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Abstract 

Background The phytochemical constitution and biological capabilities of Fragaria ananassa’s calyx have not been 
extensively investigated before. Consequently, the research study pointed for characterization, isolation, and identifi‑
cation of the sterols and flavonoids as the major active constituents in the calyx of F. ananassa and evaluation for their 
impacts as free radicals scavenger and anti‑inflammatory agent.

Results GC/MS investigation for the lipoidal constitutions of F. ananassa’s calyx was performed to identify twenty‑six 
compounds signifying 83.08%, as well as isolation of campesterol, stigmast‑4‑en‑3‑one, and β‑sitosterol‑d‑glucoside 
by column chromatography technique. Additionally, quantification and identification of the flavonoids in the ethyl 
acetate extract was carried out by HPLC/DAD technique beside to isolation and structure elucidation of 5‑hydroxy‑7, 
4′‑dimethoxy flavone and Chrysin. The free radicals scavenging and anti‑inflammatory activities of both non‑polar 
and polar extracts have been tested against (DPPH and ABTS radicals) and (COX‑1, COX‑2, and 5‑LOX enzymes), 
correspondingly. The results illustrated significant effects of the polar extract of F. ananassa calyx greater than non‑
polar one. The dynamic natures, binding interactions, and protein–ligand stabilities have also been investigated 
using the molecular dynamics (MD) simulation research. The MD simulation revealed that Chrysin’s chromen ring 
was extended to catalytic position of COX‑1 receptor, producing Pi‑Pi T‑shaped contact with Tyr 354 and Trp 356. In 
addition, Chrysin’s chromen ring has formed a Pi‑alkyl bond with Val 318 and Leu 321. However, due to the huge size 
of ꞵ‑sitosterol‑d‑glucoside, the glycoside ring can form a hydrogen bond with Tyr 317. The cyclopentyl phenanthrene 
ring also possesses Pi‑alkyl interactions with Ile 58, Leu 62, Val 85, Val 318, Tyr 324, Leu 326, Ala 496, and Leu 500.

Conclusions The findings of our study are crucial in establishing the molecular bases for Chrysin and ꞵ‑sitosterol‑d‑
glucoside action against anti‑inflammatory targets and for developing more effective selective inhibitors. The discov‑
ery of the binding location for ATP can pave the door for development unique, structure‑based approach for natural 
anti‑inflammatory medications.
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1  Background
Strawberry with Latin name Fragaria ananassa Duch., 
Rosaceae family, is popular and well-known fruit [1] 
that is have a large demand worldwide, not only for 
their flavoured taste but also for their health-related 
characteristics, as the fruits are acknowledged as a vital 
source of minerals, vitamins especially vitamin C and 
many phenolic compounds [2]. Many research studies 
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reported the major active constituents in fruits, leaves, 
and roots of F. ananassa as phenolics, tannins [3], flavo-
noids [4], beside to steroids, and triterpenoids [5]. The 
nutritious studies conducted that the long consumption 
of the strawberry fruits has a remarkable protecting 
effects against various chronic ailments such as Alzhei-
mer, cancer [5], diabetes [6], and some cardiovascular 
diseases [7], beside to other health-promoting activities 
as free radical scavenging [3], anti-inflammatory [8], 
anti-obesity, and antiplatelet aggregation agent [9].

Around 60% of strawberry consumption was 
intended as fresh fruits, with the remaining 40% going 
primarily to frozen processing [10]. As a result, the 
processed fruits produce enormous amounts of calyx 
by-products. According to Villamil-Galindo et al. [11], 
strawberry by-products contain high concentration 
of phenolic compounds, producing industrial oppor-
tunities for getting raw materials at low cost with an 
intriguing additional value, perhaps lowering the cost 
of their eventual disposal.

Although F. ananassa fruit has been the subject of 
numerous studies, the calyx has received much less 
attention. For that reason, the current research study 
pointed to characterize, isolate, and identify the ster-
ols and flavonoids as the principal active constituents 
presented in F. ananassa calyx, and evaluate their bio-
logical activities as free radical scavenging and anti-
inflammatory agents.

2  Methods
2.1  Fruit collection and identification
Strawberry fruits have been gathered in June 2023 from 
private strawberry farm in El-Slaheya Elgdeda, Sharkia 
Governorate, Egypt. Taxonomical identity of the fruits 
was kindly confirmed by Prof. Dr. Gamal Farag, at the 
Ministry of Agriculture’s Horticulture Research Centre. 
A specimen was deposited in the National Research Cen-
tre herbarium with Voucher number M183. Calyxes have 
been collected, cleaned, and dried by air before being 
powdered.

