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Abstract 

Background  The epithelial-mesenchymal transition (EMT) affects the retinal pigment epithelium’s natural homeosta-
sis. According to observations from around the world, numerous oculopathies, including proliferative vitreoretinopa-
thy (PVR), diabetic retinopathy (DR), and other macular degenerative illnesses such as age-related macular degenera-
tion (AMD), have been linked to the epithelial-mesenchymal transition of retinal pigment epithelium (EMT of RPE). 
Retinopathy is referred to as an impairment in the retina, where AMD is characterized as an alteration in the macula 
region, DR as an impairment in the microvascular system, and PVR as an alteration in the subretinal bands, fibro-
vascular membranes, and fibrotic alteration in the detached retina. To find molecular targets and therapeutic drugs 
to protect and restore RPE function, a connection between EMT-related signaling pathways and RPE degeneration 
must be established.

Main body of abstract  Studies conducted in vivo and in vitro indicate that several signaling pathways, includ-
ing the Rho pathway, the transforming growth factor-β (TGFβ) pathway, the Jagged/Notch pathway, mitogen-acti-
vated protein kinase (MAPK)-dependent pathway, and Wnt/β-catenin pathway, are activated in RPE cells during PVR 
and AMD. In order to discover the most suitable candidate for retinopathy therapies, it is necessary to determine 
the relationship between the regulators of the EMT and the degeneration of the RPE. To treat retinopathies, particu-
larly those that are brought on by the EMT of retinal pigment epithelial cells, it is necessary to investigate prospective 
pharmaceutical candidates.

Conclusion  TGFβ’s intracellular cascade, which comprises both canonical (SMAD-associated) and non-canonical 
(SMAD-nonassociated) pathways, is shown to be the most active signaling pathway in the degeneration of the RPE 
caused by EMT.
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1 � Background
Cell signaling is being researched as a unique approach 
for better comprehending molecular processes, establish-
ing intercellular signal network profiles, and finding bio-
markers and therapeutic targets associated with cellular 
functions [1]. It is yet unknown exactly how these tran-
scription factors contribute on a molecular level to the 
epithelial-mesenchymal transition of the retinal pigment 
epithelium (EMT of RPE) [2]. Growth factors and other 
biological agents cause RPE cells to lose their cell polar-
ity and cell-to-cell contact, which triggers EMT through 
a variety of signaling pathways that encourage cell divi-
sion, migration, and the synthesis of extracellular matrix 
(ECM). The ECM is a complex network made up of a 
number of multidomain macromolecules that are struc-
tured in a network and cell/tissue-specific configurations 
[3]. RPE cells begin to exhibit mesenchymal cell charac-
teristics such as the ability to migrate and proliferate as 
they become less differentiated. This review focuses on 
current developments in the field of molecular under-
standing at the level of cell signaling and presents current 
thoughts on various approaches by focusing on retinal 
pigment epithelium-related retinopathies such as prolif-
erative vitreoretinopathy (PVR) and age-related macular 
degeneration (AMD). The macula, the small region of 
the central retina that is important for high-acuity vision, 
breaks down in AMD [4]. One of the problems that poses 
a major threat to the health of diabetic patients is DR, a 
microvascular impairment that can result in loss of vis-
ual acuity[5, 6].  Proliferative vitreoretinopathy (PVR) is 
defined by subretinal bands, fibrovascular membranes, 
and fibrotic alterations in the detached retina [7].

2 � Main text
2.1 � The role of EMT in retinal pigment epithelium
The Bruch’s membrane and photoreceptors are both sup-
ported by the retinal pigment epithelium, which plays an 
essential role in maintaining visual acuity. RPE is termi-
nally differentiated, highly polarised, and located between 
photoreceptors and choroids [8]. The RPE controls the 
flow of molecules between the fenestrated choroid cap-
illaries and the photoreceptor layer of the retina to cre-
ate the outer blood-retinal barrier (BRB). BRB works in 
many different ways, such as membrane pumps, trans-
porters, channels, passive but selective diffusion, tran-
scytosis, metabolic alteration of solutes in transit, and 
metabolic modification of solutes after they have left the 
cell. A monolayered cuboidal epithelium is held together 
by adherens junctions and tight junctions, which regulate 
epithelial diffusion via spaces between neighboring cells 
[9, 10, 11, 12].

