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Abstract 

Background This study proposes an efficient and stable technique based on new hybrid B-spline (HB-spline) func-
tions for the numerical treatment of the Caputo time fractional nonlinear Burgers’ (TFNB) equation. The time deriva-
tive is discretized using the definition of the Caputo derivative, whereas HB-spline functions are used to discretize 
the spatial derivatives. The Rubin–Graves technique is used to linearize the nonlinear terms.

Results The performance and efficacy of the established method are tested using three examples. The graphical 
results represent the smoothness between numerical and exact solutions. The absolute errors are very low as 10−4 
and 10−5 . The convergence rate shows that the proposed method is second-order accurate in space.

Conclusions The proposed method provides better results than the methods available in the literature. The method 
yields highly accurate results and can handle large-scale problems, which is the novelty of the present work.

Keywords Caputo TFNB equation, HB-spline basis functions, Stability analysis, Convergence rate

1  Background
The time fractional partial differential equations have 
grown more attention outstanding to several real-life 
applications in electrical network systems, signal pro-
cessing, optics, mathematical biology, financial evalua-
tion and prediction, material science, electromagnetic 
control theory, multidimensional fluid flow, acoustics, 
pre-predator modeling in biological systems, and many 
more [2, 3, 5–8]. The delayed time fractional predator–
prey model with feedback control has been studied by 
Hopf bifurcation [10, 11]. For better accuracy in real-life 
models, the applications of fractional models are growing 

and indicate significant requirements for better fractional 
mathematical models. Radial basis functions and Laplace 
transformation are used for the approximation of frac-
tional anomalous sub-diffusion equation [12]. This pro-
cess’s advantage is handling many matrix data efficiently 
and accurately. Padder et  al. [32] recently performed a 
dynamical analysis of a generalized tumor model via the 
Caputo fractional-order derivative. The Caputo frac-
tional-order derivative is being employed to model bio-
logical systems, including tumor growth. Tumor growth 
models are extensively used in biomedical research to 
understand tumor development dynamics and evaluate 
potential treatments.

Various analytical approaches are accessible for the 
numerical simulation of fractional partial differen-
tial equations. Typically, these types of equations are 
complicated to handle analytically. Thus, numerical 
approaches play a massive role in numerical approxi-
mations. For example, existing collocation methods 
based on Jacobi–Gauss–Lobatto have been generalized 
in [15]. Chebyshev polynomials in spectral collocation 
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have been used to compute the space-fractional KdV–
Burgers’ equation [16], where Caputo–Fabrizio treats 
the space-fractional derivative. The spectral Pell col-
location technique for approximating the TFNB equa-
tion has been used in [17]. The authors of [18] used 
the Hermite cubic spline collocation technique for the 
computational approximation of Helmholtz and Burg-
ers’ equations. The authors of [19, 21, 35, 36] used the 
quadratic B-spline Galerkin (QBSG) method, balanced 
space–time Chebyshev spectral collocation method, 
finite element method based on the cubic B-spline col-
location method, and trigonometric tension B-spline 
collocation method, respectively, for TFNB equations. 
A practical and accurate technique based on the shifted 
Gegenbauer polynomials has been presented in [24] to 
simulate the multidimensional space-fractional coupled 
Burgers’ equations. The residual power series method 
was utilized for time fractional BBM Burgers by Zhang 
et al. [25] and found that it is in good arrangement with 
the exact solution. Different fractional differential oper-
ators are applied for the analytical result of the TFNB 
equation [26]. Analytical approaches for approximating 
the fractional Burger’s equation are presented in [27, 
28].

A cubic B-spline FEM is applied in [13] to estimate 
time fractional Fisher’s as well as Burgers’ equations, 
while the authors of [14] used a collocation method 
based on Fibonacci polynomial and finite difference 
method to solve coupled fractional Burgers’ equations. 
The authors of [22, 23] developed computational tech-
niques based on cubic trigonometric B-splines (CTBS) 
and cubic parametric splines (CPS) to approximate the 
TFNB equation. Recently, Shafiq et  al. [9] represented 
a numerical technique based on cubic B-spline (CB-
spline) functions for the TFNB equation with the Atan-
gana–Baleanu derivative. In addition, the authors of [1] 
discussed a numerical scheme for the Riemann–Liou-
ville fractional integral. Further, they suggested two 
numerical schemes for the Caputo–Fabrizio and the 

Atangana–Baleanu integral operators. They analyzed 
that the Riemann–Liouville fractional integral yields 
smaller errors and an intense significant experimental 
convergence order in most functions, especially when 
the fractional order α → 0. A new adaptive numerical 
technique is proposed in [2] to solve nonlinear, sin-
gular, and stiff initial value problems frequently chal-
lenged in real life.

The arrangement of the paper is structured as fol-
lows. The discretization of the TFNB equation is given 
in Sect.  2. In Sect.  3, the von Neumann stability is dis-
cussed. Section  4 presents numerical results, while 
Sect. 5 presents its discussion. Finally, Sect. 6 highlights 
the conclusions.