2.2  Extraction
Dried F. ananassa calyx powders (500 g) were defatted 
by extraction with petroleum ether (3L X 4 times) for 
lipoidal constituent extraction and after that the defat-
ted powders were consequentially extracted with ethyl 
acetate (3L X 6 times) as polar solvent for flavonoids 
extraction, using cold maceration method. The lipoidal 
(yield 17%) and flavonoidal (yield 32%) portions have 
been concentrated at 45 °C by the rotavapour (Heidolph, 

Germany) and kept in refrigerator for chemical and bio-
logical investigation.

2.3  GC/MS investigation of the lipoidal constitutions
The lipoidal constitutions of F. ananassa calyx were 
investigated using GC/MS technique (Shimadzu GC/
MS–QP5050A) using capillary column of fused silica, 
30  m length, 0.53  mm ID and 1.5  µm thickness, and 
stationary phase DB-1 with mass detector. Tempera-
ture programming was adjusted to 50–150 °C at a rate 
of 10°C/min-250 °C(5 min), at 5 °C/min-270 (5 min), at 
3.5°C/min, with ionization voltage 70 eV, and helium at 
1 ml/min as carrier gas. Characterization was achieved 
through comparing the obtained fragments with that 
of the accessible recorded archives and reported lit-
eratures. Quantitative determination was performed 
according to peak area integration.

2.4  Isolation and structural elucidation of the major 
sterols

The major sterols presented in petroleum ether extract 
were isolated by using column chromatography tech-
nique, where five grams has been loaded on 175  g sil-
ica gel G60 for chromatographical adsorption analysis 
(BDH, England) in the column (140 × 3 cm). Eluting 
with petroleum ether and increasing the polarity with 
chloroform, each collected fraction (50 ml) was sepa-
rately concentrated and detected for sterols existence 
through applying Liebermann–Burchard test. The frac-
tions that responded positively have been purified by 
readymade chromatographic plates (20 × 20 cm) coated 
with silica gel (F-254, Fluka), with toluene:ethyl acetate 
(8:2 v/v). Visualization was performed at 365- and 254-
nm UV wavelengths. After that, spraying was made by 
p-anisaldehyde-sulphuric acid and heated for 5 min at 
105 °C; the same responded portions were mixed and 
concentrated. Structural elucidations of the pure iso-
lated compounds were performed by melting points 
measurement and by different spectroscopic analyses 
(mass spectrometry, 1H-NMR, and 13C-NMR).

2.5  Quantitative estimation of flavones and flavonols
Quantification of flavones and flavonols has been 
done according to Bahloul et  al. [12]. In brief, 1 mL 
from ethyl acetate extract has been added to 1 mL of 
2%  AlCl3-ethanol solution. At 420 nm, absorbance was 
measured after a reaction had placed for 1 h at room 
temperature. To create the calibration curves, rutin 
(Fluka Biochemika, Sigma-Aldrich) has been chosen 
as reference. The results were calculated as mg rutin 
equivalent/100 g extract as mean ± S.D.
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2.6  Quantitative estimation of flavanones 
and dihydroflavonols

The content of flavanones and dihydroflavonols has 
been assessed in accordance with Bahloul et al. [12]. In 
a nutshell, 1 mL of the ethyl acetate extract was mixed 
with 1 mL from a solution containing 1 g of 2,4-dini-
trophenylhydrazine in 2 mL conc. sulphuric acid, and 
dilution by methanol to 100 mL, then heating was car-
ried out for 1 h at 45  °C, then the mixture has been 
diluted by 10% alcoholic KOH to reach 10 mL. One 
millilitre from the obtained mixture has been added to 
10 mL of methanol to make a 50-mL final volume. At 
486 nm, absorbance was measured and data were dis-
played as mg naringenin equivalent in 100 g extract as 
mean ± S.D.

2.7  Identification of the flavonoids by HPLC/DAD 
technique

Identification of the flavonoids was carried out by high-
performance liquid chromatography (HPLC) using Agilent 
Technologies 1100 series liquid chromatograph coupled 
with an autosampler and a diode-array detector [13].

2.8  Isolation and structure elucidation of flavonoids
Ethyl acetate extract of F. ananassa calyx (2 g) was 
applied on preparative TLC (20 × 20cm, Merck) using a 
developing system with dichloromethane:ethyl acetate 
(5:1) ratio. The bands that turned yellow when treated 
with ammonia and the  AlCl3 spray reagent [14] were 
marked, scratched off, and then collected after inspection 
via UV-254 and 365  nm. Several spectroscopic studies 
were used to identify the isolated flavonoids, along with 
comparisons to published data.

2.9  Free radicals scavenging effect
The free radicals scavenging effect of lipoidal and fla-
vonoidal extracts of F. ananassa calyx at different con-
centrations of 0.01, 0.05, 0.1 mg was evaluated against 
1,1-diphenyl-2-picryl-hydrazyl (DPPH) (Aldrich Che-
mie, Germany) and 2,2′-azinobis-(3-ethylbenzothi-
azoline-6-sulfonic acid) (ABTS) (Fluka Biochemika, 
Sigma-Aldrich) radicals using the techniques reported by 
Rahman et al. [15] and Arnao et al. [16], respectively. The 
method was carried out in comparison with vitamin C as 
a standard antioxidant (Sigma, USA). Values are repre-
sented by mean ± SD of three replicates.