EMT is the process through which healthy epithelial 
cells modify into mesenchymal cells [13]. At four to six 

weeks of gestation, the human RPE cell undergoes ter-
minal differentiation and thereafter remains mitotically 
inactive [2]. Additionally, it is a well-studied fact that 
EMT is highly involved in embryonic organization and 
re-organization. Furthermore, the EMT can be divided 
into three types [14] (Fig. 1). There are three basic types 
of EMT, depending on where the process starts and how 
it ends. EMTs are divided into three types: type I, which 
is linked to embryogenesis, type II, which is linked to 
pathology, and type III, which is linked to carcinogenesis 
[14, 15]. The study employed many markers to distin-
guish between epithelial and mesenchymal cells despite 
the fact that EMT is a dynamic process [16].

The zona-occludens-1 (ZO-1), epithelial cadherin 
(E-cadherin), and cytokeratin are epithelial markers. 
N-cadherin, fibronectin, and vimentin are mesenchy-
mal markers [17]. EMT in RPE is considered a funda-
mental underlying mechanism for severe diseases as it is 
observed in retinopathies such as AMD and PVR [17, 18]. 
Additionally, the in vitro, in vivo, and clinical data suggest 
that RPE cells undergo EMT [19, 20, 21, 17]. EMT of the 
RPE is caused by a combination of mechanisms includ-
ing oxidative stress, pathological inflammation, aging, 
infections, tight junction loss, ECM breakdown, altered 
growth factor synthesis, misfolded protein accumulation, 
and infections [22].

2.2 � Cellular signaling of EMT specifically in retinal pigment 
epithelium

The transformation of epithelial cells into mesenchymal 
cells, which results in the emergence of new biochemical 
instructions, requires cellular reprogramming and highly 
complicated cellular rearrangement [23]. Extracellular 
signals alter the gene expression of proteins associated 
with epithelial and mesenchymal tissues during the EMT 
process in the retinal pigment epithelium. They also 
regulate a variety of related cellular behaviors, including 
cell proliferation, migration, and death. This results in 
the development of PVR and AMD through a network 
of interconnected signaling pathways [2]. Tight junctions 
also play a part in the regulation of signaling pathways 
that control cellular functions including migration, pro-
liferation,  and differentiation [2]. Current understand-
ing suggests that the phosphoinositide-3-kinase/Protein 
kinase B (PI3K/Akt) pathway, TGFβ, Wnt, and Notch are 
only a few of the regulatory signaling pathways that are 
associated with the EMT of the RPE, as well as significant 
interactions between them [24] (Fig. 2).

2.3 � Rho signaling pathway
Ras homolog family member A (RhoA/Rho)-kinase is 
associated with ocular fibrosis. The control of cellu-
lar actomyosin cytoskeletal architecture and motility is 
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greatly influenced by two of RhoA’s main downstream 
effectors, the Ras-related C3 botulinum toxin substrate 
1 (Rac1) and Rho-associated, coiled-coil-containing 
kinases, Rho-associated kinase (ROCK) [25]. The Rho 
pathway has been found to control the assembly and 
structure of the actin cytoskeleton, as well as associated 
gene expression. It may be critical for RPE cell fibrotic 
response [26]. LIM domain kinase (LIMK), an actin-
binding protein, phosphorylates cofilin, hence stabilizing 
actin filaments [3]. Activated RhoA or its downstream 
effector ROCK increases LIM-kinase activity, which then 
phosphorylates cofilin in TGFβ1-treated ARPE-19 cells. 
This phosphorylation reduces cofilin function, which 
promotes actin polymerization and cytoskeleton remod-
eling, ultimately leading to fibrosis [26].

TGFβ-induced RhoA activation stimulates cell motil-
ity and increases alpha-smooth muscle actin (α-SMA) 
expression in primary RPE cells [27]. The RhoA/Rho-
kinase pathway has been demonstrated to mediate the 
synthesis of type I collagen by TGFβ2 in human RPE cells 
[19, 25]. In an in vivo PVR animal model, matrix stiffness 
enhanced ARPE-19 cell activation via the RhoA/(YAP) 
pathway, as well as retinal fibrogenesis [28]. Yes-associ-
ated protein 1 (YAP1) is a transcription coregulator that 
increases the expression of genes that regulate cell dif-
ferentiation and proliferation [3]. Furthermore, thrombin 
stimulates ROCK and Rho, leading to phosphorylation 

