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Abstract

Background This study proposes an efficient and stable technique based on new hybrid B-spline (HB-spline) func-
tions for the numerical treatment of the Caputo time fractional nonlinear Burgers' (TFNB) equation. The time deriva-
tive is discretized using the definition of the Caputo derivative, whereas HB-spline functions are used to discretize
the spatial derivatives. The Rubin—-Graves technique is used to linearize the nonlinear terms.

Results The performance and efficacy of the established method are tested using three examples. The graphical
results represent the smoothness between numerical and exact solutions. The absolute errors are very low as 1074
and 107>. The convergence rate shows that the proposed method is second-order accurate in space.

Conclusions The proposed method provides better results than the methods available in the literature. The method
yields highly accurate results and can handle large-scale problems, which is the novelty of the present work.

Keywords Caputo TFNB equation, HB-spline basis functions, Stability analysis, Convergence rate

1 Background

The time fractional partial differential equations have
grown more attention outstanding to several real-life
applications in electrical network systems, signal pro-
cessing, optics, mathematical biology, financial evalua-
tion and prediction, material science, electromagnetic
control theory, multidimensional fluid flow, acoustics,
pre-predator modeling in biological systems, and many
more [2, 3, 5-8]. The delayed time fractional predator—
prey model with feedback control has been studied by
Hopf bifurcation [10, 11]. For better accuracy in real-life
models, the applications of fractional models are growing

*Correspondence:

Neeraj Dhiman

ndhiman@gehu.ac.in

! Department of Mathematics, Jazan University, 45142 Jazan, Saudi Arabia
2 Department of Mathematics, Graphic Era Deemed to be University,
Dehradun 248002, India

? Department of Mathematics, Graphic Era Hill University,

Dehradun 248002, India

@ Springer Open

and indicate significant requirements for better fractional
mathematical models. Radial basis functions and Laplace
transformation are used for the approximation of frac-
tional anomalous sub-diffusion equation [12]. This pro-
cess’s advantage is handling many matrix data efficiently
and accurately. Padder et al. [32] recently performed a
dynamical analysis of a generalized tumor model via the
Caputo fractional-order derivative. The Caputo frac-
tional-order derivative is being employed to model bio-
logical systems, including tumor growth. Tumor growth
models are extensively used in biomedical research to
understand tumor development dynamics and evaluate
potential treatments.

Various analytical approaches are accessible for the
numerical simulation of fractional partial differen-
tial equations. Typically, these types of equations are
complicated to handle analytically. Thus, numerical
approaches play a massive role in numerical approxi-
mations. For example, existing collocation methods
based on Jacobi—Gauss—Lobatto have been generalized
n [15]. Chebyshev polynomials in spectral collocation
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have been used to compute the space-fractional KdV-
Burgers’ equation [16], where Caputo—Fabrizio treats
the space-fractional derivative. The spectral Pell col-
location technique for approximating the TENB equa-
tion has been used in [17]. The authors of [18] used
the Hermite cubic spline collocation technique for the
computational approximation of Helmholtz and Burg-
ers’ equations. The authors of [19, 21, 35, 36] used the
quadratic B-spline Galerkin (QBSG) method, balanced
space—time Chebyshev spectral collocation method,
finite element method based on the cubic B-spline col-
location method, and trigonometric tension B-spline
collocation method, respectively, for TENB equations.
A practical and accurate technique based on the shifted
Gegenbauer polynomials has been presented in [24] to
simulate the multidimensional space-fractional coupled
Burgers’ equations. The residual power series method
was utilized for time fractional BBM Burgers by Zhang
et al. [25] and found that it is in good arrangement with
the exact solution. Different fractional differential oper-
ators are applied for the analytical result of the TENB
equation [26]. Analytical approaches for approximating
the fractional Burger’s equation are presented in [27,
28].

A cubic B-spline FEM is applied in [13] to estimate
time fractional Fisher’s as well as Burgers’ equations,
while the authors of [14] used a collocation method
based on Fibonacci polynomial and finite difference
method to solve coupled fractional Burgers’ equations.
The authors of [22, 23] developed computational tech-
niques based on cubic trigonometric B-splines (CTBS)
and cubic parametric splines (CPS) to approximate the
TENB equation. Recently, Shafiq et al. [9] represented
a numerical technique based on cubic B-spline (CB-
spline) functions for the TENB equation with the Atan-
gana—Baleanu derivative. In addition, the authors of [1]
discussed a numerical scheme for the Riemann-Liou-
ville fractional integral. Further, they suggested two
numerical schemes for the Caputo—Fabrizio and the
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The arrangement of the paper is structured as fol-
lows. The discretization of the TFNB equation is given
in Sect. 2. In Sect. 3, the von Neumann stability is dis-
cussed. Section 4 presents numerical results, while
Sect. 5 presents its discussion. Finally, Sect. 6 highlights
the conclusions.

2 Methods

2.1 Problem formulation

We establish a new hybrid B-spline collocation technique
for following the Caputo TFNB equation.