2.10  In vitro anti‑inflammatory evaluation
In vitro anti-inflammatory evaluation of the lipoidal and 
flavonoidal extracts of F. ananassa calyx was performed 
through inhibition of two isoenzymes cyclooxygenase 

COX-1 and COX-2 (ovine/human), along with 5-LOX 
enzyme (human recombinant).

COX‑1 and COX‑2 inhibition assay has been per-
formed by means of COX-1 and COX-2 kit (Cayman, 
No.: 560131) [17], where different known concentrations 
of the tested extracts were added separately to a mixture 
of 10 μL of COX-1 or COX-2 and 0.1 M HCl buffer, left 
for incubation at room temperature for 10 min. After 
that, 10μL of arachidonic acid, fifty μL HCl and Ellman’s 
reagent have been added. The absorbance has been deter-
mined at UV-410 nm alongside blank; IC50 has been 
determined via linear regression.

5‑Lipoxygenase inhibition assay was carried out by 
5-LOX kit (No. 437996, Sigma-Aldrich) [18], where dif-
ferent concentrations of the tested extracts were added to 
90 μL from 5-LOX, 100 μL of de chromogen, then 10 μL 
from arachidonic acid was added and shaken for 10 min, 
the absorbance has been determined at UV-490 nm com-
pared to blank. IC50 has been calculated through linear 
regression.

2.11  Statistics
Statistical valuations of the tested parameters were per-
formed using SPSS 9.05 (USA). The significant vari-
ances were examined using one-way analysis of variance 
(ANOVA) following by Co-state computer program.

2.12  System preparation: molecular docking
Cyclooxygenase-1 which was solved at resolution 2.70 Å 
has been produced through protein data bank having 
code 2OYU [19] and then was prepared using UCSF Chi-
mera [20]. pH has been adjusted to 7.5 by PROPKA [21]. 
ChemBioDraw Ultra 12.1 has been performed to make 
2D structure [22] that was optimized aiming to energy 
reduction by Avogadro software [23] using steepest 
descent technique as well as MMFF94 force field. Hydro-
gen atoms were eliminated using UCSF Chimaera [20] to 
get ready for docking.

Using AutoDock Vina [24], docking computations were 
carried out; Gasteiger partial charge [25] was assigned. 
AutoDock graphical user interface from MGL tools has 
been applied for describing atom kinds [26]. Grid box has 
been calculated using the grid parameters x = − 20.6819, 
y = 50.7675, and z = 11.1067 for the dimension and 
x = 10.00, y = 10.00, and z = 10.00 for the centre grid, with 
exhaustiveness = 8. The Lamarckian genetic technique 
[27] has been performed for producing docked confor-
mation with decreasing directive of the docking energy.

2.13  Molecular dynamic (MD) simulations
Molecular dynamic (MD) simulations have been used 
for studying the biological systems; it is possible to 
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investigate atomic and molecular motions that are not 
readily accessible using conventional techniques [28]. 
Conducting this model has offered an extensive under-
standing for biological system changes as conformation 
shifts as well as molecular interactions [28]. All systems’ 
MD simulations have been carried out by AMBER 18 
package’s PMEMD engine’s GPU version [29, 30].

2.14  Post‑MD analysis
The trajectories that produced from MD simulations 
have been assessed by AMBER18 suite’s CPPTRAJ [31] 
model. All graphs and visualisations were made using 
Chimaera [20] and the Origin data analysis programme 
[32].

2.15  Thermodynamic calculations
For estimating ligand-binding affinities, the Pois-
son-Boltzmann or generalised Born and surface area 

continuum solvation (MM/PBSA and MM/GBSA) tech-
nique was reported as effective method [33–35]. The 
protein–ligand complex molecular simulations com-
pute rigorous statistical–mechanical binding free energy 
within a defined force field [29, 30].