2  Methods
2.1  Problem formulation
We establish a new hybrid B-spline collocation technique 
for following the Caputo TFNB equation.

Along with

where the ∂
αv
∂tα  denotes the Caputo time fractional deriva-

tive as follows:

Now, let us specify the definitions of Caputo fractional 
integral and derivatives.

Definition 2.1 The Caputo integral of the function 
g(t) ∈ R of order α ≥ 0 is defined as follows:

Definition 2.2 The Caputo derivative of g(t) ∈ R is 
defined as follows:

2.2  Discretization of the problem
This part performs the procedure to discretize the Caputo 
TFNB equation using the cubic HB-spline collocation 
technique.

2.2.1  Caputo time fractional derivative
First, we do a uniform partition in [0, T] with length 
�t = T

N  . Here N  is the number of partitions in the time 

(1)

∂αv

∂tα
+ v

∂v

∂x
− ν̂

∂2v

∂x2
= f (x, t), a ≤ x ≤ b, 0 < α < 1,

(2)v(x, 0) = φ(x),

(3)v(a, t) = ψ1(t), v(b, t) = ψ2(t),

(4)

∂αv

∂tα
=

1

Ŵ(1− α)

t

0

(t − ς)−α ∂v(x, ς)

∂ς
dς , 0 < α < 1.

cJα0,tg(t) =
1

Ŵ(α)

t
∫

0

(t − χ)α−1g(χ)dχ , α > 0, t > 0.

cDα
0,t g(t) =

1

Ŵ

(

ˆl − α

)

t
∫

0

(t − χ)
ˆl−α−1g

(

ˆl
)

(χ)dχ , t > 0, ˆl − 1 < α < ˆl ∈ Z
+.
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mesh. Now, the discretization of fractional derivatives ∂
α
v

∂tα
  

for 0 < α < 1 at t = tj+1 is given by L1 formula [20, 29, 30] 
as follows:

where a0 = �t−α
∣

∣2−α
 , pj =

(

j + 1
)1−α

− j1−α , j = 0, 1, 2....N  , 
and truncate error represented as r̂ j+1 which is described 
by r̂ j+1

≤ kv�t2−α , where kv is a constant only related to 
dependent variable v.

Lemma 2.1 The factor pk , occurring in Eq. (5), satisfies 
the following properties:

Proof For proof of Lemma, see references [20, 29].

2.2.2  Spatial derivatives
Now, we use the HB-spline collocation technique for 
discretizing the spatial derivatives. The domain [a, b] is 
partitioned uniformly with the space size h = �x =

b−a
M  

by the knots xi = a+ ih , i = 0, 1, . . .M , so that we pos-
sess a = x0 < x1 < x2 < . . . < xM = b . Now, we specify 
the HB-spline functions Hbi(x) for i = −1, 0, ..., M + 1 
as follows:

where

(5)

∂αv
j+1
i

∂τα
= a0

j
∑

k=0

Pk

(

v
j−k+1
i − v

j−k
i

)

+ r̂ j+1, j = 0, 1, 2 . . .N ,

{

pk > 0, k = 0, 1, ...,N ,

1 = p0 > p1 > p2 > ... > pN , pN → 0 as N → ∞,

(6)Hbi(x) =
1

h3
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3
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−
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�

sinh
�

(xi−2 − x)p̂
��

+ (xi−2 − x)
�

, x ∈ [xi−2, xi−1),

σ

�

h3 + 3h2(x − xi−1)+ 3h(x − xi−1)
2
− 3(x − xi−1)

3
�

+

(1− σ){a1 + b1(xi − x)+ c1e
p̂(xi−x)

+ d1 e
p̂(x−xi)

�

, x ∈ [xi−1, xi),

σ

�
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�
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�
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σ(xi+2 − x)3 + (1− σ)b2

�

−

1
p

�

sinh
�
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��
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�
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0, otherwise,
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d1 =
1
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ep̂h
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ς̂1 − 1
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, b2 =
p̂

2
�

p̂hς̂1 − ς̂2
� , ς̂1 = cosh(p̂h), ς̂2 = sinh(p̂h).

The HB-spline functions are obtained by using 
Hbi(x) = σBi(x)+ (1− σ)EBi(x) , where Bi(x) and 
EBi(x) are cubic B-spline basis functions [4, 31] and 
cubic exponential B-spline basis functions [3, 33, 34], 
and σ is a hybrid parameter. The term p̂ is a free param-
eter which acquires various forms of cubic exponential 
B-spline basis functions. The HB-spline functions are 
piecewise basis functions with non-negativity, C2 con-
tinuity, unity partition property, and form a basis in 
[a, b] . The values of Hbi(x) , Hb′i(x) , and Hb′′i (x) are pre-
sented in Table 1.