Y 3 e a<x<b0 1
— tv— —D—==f(xt),a<x<b0<a<l,
oY ox 0x2
1)
Along with
v(x,0) = ¢(x), (2)
V(ﬂ, t) = lﬁl(t); V(br t) = w2(t)1 (3)
where the % denotes the Caputo time fractional deriva-
tive as follows:
9% 1 . v, <)
v —_ vix, ¢
_— = t— ¢ dg, 0 1.
T 9 s 0 <
0
(4)

Now, let us specify the definitions of Caputo fractional
integral and derivatives.

Definition 2.1 The Caputo integral of the function
g(t) € Roforder @ > 0 is defined as follows:

t
1
T ) = oo / (t — 0 YgCdx, @ > 0, £ > 0.
0

Definition 2.2 The Caputo derivative of g(¢) € R is
defined as follows:

t
/(t - x)?—“—lg@ (dx, t>0,1—1<a<leZ".
0

Atangana—Baleanu integral operators. They analyzed
that the Riemann-Liouville fractional integral yields
smaller errors and an intense significant experimental
convergence order in most functions, especially when
the fractional order « — 0. A new adaptive numerical
technique is proposed in [2] to solve nonlinear, sin-
gular, and stiff initial value problems frequently chal-
lenged in real life.

2.2 Discretization of the problem

This part performs the procedure to discretize the Caputo
TENB equation using the cubic HB-spline collocation
technique.

2.2.1 Caputo time fractional derivative
First, we do a uniform partition in [0, T] with length
At = % Here N is the number of partitions in the time
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o
mesh. Now, the discretization of fractional derivatives %

for0 < a < latt = tjy1is given by L1 formula [20, 29, 30]
as follows:

vt 4 k1 j—k\ | aitl
=) Pe(V =) 49 =012, N,
T
k=0
(5)

- . N T
whereag = 552, py = (1) =7 j=0,1,2..N,
and truncate error represented as 71 which is described

by Pt < k, At2, where k, is a constant only related to
dependent variable v.

Lemma 2.1 The factor py, occurring in Eq. (5), satisfies
the following properties:

pk>0,k=0,1,..,N,
l=po>p1>p2>..>pn,pN —> 0asN — 00,

Proof For proof of Lemma, see references [20, 29].

2.2.2 Spatial derivatives

Now, we use the HB-spline collocation technique for
discretizing the spatial derivatives. The domain [a, b] is
partitioned uniformly with the space size h = Ax = %
by the knots x; = a+ih, i =0,1,... M, so that we pos-
sess a =xp < X1 < X3 < ... < xpm = b. Now, we specify
the HB-spline functions Hb;(x) for i = —1,0, .., M+ 1
as follows:

ox—xi—2)°+ (1 - o)bz{—%
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Table 1 The values of Hb;(x) and its derivatives at the knots

Xj-2 Xj-1 Xj Xi+1 Xi+2
Hb; (x) 0 T 17] T
Hb,’(X) 0 3 0 —13
Hb,{/ (X) 0 T4 — 2'[4 T4

Wheret) =0 + (1 —0) =1+ 30,

Sfabh
2(phe1—%2)’
péi=1

_ 3
=%+ ~9)3Ghn g

— 6o _ i)
%=+ 0= gy

The HB-spline functions are obtained by using
Hb;(x) = oB;(x) + (1 — 0)EB;(x), where B;(x) and
EB;(x) are cubic B-spline basis functions [4, 31] and
cubic exponential B-spline basis functions [3, 33, 34],
and o is a hybrid parameter. The term p is a free param-
eter which acquires various forms of cubic exponential
B-spline basis functions. The HB-spline functions are
piecewise basis functions with non-negativity, C> con-
tinuity, unity partition property, and form a basis in
[a, b]. The values of Hb;(x), Hb(x), and Hb/ (x) are pre-
sented in Table 1.

We define the approximate solution as

M+1

u(x, t) ~ Z Hb;(x)C; (1), (7)

i=—1

where C; (tj) is unknown quantities.
The variation of the v(x, tj) is stated as follows:

(sinh ((xi—2 —%)p)) + (xi—2 — x)}, x € [xi—2,%i-1),
U{h3 + 312 (x — xi_1) + 3h(x — xi-1)% — 3(x — xi,1)3}+

(1 —o)far + by (x; — x) + c1?F ™) 4 gy L&) } x € [xi-1,%:),

1
Hbi(x) = w3 o{h3 + 31 (xi41 — %) + 3h(xip1 — ) — 341 — x)3}+ (©)
(1 —o)ar + b1 —x;) + 1@ 4 dy e’;(x"_x)}, x € [xi,%i41),
o (xip2 —x)> + (1 — cr)bz{—%(smh (P(x — xit2))) + (x — xi+2)},x € [xit1,xi42),
0, otherwise,
where
PN —ph ~ S —ph
. phé p Gi(é1—1)+s2 . 1{e” (1_§I)+5‘2(ep —1)
1= <7~ =~ = = ~ ~ ~ y €1 =— — A7 A ~ A
phéy — & 2\ (phé1— &) (1-¢1) 4 (phér — &) (1— &)