3  Results
3.1  GC/MS investigation of the lipoidal constitutions
GC/MS analysis was performed to pinpoint the lipoidal 
constituents in the non-polar extract of F. ananassa calyx. 
The identified compounds are illustrated in Table  1. 
Twenty-six compounds were identified signifying 83.08%, 
and constituting of 8 hydrocarbons (27.45%), 7 fatty alco-
hols (31.51%), 1 ketone (1.57%), 3 fatty acids (14.77%), 3 
fatty acid esters (4.97%), and 4 sterols (2.81%). Interest-
ingly, 9,12,15-octadecatrien-1-ol in addition to n-hexade-
canoic acid was detected as major identified constituents 
amounting 11.59% and 9.42%, respectively. Campesterol, 

Table 1 GC/MS investigation of the lipoidal constitutions in F. ananassa calyx

Class Peak No Compound Rt (min.) Molecular formula Molecular 
weight

Base peak Relative area % Total 
concentration 
(%)

Hydrocarbon 1 n‑Dodecane 5.32 C12H26 170 57 1.57 27.45

2 n‑Tetradecane 5.90 C14H30 198 57 4.26

3 Hexadecane 8.40 C16H34 226 57 4.78

4 Octadecane 11.71 C18H38 254 57 3.74

5 Nonadecane 13.54 C19H40 268 57 3.51

6 Eicosane 16.54 C20H42 282 57 1.78

7 n‑Docosane 23.47 C22H46 310 57 4.85

8 n‑Tricosane 25.82 C23H48 324 57 2.96

Fatty alcohol 9 3‑Methylbut‑3‑en‑2‑ol 13.96 C6H12O 100 41 1.89 31.51

10 5‑Methyl‑1‑heptanol 14.09 C8H18O 130 55 6.73

11 8‑Dodecen‑1‑ol 22.95 C12H24O 184 55 1.25

12 3,7,11‑Trimethyl‑1,6,10‑
dodecatrien‑3‑ol

23.47 C15H26O 222 41 5.83

13 9,12,15‑Octadecatrien‑1‑ol 26.71 C18H32O 264 41 11.59

14 Heneicosanol 28.01 C21H44O 312 55 2.14

15 1‑Pentacosanol 29.33 C25H52O 368 55 2.08

Ketone 16 6,10,14‑Trimethyl‑2‑penta‑
decanone

25.80 C18H36O 268 43 1.57 1.57

Fatty acid 17 1,2‑Benzenedicarboxylic acid 30.75 C8H6O4 166 104 3.51 14.77

18 n‑Hexadecanoic acid 41.33 C16H32O2 256 43 9.42

19 Octadecanoic acid 43.10 C18H36O2 284 43 1.84

Fatty acid ester 20 Hexadecanoic acid, methyl 
ester

32.11 C17H34O2 270 74 2.37 4.97

21 Hexadecanoic acid, ethyl 
ester

42.53 C18H36O2 284 88 1.53

22 Docosanoic acid, ethyl ester 44.80 C24H48O2 368 88 1.07

Sterol 23 Campesterol 47.10 C28H48O 400 43 0.49 2.81

24 Stigmasterol 50.11 C29H48O 412 55 0.61

25 β‑Sitosterol 52.91 C29H50O 414 43 1.03

26 β‑Sitosterol acetate 54.23 C31H52O2 456 43 0.68
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stigmasterol, β-sitosterol beside to β-sitosterol acetate 
have been identified with concentration of 0.49%, 0.61%, 
1.03%, and 0.68%, respectively. GC/MS chromatogram 
of the petroleum ether extract of F. ananassa calyx was 
illustrated in Additional file 1: Fig. S1.

3.2  Isolation and structural elucidation of the major 
sterols

Silica gel column chromatographic technique was per-
formed for isolation of the sterols in the non-polar 
extract of F. ananassa calyx that produce purplish col-
our after spraying with p-anisaldehyde-sulphuric acid. 
Structure of isolated sterols has been established through 
melting points and by mass fragmentation pattern, 1H-
NMR, 13C-NMR analyses as well as referring to previous 
findings.

Campesterol was isolated from the column by using 
petroleum ether: chloroform (95:5) as eluent and showed 
Rf 0.75 in silica gel TLC (F-254, Fluka) with toluene:ethyl 
acetate (8:2 v/v). The whitish crystal had m.p. 157 °C that 
was matching with Choi et  al. [36]. EI-MS m/z (rela-
tive intensity) displayed molecular weight 400 (18%) for 
molecular formula  C28H48O, base peak with m/z 129 
(100%), besides m/z 43 (67%), 55 (49%), 69 (34), 81 (43), 
119 (25), 145 (29), 161 (30), 213 (35), 231 (28), 255 (34), 
289 (25), 315 (37), 367 (41), 382 (19). 1H NMR (400 MHz, 
DMSO, δ ppm): 5.23 (1 olefinic H, m, H-6), 3.41 (1H, dd, 
H-3), 2.19 (1H, d, H-4), 1.12 (3H, s, H-19), 0.94 (1H, d, 
H-21), 0.82 (3H, d, H-27), 0.79 (3H, d, H-26), 0.75 (3H, 
d, H-28), and 0.64 (3H, s, H-18). 13C-NMR (125 MHz, 
DMSO, δ ppm): 38.2 (C-1), 29.0 (C-2), 72.4 (C-3), 40.5 
(C-4), 141.3 (C-5), 122.4 (C-6), 32.1 (C-7), 29.7 (C-8), 51.3 
(C-9), 37.1 (C-10), 19.8 (C-11), 39.5 (C-12), 40.1 (C-13), 
57.2 (C-14), 22.3 (C-15), 27.5 (C-16), 55.6 (C-17), 20.4 
(C-18), 15.3 (C-19), 31.8 (C-20), 19.2 (C21), 34.6 (C-22), 
22.6 (C-23), 41.6 (C-24), 36.5 (C-25), 17.6 (C-26), 18.4 
(C-27), 23.7 (C-28). The data spectral values for campes-
terol agreed with those reported in the literature [37, 38].