We define the approximate solution as

where Ci

(

tj
)

 is unknown quantities.
The variation of the v

(

x, tj
)

 is stated as follows:

(7)u
(

x, tj
)

≈

M+1
∑

i=−1

Hbi(x)Ci

(

tj
)

,

Table 1 The values of Hbi(x) and its derivatives at the knots

Where τ1 = σ + (1− σ)
ς̂2−p̂h

2(p̂hς̂1−ς̂2)
 , τ2 = 1+ 3σ , 

τ3 =
3σ
h

+ (1− σ)
p̂(ς̂1−1)

2(p̂hς̂1−ς̂2)
 , τ4 =

6σ
h2

+ (1− σ)
p̂2 ς̂2

2(p̂hς̂1−ς̂2)
.

xi−2 xi−1 xi xi+1 xi+2

Hbi(x) 0 τ1 τ2 τ1 0

Hb′i(x) 0 τ3 0 −τ3 0

Hb′′i (x) 0 τ4 −2τ4 τ4 0
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Using above equation, we get the approximate values 
of v , vx , and vxx as

and

At t = tj+1 , using Eq. (5) for the time fractional deriv-
ative, the problem (1) is discretized as follows:

For linearizing the nonlinear term, we use the Rubin–
Graves technique as follows:

By Eqs. (12) and (13), we have

We can rewrite above equation as follows:

Now, using Eqs. (9)–(10) in above equation, we get

(8)v
(

x, tj
)

=

i+1
∑

k=i−1

Hbk(x)Ck

(

tj
)

.
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j
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j
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i+1,
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j
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j
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j
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j
i+1).
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i − v

j−k
i
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+v
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i (vx)
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(13)(vvx)
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⇒
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(

(
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)

v
j−k
i + pjv

0
i
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+ v
j
i(vx)

j
i + f

j+1

i , i = 0, 1, ...,M, j = 0, 1, ...,N .

(17)
A
j
iC

j+1
i−1 + B

j
iC

j+1
i + D

j
iC

j+1
i+1 = R

j
i i = 1, 2, . . . ,M + 1, j = 0, 1, ...,N ,

where

Equation (17) forms a system of linear equations with 
M + 1 equations and M + 3 unknows. For unique solu-
tion, we treat the boundary conditions v(a, t) = ψ1(t) 
and v(b, t) = ψ2(t) as

A
j

i
=

(

a0 + (vx)
j

i

)

τ1 − v
j

i
τ3 − ν̂τ4, B

j

i

=

(

a0 + (vx)
j

i

)

τ2 + 2ν̂τ4, D
j

i

=

(

a0 + (vx)
j

i

)
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j

i
τ3 − ν̂τ4,

R
j
i = a0
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(

(
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)

v
j−k
i + pjv

0
i

)

+ v
j
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i + f
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i .

and

(18)
(

τ1C
j
−1 + τ2C

j
0 + τ1C

j
1

)

= ψ
j
1,

Solving Eqs. (18) and (19), we get

(19)
(

τ1C
j
M−1 + τ2C

j
M + τ1C

j
M+1

)

= ψ
j
2,
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For i = 0 and i = M , using (20) in (17), we have

and

Equations  (21), (22), and (17) form a system of linear 
equations as follows:

To solve above system, we require to determine the 
initial vector 

(

C0
0 ,C

0
1 , ...,C

0
M−1,C

0
M

)

 from the initial 
condition which delivers M + 1 equations with M + 3 
unknowns. To remove the C0

−1 and C0
M+1 , we use the first 

derivative of the initial condition at the boundaries which 
gives:

Now using Eqs. (23) and (9), we have the following sys-
tem of linear equations:

(20)
C
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−
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+
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−
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,
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+
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.
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M−1 +
1

τ3
(φx)M ,





















τ2 2τ1 0
τ1 τ2 τ1
0 τ1 τ2 τ1

. . .
. . .
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.

3  Stability analysis
The stability analysis of the discretized system of the 
TFNB equation based on the von Neumann method 
[22, 36, 39] is established in this section. According to 
Duhamels’ principle [40], it is assumed that the stability 
analysis of an inhomogeneous problem is an instantane-
ous consequence of the stability analysis for the subse-
quent homogeneous problem. So, for convenience and 
without loss of generality, we consider f = 0 , and we 
linearize the term vvx by taking vx = ˆk1 as locally con-
stants. Using above assumptions and some manipulation, 
Eq. (12) can be rewritten as follows:

where

Now, we take a Fourier mode as Cj
i = δje

ˆiiµh , where 
ˆi =

√

−1 , δ is the time-dependent constraint. Applying it 
into above equation and simplifying it, we get

(24)

A∗C
j+1

i−1
+ B∗C

j+1

i + D∗C
j+1

i+1

= a0

j−1
∑

k=0

(

Pk − Pk+1

)

(

τ1C
j−k
i−1

+ τ2C
j−k
i + τ1C

j−k
i+1

)

−a0pj

(

τ1C
0
i−1+τ2C

0
i + τ1C

0
i+1

)

− a0pj

(

τ1C
0
i−1 + τ2C

0
i + τ1C

0
i+1

)

,

i = 0, 1, ...,M, j = 0, 1, ...,N ,

A∗

= D∗

=

(

a0 + ˆk1

)

τ1 − ν̂τ4, B
∗

=

(

a0 + ˆk1

)

τ2 + 2 ˆk1τ4.
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Now, we define

Using in above equation, we get

Simplifying it, we have

The discretized system of the TFNB equation is uncon-
ditionally stable when |δ| ≤ 1 which is obvious from 
above equation. One can see the alternative proof in [22].