L[ (é—-1)+ §2(€f’h - 1)
4 (Phé1 — &) (1= ¢1)

dy = , by

R
2(phéy — &)

, &1 = cosh(ph), & = sinh(ph).
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i+1 where
v(x,t) = > Hbe®)Cr(t). (8) ‘ 4 , 4
k=i—1 All. = lag + (Vx)ll) T — 1/;7,'3 7 Bi

Using above equation, we get the approximate values

ao + (v2)]) 2 + 20, D)
of v, vy, and vy, as

Il
N TN TN

ao + (Vx)é) o+ Ve - b,

v = 1:1C] 1+ 1’2C] + T1C,+1, 9
‘ ‘ j—1 ‘ S
) = =13l +13Ch,, 10)  Ri=ao) ((Pk — )V, +PJV?> + V), +£
k=1

and

‘ ) Equation (17) forms a system of linear equations with
(Vax); = Ta(C_| — 2C + C]+1) (11) M+ 1 equations and M + 3 unknows. For unique solu-
tion, we treat the boundary conditions v(a, t) = Y1 (¢)

Att = tj11, using Eq. (5) for the time fractional deriv-  and y(b, t) = Yy (¢) as
ative, the problem (1) is discretized as follows:

j

ao > (V) =) o b = = 0,1, M = 01,0, (12)
k=0
For linearizing the nonlinear term, we use the Rubin- (l'l Cj n _L,ZCj +n Cj) . 1//j (18)
Graves technique as follows: ! 0 ’
) =V VT ), = Vi) 1z
By Egs. (12) and (13), we have
J
i—k j—k i+l |+l 1 L
a0 > ok (V7 =) v+ o) = V)] = b = (14)
k=0
We can rewrite above equation as follows:
j—1
. k T P, 1 1
ao |V =3 (o — e )V = o | V00 T =V )= [T = £ (15)
k=0
=
=t S
(a0 + @) + ™ = b0 = a0 3 ((or = prsa)V 4 p?) + Ao+ i =01 M, j=0,1,.,N. (16)
k=1
Now, using Egs. (9)—(10) in above equation, we get ) ) ) )
(nc;H + 0l + ncj\m) =, (19)

A + BT + D =R i=1,2,...,M+1j=01,.,N
(17) Solving Egs. (18) and (19), we get
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j oy o, L j
= _;ICO -Gt ;wl and Gy,

. -52 . 1 .
— _C/ _ 7c} - 1‘
M1~ 7 Cm + o £}
Fori = 0and i = M, using (20) in (17), we have

g
( A’+B’> i+ (—df +Dp )l =Ry — 0w,
7

(21)
and
j j j+1 j 2 j+1 D] j+1
(Ahe— D) it + ( - r—lD’M)Cjw = & - Dy
(22)

Equations (21), (22), and (17) form a system of linear
equations as follows:
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3 Stability analysis

The stability analysis of the discretized system of the
TENB equation based on the von Neumann method
[22, 36, 39] is established in this section. According to
Duhamels’” principle [40], it is assumed that the stability
analysis of an inhomogeneous problem is an instantane-
ous consequence of the stability analysis for the subse-
quent homogeneous problem. So, for convenience and
without loss of generality, we consider f =0, and we
linearize the term vv, by taking v, = ki as locally con-
stants. Using above assumptions and some manipulation,
Eq. (12) can be rewritten as follows:

. _ . i
~2A)+By ~A)+Dy 0 0 0 0 Ry — 2yq"!
0 +
A Bg ¢l o C? R
J j 0 j
0 A1 Bl1 Dll 0 0 C2 R]2
0 0 Ay, B’M D’ 0 ng/pz R/M_z
0 o0 0 Ay 1 B’ D’M ) Chon R’M_1
j C
L o0 0 0 0 D’ By —2D), | TRy - 1/,1+1
To solve above system, we require to determine the i1 i1 i1
* *k *
initial vector (Cg,Ci), ey C](\),I_l,CI(\)/I) from the initial ACG +B°C T+ DG,

condition which delivers M + 1 equations with M + 3
unknowns. To remove the Cgl and C[?/I 4 We use the first

derivative of the initial condition at the boundaries which
gives:

= Cya + (¢>x)M,
(23)
Now using Egs. (23) and (9), we have the following sys-
tem of linear equations:

1
c =c?— T—B((;Sx)oand Cohir =

[y 211 0 11 S 7 [ oo+ 2@a ]
T1 T2 T1 Cl ¢1
01 mmn C3 @2
nnn 0||CYy, dm—2
unoal|cy ¢A;11—1

L 02nm]| o | [PM— 5@y |

j—1
ji—k ji—k k
=ao)_ (P~ Pii1) (fle_l +0C T+ 71Cf+1)
k=0

—aop; T1Cl'0_1+‘fzclp+ ‘L'1C?+1)

— aop; (T1C L+l + r1C,+1)

i=0,1,.,M,j=0,1,.,N,
(24)

where
A" =D* = (a() +/A<1)Tl — D1y, B* = (a() + lzl)fg + 2/21&;.