of the myosin light chain and the production of actin 
stress fibers in retinal pigment epithelial cells undergo-
ing EMT [29]. Furthermore, recent research suggests 
that inhibiting RhoA upstream with C3 exoenzyme or 
inhibiting YAP downstream with verteporfin significantly 
reduced MMP production and collagen gel contraction 
in ARPE-19 cells. Blocking RhoA/YAP signaling inhib-
ited the TGFβ/Smad pathway in vivo and reduced PVR-
induced retinal fibrogenesis. This paper provides novel 
PVR treatment approaches that target the RhoA/YAP 
pathway [28]. Nicotinamide suppresses EMT in the RPE 
and increases RPE cell differentiation by downregulat-
ing ROCK and casein kinase 1 (CK1) [30]. The ROCK 
inhibitor Y27632 and the RhoA inhibitor simvastatin 
both decrease TGFβ2-induced type I collagen synthesis 
in ARPE-19 cells, demonstrating the existence of a con-
nection between the Rho and SMAD pathways [11].

2.4 � Signaling cascade Mitogen‑activated protein kinase 
(MAPK)

MAPK is divided into three subfamilies: extracellular sig-
nal-regulated kinases (ERKs), c-Jun N-terminal kinases 
(JNKs), and p38 mitogen-activated protein kinases 
(p38s). ERKs are activated by growth factors, whereas 
JNKs and p38 are activated by cellular stresses or inflam-
matory cytokines. These signaling pathways regulate 
several biological processes in the fibrotic process of 

Fig. 1  Different categories of process of EMT. Based on the place of origin and end of the process, EMT may be classified into three fundamental 
categories. Type I: EMT (embryogenesis), Type II: pathological EMT, and Type III: cancer-related EMT. Diagrams developed with Microsoft PowerPoint



Page 4 of 10Gelat et al. Beni-Suef Univ J Basic Appl Sci           (2023) 12:94 

the eye [30]. The MAPKs cascade, which is regulated by 
a number of activators, is thought to be involved in the 
development of the epithelial-to-mesenchymal transi-
tion process. The Ras-MAPK pathway activates SNAIL1 
and SNAIL2. The early growth response factor-1 (Egr-1) 
accelerates the transition from epithelial to mesenchymal 
[31]. TGFβ-induced EMT and fibrosis were mediated by 
ERK activation in ARPE-19 cells [32]. A recent study of 
induced pluripotent stem cell (hiPSC)-derived RPE cells 
found that inhibiting TGFβ  and fibroblast growth fac-
tor (FGF/MAPK) pathways improved differentiation 
of  RPE[33]. Furthermore, previous in  vitro and in  vivo 
studies indicate that the SNAIL is expressed at both the 
transcription and post-transcription levels in many com-
plex signaling pathways such as integrin-linked kinase 
(ILK), phosphatidylinositol 3-kinase (P1P3-K), MAPKs, 
glycogen synthase kinase 3-b (GSK-3b), and nuclear fac-
tor kappa B (NF-κB) [34].

Shukal and coworkers demonstrated using an in  vitro 
study that, the anti-epithelial to mesenchymal transition 
in cells of RPE by a pyruvate analog, the dichloroacetate 

(DCA) via (MAPK/Erk) and PI3K/Akt pathway [35]. 
Inhibiting keratin 8 (KRT8) phosphorylation suppresses 
oxidative stress-mediated epithelial to mesenchymal 
transition in RPE cells while avoiding potential cell death, 
indicating that autophagy-mediated KRT8 overexpres-
sion combined with MAPK1/3 pathway inhibition could 
be a potential AMD intervention strategy [18]. Saika 
and colleagues established the therapeutic efficacy of 
p38MAPK inhibitor (SB202190) in ARPE-19 cells, with 
reduced TGFβ2-mediated migration and extracellular 
matrix production via MAPK signaling [36].