Stigmast-4-en-3-one was isolated by using petroleum 
ether: chloroform (85:15) as white needles, Rf 0.78, m.p. 
154 °C which in agreement with [39], EI-MS m/z (rela-
tive intensity) displays molecular weight 412 (18%) for 
molecular formula  C29H48O. Distinctive fragments were 
43 (46%), 55 (38%), 71 (35%), 95 (31%), 124 (100%), 178 
(22%), 213 (26%), 229 (32%), 255 (27%), 329 (19%), 381 
(36%), 396 (46%). 1H NMR (400 MHz, DMSO, δ ppm): 
5.51 (1 olefinic H, m, H-4), 3.6 (2H, d,H-22), 3.7 (2H, d,H-
23), 1.7 (3H, s, H-19), 0.95 (3H, s, H-29), 7.3 (1H,d, H-24), 
11.0 (1H,d, H-25). 13C-NMR (125 MHz, DMSO, δ ppm): 
36.4 (C-1), 34.2 (C-2), 170.1 (C-3), 122.6 (C-4), 197.1 
(C-5), 32.8 (C-6), 32.0 (C-7), 36.0 (C-8), 52.8 (C-9), 38.9 
(C-10), 19.9 (C-11), 40.1 (C-12), 41.6 (C-13), 56.4 (C-14), 
23.5 (C-15), 27.7 (C-16), 56.2 (C-17), 11.8 (C-18), 16.8 

(C-19), 35.6 (C-20), 18.0 (C21), 32.7 (C-22), 24.5 (C-23), 
44.6 (C-24), 23.1 (C-25), 19.5 (C-26), 18.2 (C-27), 22.9 
(C-28), 11.38 (C-29), which is accordant with Udobre 
et al. [40].

β-Sitosterol-d-glucoside was isolated by using petro-
leum ether: chloroform (80:20) and by further purifica-
tion on preparative silica gel TLC using toluene: ethyl 
acetate (9:1) as a developing solvent giving blue band 
with Rf 0.70 which converted to purple colour by vanillin-
sulphuric acid treating. The isolated compound was puri-
fied as white crystals, m.p. 280 °C which in harmony with 
that reported by Aboulthana et al. [41]. EI-MS m/z (rela-
tive intensity) illustrated molecular weight 576 (24%) for 
molecular formula  C35H60O6, base peak for 57, beside to 
414 (65%) assigned to β-sitosterol moiety, 396 (35%), 381 
(28%), 329 (19%), 303 (25%), and 275 (27%). 13CNMR: δ 
ppm 10.9 (C-18), 10.3 (C-29), 19.8 (C-21), 19.2 (C-27), 
18.7 (C-19), 18.4 (C-26), 19.6 (C-11), 22.1 (C-28), 24.7 
(C-15), 25.8 (C-23), 28.3 (C-16), 27.6 (C-2), 28.8 (C-25), 
29.9 (C-7/8), 34.2 (C-22), 36.6 (C-20), 35.9 (C-10), 35.4 
(C-1), 38.2 (C-4), 40.1 (C-12), 43.2 (C-13), 45.4 (C-24), 
48.6 (C-9), 54.7 (C-17), 55.1 (C-14), 60.2 (C-6′), 72.3 
(C-4′), 74.2 (C-2′), 77.8 (C-3), 78.1 (C-3′/5′), 99.3 (C-1′), 
120.7 (C-6), 139.2 (C-5). The obtained results were in 
consistence with Horník et al. [42].

3.3  Quantitative estimation of the flavonoids
The contents of flavones and flavonols were deter-
mined in the ethyl acetate extract of F. ananassa calyx as 
3157.6 ± 0.16 mg rutin equivalent /100 g extract. How-
ever, flavanones and dihydroflavonols were provided at 
significantly lower concentration as 281.4 ± 0.09 mg nar-
ingenin equivalent/100 g extract.

3.4  Identification of the flavonoids by HPLC/DAD 
technique

HPLC/DAD technique was applied to quantitatively and 
qualitatively investigate the flavonoids composition in the 
ethyl acetate extract of F. ananassa calyx, as indicated in 
Table  2. Nineteen flavonoids were identified using the 
HPLC/DAD study. The three main detected flavonoids 
were revealed to be quercetin (2491.36 mg/100 g), api-
genin (1638.48 mg/100 g), as well as kaempferol (1467.29 
mg/100 g). HPLC chromatogram of the ethyl acetate 
extract of F. ananassa calyx was provided in Additional 
file 1: Fig. S2.