Now, we take a Fourier mode as C] = 61e”“h, where
i =+/—1, 8 is the time- dependent constraint. Applying it
into above equation and simplifying it, we get
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-1

~.

24%* cos (uh) + B*) & = | ag
( (1uh) + B*)

>~
Il

0

= [(2({10 + /Aq)tl - 20t4) cos (uh) + (ag + /Aq)rz + 2131'4] §t = ((,10 Z (Pk — Pk+1)817k— ﬂoP/50> (271 cos (uh) + 12).

(P — Pk+1)87_" — aopjéo (211 cos (uh) + 12).
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j—1
(26)

k=0

Now, we define

8hax = max
0<i<j

Sj’. (27)

Using in above equation, we get

0=0.1, 0.5, 0.9, and grids M =10, 20, 40, and 80. Now,
we solve this example with the parameters 0=0.5, «=0.5,
M=80, =1 at t=1 for different At = 0.002, 0.001,
0.0005, and 0.00025. The numerical solutions are pre-
sented in Table 4, while Table 5 compares Ly and Lo

j—1

[(2(40 + IAq)'cl - 2131'4) cos (uh) + (ap + /A<1)t2 + 2131'4] g = (ao Z (Pk — Pk+1)—a0Pj) 5{nax(21’1 cos (uh) + 1), (28)

k=0

Simplifying it, we have

ao (211 cos (uh) + 13)
(2(a0 + /Aq)rl — 207:4) cos (uh) + (ap + /Aq)rz + 201y
(29)
The discretized system of the TENB equation is uncon-

ditionally stable when |§] <1 which is obvious from
above equation. One can see the alternative proof in [22].

i .
§tl = Sinax.

4 Results
This section considers examples of TENB equation to test
the performance and efficacy of the established proce-
dure. The rate of convergence (ROC) is analyzed by:
log (EM /E"2

log (i /) * ™
errors with /1 and /y, respectively. The error analysis is

ROC = here EM and E signify the

done in terms of Ly, Lo and RMS errors, defined by:

o 1/2
L= (Z\U;‘—MHZ)UZ;LM = max |Uj — ;] ; RMS = (Z MT””) .

Example 1 Consider the TFNB Eq. (1) for
fx,t) = % + t4e¥ — Dt2e* with v(x,t) = t2¢* in
[0,1].

We fix free parameter p=5 for all computations of
Example 1. First, we approximate it with 6=0.5, =0.5,
At=0.00025, and d=1 at t=1 for grids M =10, 20, 40,
and 80. The numerical solutions are presented in Table 2,
while Table 3 compares Ly and L errors of the proposed
method with those available in Ref. [19] with «=0.5,
At=0.00025, and d=1 at t=1 for hybrid parameters

errors of the proposed method with those available in
Ref. [19]. The comparison of the proposed method with
QBSG method [19] together with the convergence rate
of the proposed method is shown in Table 6 for «=0.5,
0=0.5, At=0.00025, and V=1 at t=1. It is obvious that
the proposed method is second-order accurate in space
variable. The Ly and L error norms with Az=0.00025
and V=1 at t=1 for fractional order «=0.1 with hybrid
parameters 0 = 0.1, 0.5, and 0.9 are demonstrated in
Table 7. Figures 1 and 2 show the comparison of the exact
and numerical solutions graphically with o = 0.5, «=0.5,
M=10, At=0.00025, and D=1 for different times. Fig-
ure 2 demonstrates the exact and numerical solutions
along with absolute errors for o = 0.5, «=0.5, M =380,
At=0.05, and D=1 at t=0.5, while Fig. 3 shows it for o =
0.9, v=0.1, M=80, At=0.05, and =1 att = 1.

Example 2 Now, we consider the TENB Eq. (1) with
the following initial and boundary conditions

v(x,00)=0,0<x <1,
and
v(0,8) = t%, v(1L,¢) = —£%, ¢ > 0.

The exact solution is v(x, £) = 2 cos(x), and the func-
tion f(x,t)is

2—a

Fon = |2
x,t) = m

+ 72 <f)n — ¢ sin(rrx))) cos(mx).
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Table 2 The comparison of present and existing numerical solutions with exact solutions for e=0.5, 6 =0.5, At=0.00025, and D=1 at
t=1

x  Present QBSG method  Present QBSG method  Present QBSG method  Present QBSG method  Exact

method [19] method [19] method [19] method [19]