2.5 � Notch signaling cascade
It is believed that Notch signaling pathway may be signif-
icant in the onset and genesis of many illnesses because 
the Notch signaling cascade modulates the ratio of cell 
death to proliferation [37]. The transcriptional regula-
tor retinol-binding proteins (RBP) is necessary for the 
conventional Notch cascade in the RPE. RBP-J performs 
a transcriptional factor role in Notch signaling [38, 39]. 
Throughout the development of the eye, the Notch 

Fig. 2  Signaling cascades involved in EMT process. Many signaling pathways have been implicated in the retinal pigment EMT. either of canonical 
or non-canonical TGFβ signaling pathways are involved in the EMT of retinal pigment epithelium. Many additional signaling pathways, such as BMP 
signaling, RTK signaling, Wnt signaling, and jagged-Notch signaling, are implicated in the EMT process in retinal pigment epithelium. Furthermore, 
the interplay between these pathways is well documented. Diagrams developed with Microsoft PowerPoint
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signaling system plays a role in the regulation of cell fate, 
differentiation, and patterning [39]. Notch signaling has 
also been connected to the control of cell proliferation, 
specification, and differentiation during the retinogenesis 
and formation of the mammalian ocular lens [39, 40].

In the study of the TGFβ2-induced EMT process in 
retinal pigment epithelium, it is discovered that the 
TGFβ-dependent Smad signaling cascade initiates the 
Jagged/Notch pathway. Further, the blocked Notch 
pathway inhibited the EMT process effectively [41]. 
Zhang and coworkers reported that the notch inhibi-
tor (LY411575) blocked the Notch signaling in the PVR 
model of ARPE-19 cells [42]. One study by Niessen and 
coworkers targets SNAIL2 as part of Notch signaling 
and it has been observed that during hypoxia conditions 
SNAIL1 is directly induced by Notch signaling [43]. The 
overexpression of Jagged-1 and Notch-3 was observed 
in the TGFβ2-induced EMT of RPE [44]. The Jagged-1 
knockout suppressed TGFβ2-mediated EMT process 
in RPEvia downregulation of SNAIL, SLUG, and zinc 
finger E-box binding homeobox 1 (ZEB1) [44]. The col-
lagen-1 (COL1A1 and COL1A2) expression was found 
regulated by TGFβ2 treatment in cells (ARPE-19), as 
they are related to Notch/Jagged and MAPK signaling 
pathway [45]. Another research demonstrates the con-
nection between the Notch/Jagged and MAPK signaling 
pathways in the EMT process in  the RPE caused by the 
concomitant administration of TGFβ1 and tumor necro-
sis factor-alpha (TNF-alpha) [45].

2.6 � Wnt‑β‑catenin and Hippo‑YAP signaling pathway
An essential component of the Wnt-beta-catenin path-
way, beta-catenin is activated by dissociating from its 
complex and translocating into the nucleus, where it fur-
ther activates the genes SNAIL and other EMT-related 
genes [16]. The Wnt signaling mechanism is crucial for 
cancer, aging, and post-natal stem cell regeneration 
in addition to regulating tissue differentiation during 
embryogenesis [46]. Beta-catenin binds to the cytoplas-
mic domain of cadherins, illustrating a point at which 
the Wnt pathway and the cadherin adhesion mechanism 
converge [46, 47]. Important for the EMT, the phospho-
rylation statuses of beta-catenin, a key Wnt mediator, and 
GSK-3, which is positioned upstream of beta-catenin, are 
altered. By changing the expression or active status of 
its transcriptional regulators Snail and Smads, the Wnt/
beta-catenin pathway, as well as the pathways started by 
FGF and TGFβ, govern the EMT process in RPE. The 
junction of many pathways is where GSK-3 is found [46, 
48].

The Wnt-beta-catenin pathway is activated by laser-
mediated coagulation, and this furthers the EMT process 
in RPE outcomes, according to an earlier investigation 

by Han and colleagues [49]. The overexpression of beta-
catenin was prevented in one in  vitro experiment using 
ARPE-19 cells by the XAV939 (Wnt-beta downregulator). 
The increased expression of EMT markers is caused by 
the overexpression of beta-catenin [50]. The stimulation 
of EMT by the Wnt-beta-catenin signaling pathway was 
also demonstrated by further excessive light exposure on 
the retina [51]. Pentraxin 3 (HC-HA/PTX3) is a potent, 
non-toxic inhibitor that, in a dose-dependent manner, 
inhibits Wnt signaling to suppress the EMT process in 
RPE [52]. So, as already established, laser photocoagu-
lation triggers a Wnt/beta-catenin signal transduction 
pathway, which in turn encourages the proliferation and 
conversion of the epithelial cells of the retinal pigment 
epithelium into mesenchymal cells. It may be favorable 
for the regeneration of the RPE  to therapeutically regu-
late Wnt/beta-catenin signaling.