3.5  Isolation and structure elucidation of the principal 
flavonoids

5-Hydroxy-7, 4′-dimethoxy flavone was isolated as yel-
lowish crystals, m.p.255 °C. It produced a yellow colour 
under short UV light, but after being exposed to ammo-
nia and  AlCl3 spray reagent with Rf of 0.65, it fluoresced 



Page 6 of 14El‑Feky and El‑Rashedy  Beni-Suef Univ J Basic Appl Sci          (2023) 12:108 

intensely yellow. 1H NMR (400 MHz, DMSO, δ ppm): 
5.60 (1H, s, H-3), 6.52 (1H, d, H-6), 6.43 (1H, d, H-8), 
7.86 (2H, dd, H-2′, H-6′), 7.88 (2H, dd, H-3′, H-5′), 3.86 
(3H, s, OCH3). 13C-NMR (125 MHz, DMSO, δ ppm): 
129.3 (C-2), 99.4 (C-3), 183.5 (C-4), 161.0 (C-5), 100.3 
(C-6), 163.8 (C-7), 91.4 (C-8), 160.5 (C-9), 103.1 (C-10), 
119.6 (C-1′), 128.1 (C-2′), 135.6 (C-3′), 146.1 (C-4′), 
135.8 (C-5′), 128.3 (C-6′), 54.7  (OCH3). The obtained 
spectral data harmonized to the previously reported lit-
erature [43].

Chrysin (5,7-dihydroxy flavone) was isolated as yel-
low crystals, m.p.285  °C, produced yellowish colour 
with short UV light converted to intense yellowish flu-
orescence after exposure to ammonia and  AlCl3 spray 
reagent with Rf 0.78, 1H NMR (400 MHz, DMSO, δ 

ppm): 6.25 (1H, d, H-6), 6.43 (1H, d, H-8), 6.98 (1H, 
s, H-3), 7.49 (1H, m, H-4′), 7.93 (2H, dd, H-2′, H-6′), 
8.04 (2H, dd, H-3′, H-5′). 13C-NMR (125 MHz, DMSO, 
δ ppm): 163. 6 (C-2), 102.3 (C-3), 180.2 (C-4), 160.8 
(C-5), 98.7 (C-6), 163.9 (C-7), 93.7 (C-8), 158.4 (C-9), 
103.9 (C-10), 129.5 (C-1′), 127.4 (C-2′), 128.5 (C-3′), 
138.4 (C-4′), 128.6 (C-5′),127.5 (C-6′). The spectro-
scopic results matched to that stated by Shrestha et al. 
[44].

3.6  Free radicals scavenging effect
By scavenging harmful free radicals, the antioxidants 
have been proposed to be important agents to protect 
cells from damage. It is noteworthy that continuous con-
sumption of various antioxidant-rich vegetables is linked 
to a lower risk for developing many chronic diseases [12].

The free radicals scavenging capabilities of the non-
polar and polar extracts of F. ananassa calyx against 
DPPH and ABTS radicals were determined in serial con-
centrations (0.01, 0.05, 0.1 mg), and it was observed that 
the lipoidal constitutions scavenged the DPPH free radi-
cals by 53%, 68%, and 84% and ABTS by 29%, 59%, 83% at 
concentrations of 0.01, 0.05, and 0.1 mg, correspondingly. 
However, the flavonoidal constitutions recorded DPPH 
inhibition by 57%, 73%, 89% and ABTS inhibition by 
36%, 61%, 84% at 0.01, 0.05, and 0.1 mg, respectively, as 
illustrated in Table 3. The obtained results revealed con-
centration-dependent radicals scavenging effects of both 
non-polar and polar extracts of F. ananassa calyx; these 
findings were supported by the identification of numer-
ous active constituents (sterols and flavonoids, respec-
tively) that have the antioxidant capacity.

3.7  In vitro anti‑inflammatory effect
Cyclooxygenases (COX-1 and COX-2) beside to lipoxy-
genase (5-LOX) are well-known pro-inflammatory 
enzymes, and they are essential enzymes for arachidonic 
acid synthesis [45]. Therefore, these enzymes are fre-
quently employed for screening and evaluation of the 
anti-inflammatory agents. Additionally, 5-lipoxygenase 
(5-LOX) promotes the second major metabolic path 

Table 2 HPLC investigation of the flavonoids in the polar extract 
of F. ananassa calyx

Flavonoids Concentration 
(mg/100 g)