4  Results
This section considers examples of TFNB equation to test 
the performance and efficacy of the established proce-
dure. The rate of convergence (ROC) is analyzed by:

ROC =

log
(

Eh1/Eh2

)

log (h1/ h2)
 , where Eh1 and Eh2 signify the 

errors with h1 and h2 , respectively. The error analysis is 
done in terms of L2 , L∞ and RMS errors, defined by:

L2 =

(
∑

|Uj − uj |
2
)1/ 2

; L
∞

= max |Uj − uj | ; RMS =

(

∑

|Uj−uj |
2

n

)1/ 2.

Example 1 Consider the TFNB Eq.  (1) for 
f (x, t) = 2t2−αex

∣

∣3−α
+ t4e2x − ν̂t2ex with v(x, t) = t2ex in 

[0,1].

We fix free parameter p̂ = 5 for all computations of 
Example 1. First, we approximate it with σ = 0.5, α = 0.5, 
�t = 0.00025, and ν̂ = 1 at t = 1 for grids M = 10, 20, 40, 
and 80. The numerical solutions are presented in Table 2, 
while Table 3 compares L2 and L

∞
 errors of the proposed 

method with those available in Ref. [19] with α = 0.5, 
�t = 0.00025, and ν̂ = 1 at t = 1 for hybrid parameters 
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�

δj+1
=



a0

j−1
�

k=0

�

Pk − Pk+1

�

δj−k
− a0pjδ

0
�

(2τ1 cos (µh)+ τ2).

(27)δ
j
max = max

0≤i≤j

∣

∣

∣
δj
∣

∣

∣
.

(28)
��

2(a0 + ˆk1)τ1 − 2ν̂τ4

�

cos (µh)+ (a0 + ˆk1)τ2 + 2ν̂τ4

�

δj+1
=



a0

j−1
�

k=0

�

Pk − Pk+1

�

−a0Pj



δ
j
max(2τ1 cos (µh)+ τ2),

(29)

δj+1
=

a0(2τ1 cos (µh)+ τ2)
(

2(a0 + ˆk1)τ1 − 2ν̂τ4

)

cos (µh)+ (a0 + ˆk1)τ2 + 2ν̂τ4
δ
j
max.

σ = 0.1, 0.5, 0.9, and grids M = 10, 20, 40, and 80. Now, 
we solve this example with the parameters σ = 0.5, α = 0.5, 
M = 80, ν̂ = 1 at t = 1 for different �t = 0.002, 0.001, 
0.0005, and 0.00025. The numerical solutions are pre-
sented in Table  4, while Table  5 compares L2 and L

∞
 

errors of the proposed method with those available in 
Ref. [19]. The comparison of the proposed method with 
QBSG method [19] together with the convergence rate 
of the proposed method is shown in Table 6 for α = 0.5, 
σ = 0.5, �t = 0.00025, and ν̂ = 1 at t = 1. It is obvious that 
the proposed method is second-order accurate in space 
variable. The L2 and L

∞
 error norms with �t = 0.00025 

and ν̂ = 1 at t = 1 for fractional order α = 0.1 with hybrid 
parameters σ = 0.1, 0.5, and 0.9 are demonstrated in 
Table 7. Figures 1 and 2 show the comparison of the exact 
and numerical solutions graphically with σ = 0.5, α = 0.5, 
M = 10, �t = 0.00025, and ν̂ = 1 for different times. Fig-
ure  2 demonstrates the exact and numerical solutions 
along with absolute errors for σ = 0.5, α = 0.5, M = 80, 
�t = 0.05, and ν̂ = 1 at t = 0.5, while Fig. 3 shows it for σ = 
0.9, α = 0.1, M = 80, �t = 0.05, and ν̂ = 1 at t = 1.

Example 2 Now, we consider the TFNB Eq.  (1) with 
the following initial and boundary conditions

and

The exact solution is v(x, t) = t2 cos(πx) , and the func-
tion f (x, t) is

v(x, 0) = 0, 0 ≤ x ≤ 1,

v(0, t) = t2, v(1, t) = −t2, t ≥ 0.

f (x, t) =

(

2t2−α

∣

∣3− α
+ π t2

(

ν̂π − t2 sin(πx)
)

)

cos(πx).
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Table 2 The comparison of present and existing numerical solutions with exact solutions for α = 0.5, σ = 0.5, �t = 0.00025, and ν̂ = 1 at 
t  = 1

x Present 
method
M = 10

QBSG method 
[19]
M = 10

Present 
method 
M = 20

QBSG method 
[19]
M = 20

Present 
method 
M = 40

QBSG method 
[19]
M = 40

Present 
method 
M = 80

QBSG method 
[19]
M = 80

Exact

0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

0.1 1.105304 1.105440 1.105204 1.105287 1.105179 1.105216 1.105173 1.105197 1.105171