Contact inhibition and EMT, which govern organ size, 
are regulated by the Hippo signaling system [50]. The 
Hippo signaling cascade controls the transcription fac-
tors YAP and TAZ, which link the EMT process to cell 
proliferation [53, 54]. Hippo-YAP was shown to be asso-
ciated with cadherin and the phosphorylation of Src fam-
ily members [56]. The in vitro investigation demonstrated 
the role of EMT in RPE suppression by reducing tight 
junction disintegration [17]. The Hippo-YAP pathway, 
whose activity is mostly dependent on tight and adheren 
junctions, maintains RPE differentiation [16]. The Yap, on 
the other hand, was not found in the primary cells (RPE) 
of  mice  [17]. More research is needed to completely 
understand the facts surrounding the Hippo-YAP path-
way, which is linked to the EMT process in the RPE.

2.7 � Transforming growth factor‑beta (TGFβ) signaling 
pathway 

TGFβ and its intracellular cascade are particularly 
important in the EMT process in RPE [2]. TGFβ is a 
crucial cytokine as an anti-inflammatory compound. Its 
production is associated with wound injury and inflam-
mation [16]. TGFβ showed a role in both normal physi-
ological as well as abnormal pathological conditions [17]. 
The presence of TGFβ1, TGFβ2, and TGFβ3 are reported 
in the human eye [55]. In general, the concentration of 
TGFβ cytokine is increased as an inflammatory response 
but if this condition remains for a prolonged period then 
it leads to EMT [56]. The drastic increased TGFβ2 favors 
a significant loss of cell–cell attachment in RPE [57]. The 
expression of TGFβ, epidermal growth factor (EGF), 
insulin-like growth factor (IGF-II), or FGF-2 initiates the 
process of digesting the basement membrane by binding 
with epithelial receptors and starts kinase activities [58]. 
Among these factors, the most interesting cytokine is the 
EGF  and its receptor, epidermal growth factor (EGFR). 
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Many research efforts have established its significance in 
the induction, maintenance, and control of cell prolifera-
tion, differentiation, and migration [59]. Further, it should 
be noted that TGFβ is a known inducer of EMT, and that 
EGFR has been observed to rise in EMT-affected cellu-
lar microenvironment where EGF-assisted cell plasticity 
occurs [60].

In previous studies, it has been found that the galacto-
side-binding lectin family protein (Galactin-1) is cross-
talk with TGFβ signaling, in a knockout mouse it shows 
decreased choroidal neovascularization  (CNV)  severity 
and suppression of EMT process in RPE [61] (Table  1). 
Some other studies also represent the crosstalk between 
Smad-dependent signaling and ERK1/2 molecular inter-
action in RPE [41]. Troglitazone and pioglitazone, perox-
isome proliferator-activated receptor-gamma (PPAR-γ) 
suppresses phosphorylation of Smad and thus inhibit 
TGFβ2-mediated EMT process in RPE [62, 63]. Inhibi-
tion of sub-retinal fibrosis is shown by the retinoic acid 
receptor gamma (RAR-γ) agonist through the TGFβ 
pathway [64].

Additionally, there are many agents such as brady-
kinin (BK) [65], fucoidan [13], bone morphogenic protein 
(BMP7) [66], BMP4 [67], LY-364947 (TGFβRI- inhibi-
tor) [68], Baicalein [69], LYTAK1 (TAK1 inhibitors) [70], 
salinomycin [71], protein kinase-A inhibitor (H89) [72], 
and resveratrol [73] showed suppression of EMT process 
in RPE either in  vivo or in  vitro investigations. Recent 
studies on induced pluripotent stem cell (hiPSC)-derived 
retinal cells discovered that suppressing the protein 
kinase C or BMP signaling pathways, as well as reducing 
FGF/MAPK signaling, improved RPE differentiation [33]. 
Additionally, in the Smad3-mutated mouse PVR model, 
TGFβ signaling triggered the downregulation of the EMT 
process [74].