Apigenin 1638.48

Apigenin‑7‑glucoside 314.85

Apigenin‑7‑O‑neohespiroside 286.04

Kaempferol 1467.29

Kaempferol‑3‑O‑rutinoside 160.58

Kaempferol‑3‑rhamnoside 117.36

Quercetin 2491.36

Quercitrin 291.34

Rutin 183.76

Rhamnetin 95.78

Isorhamnetin‑3‑Oglucoside 64.82

Luteolin 942.75

Luteolin‑7‑O‑glucoside 103.58

Hesperidin 68.49

Hesperetin 173.61

Naringenin 198.42

Naringin 81.35

Myricetin 924.71

Chrysoeriol 739.65

Table 3 Free radicals scavenging effects of non‑polar and polar extracts of F. ananassa calyx against DPPH and ABTS

Values are represented by mean ± SE of three replicates

Tested groups Inhibition percentages (%)

DPPH ABTS

0.01 mg/mL 0.05 mg/mL 0.1 mg/mL 0.01 mg/mL 0.05 mg/mL 0.1 mg/mL

Petroleum ether extract 53 ± 0.31 68 ± 0.09 84 ± 0.05 29 ± 0.20 59 ± 0.17 83 ± 0.11

Ethyl acetate extract 57 ± 0.20 73 ± 0.18 89 ± 0.23 36 ± 0.13 61 ± 0.14 84 ± 0.07

Vitamin C 62 ± 0.17 79 ± 0.21 94 ± 0.19 37 ± 0.07 68 ± 0.11 89 ± 0.05
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to release eicosanoids. Leukotriene B4 is the last prod-
uct of the 5-LOX pathway and is a mediator for a num-
ber of inflammations and sensitized diseases. Therefore, 
lowering leukotriene levels through 5-LOX inhibition 
could help in minimizing the risk of cardiovascular and 
gastrointestinal problems [46]. Because of the various 
side effects and limited activities of the synthetic drugs, 
search for natural anti-inflammatory agents is essential 
since they could be safer and more effective than the syn-
thetic medicines [47].

The efficacy of non-polar and polar extracts of F. 
ananassa calyx to prohibit COX-1, COX-2, and 5-LOX 
enzymes was used for evaluation of their anti-inflam-
matory activities. According to Table 4, the ethyl acetate 
extract significantly inhibited COX-1 and COX-2 by 
IC50 = 0.428 ± 0.08 ug/mL and IC50 = 0.695 ± 0.14 ug/mL, 
respectively. In comparison with indomethacin stand-
ard (IC50 = 0.361 ± 0.13 ug/mL and 0.628 ± 0.11 ug/mL), 
as well as significantly prohibited the 5-LOX enzyme 

by IC50 = 0.501 ± 0.10 ug/mL compared with Zileuton 
(IC50 = 0.425 ± 0.09 ug/mL), while the petroleum ether 
extract showed less notable inhibition to COX-1, COX-
2, and 5-LOX enzymes (IC50 = 0.613 ± 0.19, 1.062 ± 0.20 
&0.731 ± 0.08) ug/mL, respectively (Fig.  1). Sterols and 
flavonoids present in the polar and non-polar extracts 
have several advantageous biological functions [48–50]. 
Flavonoids’ capabilities are influenced by number of OH 
groups, conjugations, and resonances [51, 52], while ster-
ols’ impacts depend on saturation degree as well as side-
chain length in their structure [53].

3.8  Molecular dynamic and system stability
The molecular dynamic simulation has been conducted 
for forecasting how the isolated compound could 
behave when it bound with the protein’s site as well as 
its interacting and stabilization [29, 30]. System’s stabil-
ity has been assessed via root-mean-square deviation 
(RMSD) in simulations of 20 ns. The determined RMSD 
data for the frames of apo-protein, Chrysin-complex, 
and β-sitosterol-d-glucoside-complex system were 
1.86 ± 0.33 Å, 1.74 ± 0.20 Å, and 1.66 ± 0.34 Å, respectively 
(Fig. 2A). These findings demonstrated that β-sitosterol-
d-glucoside binded to the protein complex system in 
considerably higher firm configuration compared to the 
other compounds under study.

Through MD simulation, assessment of the flex-
ibility of the protein structure after ligand interaction 
is important in examination of the behavioural char-
acters of the residue and its connection with the ligand 
[54]. Using the root-mean-square fluctuation (RMSF) 

Table 4 IC50 values of non‑polar and polar extracts of F. 
ananassa calyx against COX‑1, COX‑2 and 5‑LOX

Assays were run in threefold (n = 3), and the results were presented by mean ± SE

Tested group IC50 values (ug/mL)

COX‑1 COX‑2 5‑LOX

Petroleum ether extract 0.613 ± 0.19 1.062 ± 0.20 0.731 ± 0.08

Ethyl acetate extract 0.428 ± 0.08 0.695 ± 0.14 0.501 ± 0.10

Indomethacin 0.361 ± 0.13 0.628 ± 0.11

Zileuton 0.425 ± 0.09

Fig. 1 IC50 values of non‑polar and polar extracts of F. ananassa calyx against COX‑1, COX‑2 and 5‑LOX
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technique, protein residue variations have been deter-
mined for defining the influence of inhibitor binding to 
the relevant target through 20-ns simulations. The cal-
culated RMSF data 1.1182 ± 0.59 Å, 1.085 ± 0.52  Å, and 
1.066 ± 0.55 Å for systems apo-protein, Chrysin-complex, 
and β-sitosterol-d-glucoside complex systems, respec-
tively. Figure  2B depicts the overall residue fluctuations 
of the compounds. These findings demonstrated that 
β-sitosterol-d-glucoside bonded to protein complex sys-
tem with less residual fluctuations compared to other 
tested compounds.