0.2 1.221651 1.222203 1.221465 1.221644 1.221418 1.221493 1.221407 1.221455 1.221403

0.3 1.350204 1.351078 1.349946 1.350217 1.349880 1.349992 1.349864 1.349935 1.349859

0.4 1.492247 1.493437 1.491908 1.492287 1.491851 1.491996 1.491831 1.491922 1.491825

0.5 1.649197 1.650663 1.648841 1.649270 1.648751 1.648922 1.648729 1.648838 1.648721

0.6 1.822618 1.824294 1.822244 1.822727 1.822150 1.822342 1.822127 1.822247 1.822119

0.7 2.014238 2.016049 2.013874 2.014378 2.013783 2.013979 2.013760 2.013882 2.013753

0.8 2.225958 2.227650 2.225645 2.226118 2.225567 2.225747 2.225547 2.225661 2.225541

0.9 2.459872 2.461512 2.459670 2.460020 2.459620 2.459745 2.459607 2.459680 2.459603

1.0 2.718282 2.718282 2.718282 2.718282 2.718282 2.718282 2.718282 2.718282 2.718282

Table 3 The L2 and L
∞

 errors with α = 0.5, �t = 0.00025, and ν̂ = 1 at t  = 1

M L2 L
∞
L
∞

Present QBSG method [19] Present QBSG method [19]

σ = 0.1 σ = 0.5 σ = 0.9 σ = 0.1 σ = 0.5 σ = 0.9

10 2.59e−04 6.34e−05 5.23e−06 1.6329e−03 3.42e−04 8.37e−05 6.90e−06 2.2967e−03

20 6.47e−05 1.59e−05 1.25e−06 4.4772e−04 8.59e−05 2.11e−05 1.66e−06 6.2502e−04

40 1.62e−05 4.00e−06 2.78e−07 1.6183e−04 2.15e−05 5.32e−06 3.67e−07 2.2735e−04

80 4.08e−06 1.03e−06 3.65e−08 1.1255e−05 5.42e−06 1.37e−06 4.72e−08 1.3312e−04

Table 4 The numerical solutions with σ = 0.5, α = 0.5, M = 80, and ν̂ = 1 at t  = 1

x Present 
method

QBSG method 
[19]

Present 
method

QBSG method 
[19]

Present 
method

QBSG method 
[19]

Present 
method

QBSG method 
[19]

�t = 0.002 �t = 0.001 �t = 0.0005 �t = 0.00025

0.0 1.000 1.000000 1.0000 1.000000 1.0000 1.000000 1.0000 1.000000

0.1 1.1052 1.105356 1.1052 1.105287 1.1052 1.105216 1.1052 1.105197

0.2 1.2214 1.221768 1.2214 1.221644 1.2214 1.221493 1.2214 1.221455

0.3 1.3499 1.350395 1.3499 1.350217 1.3499 1.349992 1.3499 1.349935

0.4 1.4918 1.492516 1.4918 1.492287 1.4918 1.491996 1.4918 1.491922

0.5 1.6487 1.649543 1.6487 1.649270 1.6487 1.648922 1.6487 1.648838

0.6 1.8221 1.823031 1.8221 1.822727 1.8221 1.822342 1.8221 1.822247

0.7 2.0138 2.014687 2.0138 2.014378 2.0138 2.013979 2.0138 2.013882

0.8 2.2255 2.226387 2.2255 2.226118 2.2255 2.225747 2.2255 2.225661

0.9 2.4596 2.460180 2.4596 2.460020 2.4596 2.459745 2.4596 2.459680

1.0 2.7183 2.718282 2.7183 2.718282 2.7183 2.718282 2.7183 2.718282
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Table  8 shows the comparison of L2 and L
∞

 error 
norms for p̂ = 0.015, σ = 0.5, α = 0.5 �t = 0.00025, and 
ν̂ = 1 at t = 1 for M = 10, 20, 40, and 80. This table also 
establishes that the proposed method is second-order 
accurate in space variable. The error norms L2 and L

∞
 

are calculated for p̂ = 0.015, σ = 0.5, α = 0.5 M = 80, and 
ν̂ = 1 at t = 1 for various time mesh sizes in Table 9. Now, 
Table  10 shows the comparison of error norms with 
σ = 0.5, M = 80, �t = 0.00025, and ν̂ = 1 at t = 1 for vari-
ous values of fractional orders α = 0.1, 0.25, 0.75, and 

Table 5 The comparison of the proposed and existing methods 
in terms of L2 and L

∞
 with σ = 0.5, α = 0.5, M = 80, and ν̂ = 1 at t  = 1

L2 L
∞

�t Present QBSG method 
[19]

Present QBSG method 
[19]