M=10 M=10 M=20 M=20 M=40 M=40 M=80 M=80
0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 1.105304 1.105440 1.105204 1.105287 1.105179 1.105216 1.105173 1.105197 1.105171
0.2 1.221651 1222203 1.221465 1.221644 1221418 1221493 1.221407 1.221455 1.221403
03 1.350204 1.351078 1.349946 1.350217 1.349880 1.349992 1.349864 1.349935 1.349859
04 1492247 1493437 1491908 1492287 1491851 1491996 1491831 1491922 1491825
05 1.649197 1.650663 1.648841 1.649270 1.648751 1.648922 1.648729 1.648838 1.648721
06 1822618 1.824294 1.822244 1.822727 1.822150 1.822342 1.822127 1.822247 1.822119
0.7 2014238 2.016049 2.013874 2014378 2013783 2.013979 2.013760 2013882 2013753
0.8 2225958 2227650 2225645 2226118 2.225567 2225747 2225547 2225661 2225541
09 2459872 2461512 2459670 2460020 2459620 2459745 2459607 2459680 2459603
1.0 2718282 2.718282 2.718282 2718282 2718282 2.718282 2.718282 2718282 2718282

Table 3 The [, and Ly errors with «=0.5, At=0.00025, and 9=1at r=1

M Ly Looleo
Present QBSG method [19] Present QBSG method [19]
a=0.1 a=0.5 =09 o=0.1 0=0.5 =09

10 2.59e—-04 6.34e—05 5.23e—06 1.6329e-03 342e—-04 8.37e—-05 6.90e—-06 2.2967e-03

20 6.47e—-05 1.59e—-05 1.25e-06 44772e-04 8.59e-05 2.11e-05 1.66e—06 6.2502e—-04

40 1.62e—05 4.00e—06 2.78e—07 1.6183e—04 2.15e-05 5.32e-06 3.67e-07 2.2735e-04

80 4.08e—-06 1.03e-06 3.65e—08 1.1255e-05 542e-06 1.37e-06 4.72e—08 1.3312e-04

Table 4 The numerical solutions with e=0.5, «=0.5, M=80,and d=1att=1

x  Present QBSG method  Present QBSG method  Present QBSG method  Present QBSG method

method [19] method [19] method [19] method [19]

At =0.002 At =0.001 At =0.0005 At =0.00025
0.0 1.000 1.000000 1.0000 1.000000 1.0000 1.000000 1.0000 1.000000
0.1 1.1052 1.105356 1.1052 1.105287 1.1052 1.105216 1.1052 1.105197
02 12214 1.221768 12214 1221644 12214 1.221493 1.2214 1.221455
0.3 1.3499 1.350395 1.3499 1.350217 1.3499 1.349992 1.3499 1.349935
04 14918 1492516 14918 1492287 14918 1491996 14918 1491922
05 1.6487 1.649543 1.6487 1.649270 1.6487 1.648922 1.6487 1.648838
06 18221 1.823031 1.8221 1.822727 1.8221 1.822342 1.8221 1.822247
07 20138 2.014687 20138 2014378 20138 2.013979 20138 2.013882
0.8 22255 2226387 22255 2226118 22255 2225747 2.2255 2225661
09 2459% 2460180 24596 2460020 24596 2459745 24596 2459680

1.0 27183 2.718282 2.7183 2.718282 2.7183 2.718282 2.7183 2.718282
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Table 5 The comparison of the proposed and existing methods
in terms of [ and Ly With 6=0.5,«=0.5, M=80,and =1 att=1

L Lo
At Present QBSG method  Present QBSG method
[19] 191
0.002 5.1434e—-06 6.60788e—04 6.9801e—06 9.36619e—-04
0.001 24367e—06 4.47720e—04 3.2687e—06 6.25018¢e—04
0.0005 14914e-06 1.61833e-04 1.9858e—06 2.27352e-04
0.00025 1.0339e—06 9.2624e—05 13741e-06 1.33125e—04
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Table 8 shows the comparison of Ly and L error
norms for p=0.015, 0=0.5, ®=0.5 At=0.00025, and
D=1 at t=1 for M =10, 20, 40, and 80. This table also
establishes that the proposed method is second-order
accurate in space variable. The error norms Ly and Ly
are calculated for p=0.015, 0=0.5, «=0.5 M =80, and
D=1 at =1 for various time mesh sizes in Table 9. Now,
Table 10 shows the comparison of error norms with
0=0.5, M=80, At=0.00025, and v=1 at =1 for vari-
ous values of fractional orders «=0.1, 0.25, 0.75, and