Some other therapeutic agents are involved in the 
inhibition of the EMT process in RPE but by interact-
ing with multiple signaling such as curcumin suppress-
ing the Akt, MAPK, and TGFβ pathways in RPE cells 
(Table  1). The mammalian target of rapamycin (mTOR) 
suppressor  (Trichostatin A) hindered the EMT process 
in RPE by down-regulating the Jagged/Notch pathway, 

Table 1  List of regulators of EMT process in RPE targeting via different signaling cascades

↓ = Suppression or Downregulation

EMT-regulating agent Involved signaling pathway Effects on EMT 
process in RPE

References

Nicotinamide (NAM) Rho-ROCK signaling ↓ EMT [78, 79]

SB202190 (p38MAPK chemical inhibitor) MAPK signaling ↓ EMT [36]

Y27632 (ROCK inhibitor) and Simvastatin (RhoA inhibitor) Rho signaling
SMAD signaling

↓ EMT [11]

BMP7 BMP7/ SMAD2/5/9 signaling
TGFβ2/SMAD2/3 signaling

↓ EMT [66]

LYTAK1 (TAK1 inhibitors) ERK/AKT signaling ↓ EMT [70]

Troglitazone and pioglitazone (PPAR-γ agonist) TGFβ signaling ↓ EMT [62, 63]

Trichostatin A Jagged/Notch signaling
Smad signaling
MAPK/ERK1/2 signaling

↓ EMT [75]

BMP4 TGFβ signaling [67]

Curcumin AKT signaling
MAPK signaling
TGFβ signaling

↓ EMT [80]

Sodium iodate (NAI) – Oxidative stress-
mediated -↓ EMT

[81]

Glucosamine (Glc-N) TGFβ signaling ↓ EMT [82]

Fucoidan TGFβ signaling ↓ EMT [13]

Erlotinib (EGFR inhibitors) TGFβ signaling ↓ EMT [83]

Baicalein (inhibitors of 12/15 lipoxygenase) TGFβ signaling ↓ EMT [69]

Bradykinin (BK) TGFβ signaling ↓ EMT [65]

Proteasome inhibitor (MG132) TGFβ signaling ↓ EMT [84]

Salinomycin (SNC) TGFβ signaling ↓ EMT [71]

Resveratrol TGFβ signaling ↓ EMT [85]

Protein kinase-A inhibitor (H89) TGFβ signaling ↓ EMT [72]

Heavy chain-hyaluronan/pentraxin3 Wnt signaling and TGFβ signaling ↓ EMT [52]



Page 7 of 10Gelat et al. Beni-Suef Univ J Basic Appl Sci           (2023) 12:94 	

non-canonical TGF/Akt, MAPK, and ERK1/2, as well 
as the standard Smad signaling pathways [75]. It has 
been demonstrated that several intravitreal anti-vas-
cular endothelial growth factor (anti-VEGF) medica-
tions can diminish retinal fibrosis in patients with active 
neovascular AMD (n-AMD) [19, 76, 77]. Choroidal 
neovascularization, which results in exudation, leak-
age, and finally fibrosis with photoreceptor loss, can be 
used to characterize n-AMD [3]. In recent safety phase 
II research, subretinal fibrosis in n-AMD patients receiv-
ing the combination of platelet-derived growth factor 
[Fovista®(E10030)] and an anti-VEGF drug was investi-
gated. Additionally, a controlled phase II trial in n-AMD 
is now being conducted to examine the impact of either 
the FGF2 antagonist RBM-007 alone or in conjunction 
with the anti-VEGF drug on subretinal fibrosis [19].

3 � Conclusions
Age-related macular degeneration and proliferative vit-
reoretinopathy activate several signaling cascades in RPE 
cells, including the SMAD, the Rho, the MAPK, the Jag-
ged/Notch, and the Wnt/-catenin pathways, according to 
studies done in vitro and in vivo. The most active signal-
ing cascade in the process of the retinal pigment epithe-
lium’s epithelial to mesenchymal conversion is discovered 
to be TGFβ, namely its intracellular cascade and both 
SMAD and non-SMAD pathways. There are no medica-
tions on the market right now that aim to treat the EMT 
of the retinal pigment epithelium. Retinopathies, in par-
ticular those caused by the epithelial to the mesenchymal 
conversion of retinal pigment epithelium cells, may only 
be treated with antimetabolite pharmaceuticals, how-
ever, these drugs have severe, occasionally blinding side 
effects.

A link between the molecular targets and the regula-
tors of the EMT of RPE must be established in order to 
choose the best candidate for retinopathy therapy. To 
treat retinopathies, especially those brought on by the 
epithelial-mesenchymal transition of retinal pigment epi-
thelium cells, it is critical to investigate to explore poten-
tial pharmaceutical treatments.
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