0.002 5.1434e−06 6.60788e−04 6.9801e−06 9.36619e−04

0.001 2.4367e−06 4.47720e−04 3.2687e−06 6.25018e−04

0.0005 1.4914e−06 1.61833e−04 1.9858e−06 2.27352e−04

0.00025 1.0339e−06 9.2624e−05 1.3741e−06 1.33125e−04

Table 6 The comparison of error norms together with the convergence rate of the present method for α = 0.5, σ = 0.5, �t = 0.00025, 
and ν̂ = 1 at t  = 1

M Present method Ref. [19]

L2 ROC L
∞

ROC L2 L
∞

10 3.653495e−04 – 4.997399e−04 – 1.632995e−03 2.296683e−03

20 9.170910e−05 1.99 1.254263e−04 1.99 4.47720e−04 6.25018e−04

40 2.298575e−05 2.00 3.146194e−05 2.00 1.61833e−04 2.27352e−04

80 5.785360e−06 1.99 7.921316e−06 2.00 9.2624e−05 1.33125e−04

Table 7 The L2 and L
∞

 errors with α = 0.1, σ = 0.5, �t = 0.00025, and ν̂ = 1 at t  = 1

M L2 L
∞

σ = 0.1 σ = 0.5 σ = 0.9 σ = 0.1 σ = 0.5 σ = 0.9

10 1.48405e−03 3.65349e−04 3.04107e−05 2.03008e−03 4.99739e−04 4.15952e−05

20 3.73408e−04 9.17091e−05 7.43431e−06 5.10699e−04 1.25426e−04 1.01667e−05

40 9.35362e−05 2.29857e−05 1.81275e−06 1.28024e−04 3.14619e−05 2.47969e−06

80 2.34308e−05 5.78536e−06 4.15071e−07 3.20782e−05 7.92132e−06 5.67154e−07

Fig. 1 The exact and approximate v(x , t) with σ = 0.5, α = 0.5, �t = 0.00025, ν̂ = 1, and M = 10 at t  = 0.2, 0.4, 0.6, 0.8, and 1 for Example 1
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1. Figure  4 exhibits that absolute error norms are very 
less ( ≈ 10−5 ) for parameters α = 0.5 , p̂ = 0.015, σ = 0.5, 
M = 80, �t = 0.0005, and ν̂ = 1 at t = 0.2, 0.4, 0.6, 0.8, 
and 1. Figure  5 shows the comparison of the exact and 

numerical solutions for α = 0.5 , p̂ = 0.015, σ = 0.5, ν̂ = 1, 
M = 20, and �t = 0.001 at various times, while Fig.  6 
shows the surface behavior of the solutions for α = 0.5 , 
p̂ = 0.015, σ = 0.5, M = 80, �t = 0.0005, and ν̂ = 1.

Fig. 2 The exact and approximate v(x , t) along with abs. errors for σ = 0.5, α = 0.5, �t = 0.05, v = 1, and M = 80 at t  = 0.5 for Example 1

Fig. 3 The exact and approximate v(x , t) along with abs. error for σ = 0.9, α = 0.1, �t = 0.05, ν̂ = 1, and M = 80 at t  = 1 for Example 1

Table 8 The comparison of error norms together with the convergence rate of the present method for α = 0.5, σ = 0.5, �t = 0.00025, 
and ν̂ = 1 at t  = 1 for Example 2

M Present method Ref. [19] Ref. [35] Ref. [36]

L2 ROC L
∞

ROC L2 L
∞

L2 L
∞

L2 L
∞

10 4.610e−04 – 6.430e−04 – 4.353e−04 7.311e−04 1.787e−03 2.416e−03 1.4626e−05 1.9866e−05

20 1.141e−04 2.01 1.588e−04 2.02 1.830e−04 2.733e−04 4.403e−04 5.836e−04 1.3963e−05 1.9805e−05

40 2.844e−05 2.00 3.958e−05 2.00 4.198e−05 6.323e−05 9.273e−05 1.205e−04 1.3799e−05 1.9579e−05

80 7.099e−06 2.00 9.880e−06 2.00 1.982e−06 4.192e−06 6.221e−06 1.616e−05 1.3759e−05 1.9531e−05
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Example 3 Finally, we consider the TFNB Eq. (1) for

f (x, t) =
(

2t2−α
∣

∣3−α
+ 2π t2

(

2ν̂π + t2 cos(2πx)
)

)

sin(2πx) 

with v(x, t) = t2 sin(2πx).

Finally, Example 3 is approximated for free param-
eter p̂ = 0.5. Table  11 shows the comparison of present, 
existing [19], and exact solutions with σ = 0.5, α = 0.5, 
�t = 0.00025, and ν̂ = 1 for different grid sizes M = 40 
and 80, while Table 12 determines it with σ = 0.5, α = 0.5, 
M = 120, and ν̂ = 1 at t = 1 for �t = 0.0025, 0.002, 0.001, 
and 0.0005. Figure 7 shows the graphical comparison of 
exact and approximated solutions with σ = 0.5, α = 0.5, 
�t = 0.001, ν̂ = 1, and M = 20 at t = 0.2, 0.4, 0.6, 0.8, and 
1, while Fig.  8 depicts exact and approximate solutions 
along with absolute errors for σ = 0.5, α = 0.5, M = 120, 
�t = 0.001, and ν̂ = 1 at t = 1.