Table 6 The comparison of error norms together with the convergence rate of the present method for =0.5, 6=0.5, At=0.00025,

andd=1atr=1

M Present method Ref. [19]
Ly ROC Loo ROC Ly Loo
10 3.653495e—04 - 4.997399e—-04 - 1.632995e—03 2.296683e—03
20 9.170910e—-05 1.99 1.254263e—-04 1.99 4.47720e—-04 6.25018e—04
40 2.298575e—-05 2.00 3.146194e-05 2.00 1.61833e-04 2.27352e-04
80 5.785360e—-06 1.99 7.921316e—-06 2.00 9.2624e—-05 1.33125e-04
Table 7 The [, and Ly errors with «=0.1,6=0.5, At=0.00025, and =1 at t =1
M Ly Lo
o=0.1 0=0.5 =09 o=0.1 0=0.5 =09
10 1.48405e—-03 3.65349e-04 3.04107e-05 2.03008e—-03 4.99739e—-04 4.15952e—05
20 3.73408e—04 9.17091e—-05 743431e-06 5.10699e-04 1.25426e—-04 1.01667e—05
40 9.35362e—-05 2.29857e—-05 1.81275e-06 1.28024e-04 3.14619e-05 2.47969e—-06
80 2.34308e—05 5.78536e—-06 4.15071e-07 3.20782e-05 7.92132e-06 5.67154e—07
3 . ; . ‘
¢ Exact att=0.2
.% ---- Numerical at t = 0.2
25 7] » Exact at t =0.4
e - --- Numerical at t = 0.4
2| e ] = Exact att=0.6
P - - - - Numerical at t = 0.6
—~ _-" .
= .. e ¢ Exact att=0.8
B 157 ./,0’ Y 2 | ---- Numerical at t = 0.8
S P S ‘*,—” e Exactatt=1
1«"‘. _’.—"'— __a ----Numerical at t =1
- o "
_--%-" -
¢ m---%
L - - 4
0.5“___________4 et
—__*—_—*___4____‘____,,___—1—__
Qb---@---9---4--®---¢---¢---4 -4 -9
0 0.2 0.4 0.6 0.8 1
xXr

Fig. 1 The exact and approximate v(x, t) with o=0.5, =0.5, At=0.00025,b=1,and M=10 at t =0.2, 04, 0.6, 0.8, and 1 for Example 1
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Exact solution Numerical solution Error graph
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Fig. 2 The exact and approximate v(x, t) along with abs. errors fora=0.5, «=0.5, At=0.05,v=1,and M=80 at t =0.5 for Example 1
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Fig. 3 The exact and approximate v(x, t) along with abs. error for 6=0.9, «=0.1, At=0.05,b=1,and M=80 at t =1 for Example 1

1. Figure 4 exhibits that absolute error norms are very  numerical solutions for « = 0.5, p=0.015, 0=0.5, V=1,
less (~ 107°) for parameters a = 0.5, p=0.015, 0=0.5, M=20, and Ar=0.001 at various times, while Fig. 6
M=80, At=0.0005, and v=1 at t=0.2, 0.4, 0.6, 0.8, shows the surface behavior of the solutions for o = 0.5,
and 1. Figure 5 shows the comparison of the exact and  p=0.015,0=0.5, M =80, At=0.0005, and 1 =1.

Table 8 The comparison of error norms together with the convergence rate of the present method for =0.5, 6=0.5, At=0.00025,
and9=1att=1 for Example 2

M Present method Ref.[19] Ref. [35] Ref. [36]

Ly ROC Loo ROC Ly Loo Ly Loo Ly Loo
10 4.610e—04 - 6.430e—04 - 4.353e—-04 7311e-04 1.787e—03 2416e—03 1.4626e—-05 1.9866e—-05
20 1.141e—-04 2.01 1.588e—-04 2.02 1.830e—-04 2.733e-04 4.403e—-04 5.836e-04 1.3963e-05 1.9805e-05
40 2.844e—-05 2.00 3.958e—-05 2.00 4.198e—-05 6.323e-05 9.273e—-05 1.205e—-04 1.3799e-05 1.9579e-05

80 7.09%-06 2.00 9.880e-06 2.00 1.982e-06 4.192e-06 6.221e-06 1.616e-05 1.3759e-05 1.9531e-05
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Table9 The comparison of error norms for a=0.5, ¢=0.5,
M=80,and d=1 at =1 for Example 2

Methods Error norms At=0.002 At=0.001 At=0.0005
Present L 1.202694e—05 1.039510e-05 8.719828e—06
Loo 1.673450e—05 1.445829e—05 1.213331e—05
Ref.[19] Ly 1.24076e-04  5.4112e-05 1.9282e-05
Loo 1.75640e-04  7.7491e-05 2.8460e—-05
Ref.[35] Ly 1.71076e-04  7.0874e—-05 2.1092e—-05
Loo 2.39785e—04  1.00354e-04  3.0679e—05
Ref.[36] Ly 1.1600e—-04 6.1505e—-05 34177e-05
Loo 1.6442e—04  87080e—05  4.8293e—05

Table 10 The comparison of error norms with ¢=0.5, M=80,
At=0.00025, and 9=1 at t=1 for various values of fractional
order « for Example 2

Methods Error «=0.1 «=0.25 a=0.75 a=0.9
norms

Present [, 1.8876e—05 1.6380e—05 1.3566e—06 4.1799e-07
Leo 2.6330e-05 2.2826e-05 1.9250e-06 5.9768e—07

Ref.[19] Ly 3492e-06 2.733e-06 1.520e-06 1.886e-06
Loo 6455e—06 5.257e—06 3443e-06 4.065e—-06