ROG was considered for estimating the whole sys-
tem’s compaction and stabilization after ligand bounding 
through MD simulations [55, 56]. The Rog data for apo-
protein, Chrysin-complex, and β-sitosterol-d-glucoside 
-complex systems were 24.32 ± 0.07 Å, 24.32 ± 0.099 
Å, and 24.22 ± 0.084  Å, correspondingly (Fig.  2C). 

According to the noticed characteristics, β-sitosterol-
d-glucoside-bounded complex has an extremely strong 
structure against the catalytic-bounding position in 
COX-1 receptor.

Protein’s solvent-accessible surface area (SASA) was 
determined to assess the compact for protein’s hydro-
phobic core. This has been accomplished via meas-
uring protein’s solvent-visible surface area, that is 
crucial in long-term biomolecules stabilization [57]. The 
SASA findings for apo-protein, Chrysin-complex, and 
β-sitosterol-d-glucoside-complex systems were 24,630 Å, 
24,004.66  Å, and 23,743 Å, respectively (Fig.  2D). After 
reviewing the SASA results with RMSD, RMSF, and ROG 
computation data, it was established that β-sitosterol-
d-glucoside complex system persists intact inside the 
COX1 receptor’s catalytic binding position.

Fig. 2 A RMSD of Cα atoms of the protein backbone atoms. B RMSF of each residue of the protein backbone Cα atoms of protein residues C ROG 
of Cα atoms of protein residues; D solvent‑accessible surface area (SASA) of the C α of the backbone atoms relative (black) to the starting minimized 
over 20 ns for the catalytic binding site with Chrysin‑complex system (red),and β‑sitosterol‑d‑glucoside (blue)
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3.9  Binding interaction mechanism based on binding free 
energy calculation

The molecular mechanics energy approach (MM/GBSA) 
has been performed for figuring out the free bounding 
energies of tiny molecules to biological macromolecules 
that combines the generalized Born and surface area 
continuum solvation, and it could be extra accurate than 
docking scores [58]. The binding free energies have been 
assessed by MM/GBSA programme in AMBER18 by tak-
ing snapshot for systems’ trajectories. As presented in 
Table 5, the whole determined energy components (with 
the exception of ΔGsolv) showed great negative results 
signifying promising interactions. The findings sign-
posted that binding affinity of the Chrysin-complex and 
β-sitosterol-d-glucoside-complex were − 31.81 kcal/mol 
and − 40.80 kcal/mol, respectively.

The interaction of the ligand compound to COX-1 pro-
tein residue was regulated via greater positively van der 
Waals energy components, which demonstrated through 
comprehensive investigation for an individual energy 
contribution, resulting in described binding free energy. 
Significant binding free energy level was detected in the 
gas phase for all the inhibition process reaching values up 
to − 149.81kcal/mol (Table 5).

3.10  Identification of the critical residues responsible 
for ligands binding

From Fig. 3, Chrysin compound makes its greatest con-
tribution to the COX-1 receptor’s catalytic binding site 
which primarily detected from residues Tyr 317 (− 0.802 
kcal/mol), Val 318 (−  1.06 kcal/mol), Leu321 (−  2.014 
kcal/mol), Ser322 (−  1.083 kcal/mol), Tyr324 (−  0.331 
kcal/mol), Phe350 (−  0.409 kcal/mol), Leu 353 (−  2.747 
kcal/mol), Tyr 354 (−  1.177 kcal/mol), Trp356 (−  0.438 
kcal/mol), Phe 487 (− 1.001 kcal/mol), Met491 (− 0.581 
kcal/mol), Ile492 (−  1.814 kcal/mol), Met494 (−  0.366 
kcal/mol), Gly495 (−  1.689 kcal/mol), Ala496 (−  1.89 
kcal/mol), Ser 499 (−  1.486 kcal/mol), and Leu500 
(− 0.216 kcal/mol).

However, the significant positive contribution of 
β-sitosterol-d-glucoside compound to the catalytic 
binding site of COX-1 receptor is primarily shown from 
residues Phe 57 (−  0.278 kcal/mol), Ile58 (−  1.92 kcal/
mol), