition from conventional to computer-
ized technique is promising for HD and will contribute 
towards better patient care.

4 � Future perspectives
We have a long way to go before fully utilizing AI’s advan-
tages in healthcare because it is still in its early phases 
of development. Significant challenges lie ahead of us, 
the most important being validating and optimizing the 
existing models to develop more resilient and robust 
models. Aside from this, embracing interdisciplinary col-
laboration and ethical issues will be crucial in maximiz-
ing AI’s potential in HD as we move forward. Fostering 
collaborations between academic institutions, health-
care professionals, and researchers will make it possible 
to share large, diverse datasets, enhancing the utility of 
AI in HD research. Additionally, encouraging patient 
empowerment and ethical data practices will increase 
public trust, fostering acceptance of AI as an effective 
tool for HD management. Nevertheless, AI in Hunting-
ton’s disease marks a promising era for research and 
development.
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