Ref.[35] Ly 1.0027e-05 9.121e-06 2.297e—06  5.283e—06
Loo 2.2129e-05 2.0782e-05 8.187e-06 7.886e—06

Example 3 Finally, we consider the TFNB Eq. (1) for

fx,t) = (,2;;: + 2nt? (21771 +t2 cos(2nx))) sin(2wx)

with v(x, £) = 2 sin(27x).

x10°
1.5 : i : ’ | | |
——1t=10.2
t=10.6
1 t=0.8 |
o"““"o.‘
.‘ .
L ] \\ i
0.5 .‘.b h\
l' preet e \
P e, A\
[ ““ «\
.I:v.t‘ **"Qt'ﬂtﬁtgo**ﬁt“”* '.E\
0' ¥ e

0 0.1 0.2 0.3 0.4

Page 10 of 14

Finally, Example 3 is approximated for free param-
eter p=0.5. Table 11 shows the comparison of present,
existing [19], and exact solutions with ¢=0.5, «=0.5,
At=0.00025, and D=1 for different grid sizes M =40
and 80, while Table 12 determines it with 0=0.5, «=0.5,
M=120, and v=1 at =1 for At=0.0025, 0.002, 0.001,
and 0.0005. Figure 7 shows the graphical comparison of
exact and approximated solutions with 0=0.5, «=0.5,
At=0.001, V=1, and M =20 at £=0.2, 0.4, 0.6, 0.8, and
1, while Fig. 8 depicts exact and approximate solutions
along with absolute errors for 0=0.5, «=0.5, M =120,
At=0.001,and =1 att=1.

5 Discussion

Table 2 compares obtained solutions with those solu-
tions presented in [19] for parameters 0=0.5, «=0.5,
At=0.00025, and V=1 at t=1 for grids M =10, 20,
40, and 80. Table 3 compares Ly and Ly errors of
the proposed and QBSG methods [19] with «=0.5,
At=0.00025, and V=1 at t=1 for hybrid parameters
0=0.1, 0.5, and 0.9 and grids M =10, 20, 40, and 80.
Tables 4 and 5 exhibit the comparison of the proposed
method with QBSG method [19] with the parame-
ters 0=0.5, =0.5, M=80, and v=1 at t=1 for At =
0.002, 0.001, 0.0005, and 0.00025 while Table 6 exhib-
its the comparison together with convergence rate with
o=0.5, 0=0.5, At=0.00025, and V=1 at =1 for grids
M =10, 20, 40, and 80. Obviously, obtained results are
closer than exact solutions, and error norms are better
than error norms presented in [19], and the proposed
method is second-order accurate in space variable. The
Ly and L error norms in Table 7 show that solutions

0.5 0.6 0.7 0.8 0.9 1

Fig.4 Absolute error norms fora@ = 0.5, p=0.015,6=0.5, M=80, At=0.0005, and =1 for Example 2
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» Exactatt =04
Numerical at ¢ = 0.4
e Exactat?=0.6
Numerical at ¢ = 0.6 |
= Exactatt=0.8
Numerical at ¢ = 0.8
+ Exactatt=1
Numerical at ¢ =1

05¢

A . . . .
0 0.2 0.4 0.6 0.8 1

xr
Fig.5 The comparison of the exact and numerical solutions
fora = 0.5,p=0.015,0=05,v=1,M=20,and At=0.001 at various
times for Example 2

are more accurate for hybrid parameter 0.9. From
Figs. 1-3, an excellent agreement is noticed between
exact and approximate solutions with absolute error in
(%1073t 107%).

Numerical solution

1
0.5 0.5

& b 0 t
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Next, Example 2 is solved with free parameter p=0.015
and D=1 and for various other parameters. The L, and
L error norms depicted in Tables 8 and 9 show that the
proposed method results are better than those presented
in [19, 35, 36], and the proposed method is second-order
accurate in space variable. It is also observed that both
error norms Ly and L, are decreasing on increasing the
space as well as time mesh sizes. Now, Table 10 shows the
error norms for fractional orders «=0.1, 0.25, 0.75, and
1. In the case of higher fractional orders, the proposed
method results are more accurate than presented in [19,
35]. The small absolute error norms (= 10~°) shown
in Fig. 4 exhibit that solutions are very accurate, while
Figs. 5 and 6 show an excellent agreement between exact
and approximate solutions.