5  Discussion
Table  2 compares obtained solutions with those solu-
tions presented in [19] for parameters σ = 0.5, α = 0.5, 
�t = 0.00025, and ν̂ = 1 at t = 1 for grids M = 10, 20, 
40, and 80. Table  3 compares L2 and L

∞
 errors of 

the proposed and QBSG methods [19] with α = 0.5, 
�t = 0.00025, and ν̂ = 1 at t = 1 for hybrid parameters 
σ = 0.1, 0.5, and 0.9 and grids M = 10, 20, 40, and 80. 
Tables 4 and 5 exhibit the comparison of the proposed 
method with QBSG method [19] with the parame-
ters σ = 0.5, α = 0.5, M = 80, and ν̂ = 1 at t = 1 for �t = 
0.002, 0.001, 0.0005, and 0.00025 while Table  6 exhib-
its the comparison together with convergence rate with 
α = 0.5, σ = 0.5, �t = 0.00025, and ν̂ = 1 at t = 1 for grids 
M = 10, 20, 40, and 80. Obviously, obtained results are 
closer than exact solutions, and error norms are better 
than error norms presented in [19], and the proposed 
method is second-order accurate in space variable. The 
L2 and L

∞
 error norms in Table 7 show that solutions 

Table 9 The comparison of error norms for α = 0.5, σ = 0.5, 
M = 80, and ν̂ = 1 at t  = 1 for Example 2

Methods Error norms �t = 0.002 �t = 0.001 �t = 0.0005

Present L2 1.202694e−05 1.039510e−05 8.719828e−06

L
∞

1.673450e−05 1.445829e−05 1.213331e−05

Ref. [19] L2 1.24076e−04 5.4112e−05 1.9282e−05

L
∞

1.75640e−04 7.7491e−05 2.8460e−05

Ref. [35] L2 1.71076e−04 7.0874e−05 2.1092e−05

L
∞

2.39785e−04 1.00354e−04 3.0679e−05

Ref. [36] L2 1.1600e−04 6.1505e−05 3.4177e−05

L
∞

1.6442e−04 8.7080e−05 4.8293e−05

Table 10 The comparison of error norms with σ = 0.5, M = 80, 
�t = 0.00025, and ν̂ = 1 at t  = 1 for various values of fractional 
order α for Example 2

Methods Error 
norms

α = 0.1 α = 0.25 α = 0.75 α = 0.9

Present L2 1.8876e−05 1.6380e−05 1.3566e−06 4.1799e−07

L
∞

2.6330e−05 2.2826e−05 1.9250e−06 5.9768e−07

Ref. [19] L2 3.492e−06 2.733e−06 1.520e−06 1.886e−06

L
∞

6.455e−06 5.257e−06 3.443e−06 4.065e−06

Ref. [35] L2 1.0027e−05 9.121e−06 2.297e−06 5.283e−06

L
∞

2.2129e−05 2.0782e−05 8.187e−06 7.886e−06

Fig. 4 Absolute error norms for α = 0.5 , p̂ = 0.015, σ = 0.5, M = 80, �t = 0.0005, and ν̂ = 1 for Example 2
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are more accurate for hybrid parameter 0.9. From 
Figs.  1–3, an excellent agreement is noticed between 
exact and approximate solutions with absolute error in 
( ≈ 10−3 to 10−4).

Next, Example 2 is solved with free parameter p̂ = 0.015 
and ν̂ = 1 and for various other parameters. The L2 and 
L
∞

 error norms depicted in Tables 8 and 9 show that the 
proposed method results are better than those presented 
in [19, 35, 36], and the proposed method is second-order 
accurate in space variable. It is also observed that both 
error norms L2 and L

∞
 are decreasing on increasing the 

space as well as time mesh sizes. Now, Table 10 shows the 
error norms for fractional orders α = 0.1, 0.25, 0.75, and 
1. In the case of higher fractional orders, the proposed 
method results are more accurate than presented in [19, 
35]. The small absolute error norms ( ≈ 10−5 ) shown 
in Fig.  4 exhibit that solutions are very accurate, while 
Figs. 5 and 6 show an excellent agreement between exact 
and approximate solutions.

Finally, Example 3 is solved with free parameter p̂ = 0.5, 
hybrid parameter σ = 0.5, fractional order α = 0.5, and 
ν̂ = 1 for various space and time meshes at t = 1. Tables 11 
and 12 reveal that the proposed method results are more 
accurate than the results presented in [19] and are very 
close to the exact solutions. Figures  7 and 8 compare 

Fig. 5 The comparison of the exact and numerical solutions 
for α = 0.5 , p̂ = 0.015, σ = 0.5, ν̂ = 1, M = 20, and �t = 0.001 at various 
times for Example 2

Fig. 6 Surface behavior of the exact and numerical solutions for α = 0.5 , p̂ = 0.015, σ = 0.5, M = 80, �t = 0.0005, and ν̂ = 1 for Example 2

Table 11 The comparison of present, existing, and exact solutions with σ = 0.5, α = 0.5, �t = 0.00025, and ν̂ = 1 for Example 3

x Present
M = 40

QBSG [19]
M = 40

Present
M = 80

QBSG [19]
M = 80

Exact

0.0 0.000000 0.000000 0.000000 0.000000 0.000000

0.1 0.587374 0.585106 0.587682 0.587257 0.587785

0.2 0.950372 0.947079 0.950885 0.950262 0.951057

0.3 0.950349 0.947320 0.950879 0.950310 0.951057

0.4 0.587336 0.585586 0.587673 0.587348 0.587785

0.5 0.000000 0.000001 0.000000 0.000000 0.000000

0.6  − 0.587336  − 0.585584  − 0.587673  − 0.587346  − 0.587785

0.7  − 0.950349  − 0.947318  − 0.950879  − 0.950310  − 0.951057

0.8  − 0.950372  − 0.947078  − 0.950885  − 0.950260  − 0.951057

0.9  − 0.587374  − 0.585106  − 0. 0.587682  − 0.587257  − 0.587785

1.0 0.000000 0.000000 0.000000 0.000000 0.000000

L2 5.176643e−04 2.899412e−03 1.293988e−04 5.77143e−04

L
∞

7.313814e−04 4.063808e−03 1.830408e−04 8.13220e−04



Page 12 of 14Tamsir et al. Beni-Suef Univ J Basic Appl Sci           (2023) 12:95 

Table 12 The comparison of present, existing, and exact solutions with σ = 0.5, α = 0.5, M = 120, and ν̂ = 1 at t  = 1 for Example 3

Present QBSG [19] Present QBSG [19] Present QBSG [19] Present QBSG
[19]

Exact

x �t = 0.0025 �t = 0.002 �t = 0.001 �t = 0.0005

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.1 0.587705 0.588970 0.587708 0.588675 0.587719 0.588083 0.587729 0.587788 0.587785

0.2 0.950923 0.952952 0.950927 0.952484 0.950945 0.951545 0.950963 0.951076 0.951057

0.3 0.950916 0.952914 0.950922 0.952458 0.950940 0.951544 0.950959 0.951086 0.951057

0.4 0.587695 0.588914 0.587698 0.588635 0.587711 0.588087 0.587723 0.587810 0.587785

0.5 0.000000 0.000005 0.000000 0.000005 0.000000 0.000005 0.000000 0.000004 0.000000

0.6  − 0.587695  − 0.588905  − 0.587698  − 0.588630  − 0.587711  − 0.588077  − 0.587723  − 0.587801  − 0.587785

0.7  − 0.950916  − 0.952912  − 0.950922  − 0.952456  − 0.950940  − 0.951540  − 0.950959  − 0.951084  − 0.951057

0.8  − 0.950923  − 0.952949  − 0.950927  − 0.952479  − 0.950945  − 0.951540  − 0.950963  − 0.951070  − 0.951057

0.9  − 0.587705  − 0.588968 − 0.587708  − 0.588672  − 0.587719  − 0.588080  − 0.587729  − 0.587784  − 0.587785

1.0 0.000000 0.000000 − 0.587708 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

L2 1.0200e−04 1.39237e−03 9.7988e−05 1.04859e−03 8.4639e−05 3.5948e−04 7.0823e−05 1.7823e−05

L
∞

1.4438e−04 1.97435e−03 1.3870e−04 1.48780e−03 1.1979e−04 5.1210e−04 1.0022e−04 3.2161e−05

Fig. 7 Comparison of exact and approximated solutions with σ = 0.5, α = 0.5, �t = 0.001, ν̂ = 1, and M = 20 at t  = 0.2, 0.4, 0.6, 0.8, and 1 for Example 3

Fig. 8 The exact and approximate solutions, along with abs. errors for σ = 0.5, α = 0.5, M = 120, �t = 0.001, and ν̂ = 1 at t  = 1 for Example 3
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exact and approximated solutions with σ = 0.5, α = 0.5, 
�t = 0.001, ν̂ = 1, and M = 20 and 120, respectively. An 
excellent agreement is observed between exact and 
approximated solutions with absolute error in ( ≈ 10−4).

6  Conclusions
A new cubic HB-spline collocation technique has been 
established for the numerical treatment of the Caputo 
TFNB equation. The technique is used for discretizing 
the spatial derivatives. The Rubin–Graves type quasi-
linearization technique has been employed to linearize 
the nonlinear terms. The three examples have been con-
sidered to validate the accuracy and efficiency of the 
proposed method. It has been observed that the present 
method provides better results than the methods in [19, 
35, 36]. The graphical results are also presented that 
confirm the accuracy of the proposed algorithm. As we 
can see, Figs.  2, 3, 6, and 8 are clear representations of 
the smoothness between numerical and exact solutions, 
while Figs. 1–3, 4, 7, and 8 expose that absolute errors are 
very low in ( ≈ 10−3 to 10−5).
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