Finally, Example 3 is solved with free parameter p=0.5,
hybrid parameter 0=0.5, fractional order «=0.5, and
v=1 for various space and time meshes at £=1. Tables 11
and 12 reveal that the proposed method results are more
accurate than the results presented in [19] and are very
close to the exact solutions. Figures 7 and 8 compare

Exact solution
o

-1 -~
1 e — 1
0.5 0.5
x 00 t

Fig. 6 Surface behavior of the exact and numerical solutions for & = 0.5, p=0.015, 0 =0.5, M=80, At=0.0005, and v=1 for Example 2

Table 11 The comparison of present, existing, and exact solutions with e=0.5, =0.5, At=0.00025, and d=1 for Example 3

X Present QBSG[19] Present QBSG[19] Exact
M=40 M=40 M=80 M=80

0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.587374 0.585106 0.587682 0.587257 0.587785
0.2 0.950372 0.947079 0.950885 0.950262 0.951057
03 0.950349 0.947320 0.950879 0.950310 0.951057
04 0.587336 0.585586 0.587673 0.587348 0.587785
0.5 0.000000 0.000001 0.000000 0.000000 0.000000
0.6 —0.587336 —0.585584 —0.587673 —0.587346 —0.587785
0.7 —0.950349 —0.947318 —0.950879 —0.950310 —0.951057
0.8 —-0.950372 —0.947078 —0.950885 —0.950260 —0.951057
09 —0.587374 —0.585106 —0.0.587682 —-0.587257 —0.587785
1.0 0.000000 0.000000 0.000000 0.000000 0.000000
Ly 5.176643e—-04 2.899412e—03 1.293988e—-04 5.77143e-04

Loo 7.313814e-04 4.063808e—-03 1.830408e—-04 8.13220e—-04
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Table 12 The comparison of present, existing, and exact solutions with 6=0.5, «=0.5, M=120,and §=1 at t =1 for Example 3

Present QBSG[19] Present QBSG[19] Present QBSG[19] Present QBSG Exact
191

X At=0.0025 At=0.002 At=0.001 At=0.0005

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.587705 0.588970 0.587708 0.588675 0.587719 0.588083 0.587729 0.587788 0.587785
0.2 0.950923 0.952952 0.950927 0.952484 0.950945 0.951545 0.950963 0.951076 0.951057
0.3 0.950916 0.952914 0.950922 0.952458 0.950940 0.951544 0.950959 0.951086 0.951057
04 0.587695 0.588914 0.587698 0.588635 0.587711 0.588087 0.587723 0.587810 0.587785
0.5 0.000000 0.000005 0.000000 0.000005 0.000000 0.000005 0.000000 0.000004 0.000000
06 —0.587695 —0.588905 —0.587698 —0.588630 -0587711 —0.588077 —0.587723 —0.587801 —0.587785
0.7 —0.950916 —0.952912 —0.950922 —0.952456 —0.950940 —0.951540 —0.950959 —0.951084 —0.951057
0.8 —0.950923 —0.952949 —0.950927 —0.952479 —0.950945 —0.951540 —0.950963 —0.951070 —0.951057
09 —0.587705 —0.588968 —0.587708 —0.588672 —-0.587719 —0.588080 —-0.587729 —0.587784 —0.587785
1.0 0.000000 0.000000 —0.587708 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Ly 1.0200e—-04 1.39237e-03  9.7988e—-05 1.04859e—03  8.4639e-05  3.5948e—04  7.0823e-05 1.7823e-05

Loo 1.4438e-04 1.97435e-03 1.3870e-04 1.48780e-03 1.1979e-04  5.1210e-04 1.0022e-04  3.2161e-05

¢ Exactatt=0.2
Numerical at ¢t = 0.2
» Exactatt =04
Numerical at ¢t = 0.2
* Exactatt=0.6
Numerical at ¢t = 0.2
@ Exactatt=0.8
Numerical at ¢t = 0.2
= Exactatt=1
Numerical at ¢t = 0.2

-1 ; - : =
0 0.2 0.4 0.6 0.8 1

X
Fig. 7 Comparison of exact and approximated solutions with =0.5, «=0.5, At=0.001,v=1,and M=20 at t =0.2, 0.4, 0.6, 0.8, and 1 for Example 3

Exact solution Numerical solution Error graph

x1074
15

v(x, t)
v(x, t)

Absolute error

0.5

0.5
T 0o i T

00 ¢
Fig. 8 The exact and approximate solutions, along with abs. errors for 6=0.5, =05, M=120, At=0.001,and v=1 at t =1 for Example 3
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exact and approximated solutions with ¢=0.5, «=0.5,
At=0.001, v=1, and M =20 and 120, respectively. An
excellent agreement is observed between exact and
approximated solutions with absolute error in (~ 107%).

6 Conclusions

A new cubic HB-spline collocation technique has been
established for the numerical treatment of the Caputo
TENB equation. The technique is used for discretizing
the spatial derivatives. The Rubin—Graves type quasi-
linearization technique has been employed to linearize
the nonlinear terms. The three examples have been con-
sidered to validate the accuracy and efficiency of the
proposed method. It has been observed that the present
method provides better results than the methods in [19,
35, 36]. The graphical results are also presented that
confirm the accuracy of the proposed algorithm. As we
can see, Figs. 2, 3, 6, and 8 are clear representations of
the smoothness between numerical and exact solutions,
while Figs. 1-3, 4, 7, and 8 expose that absolute errors are
very low in (= 1073 to 1075).
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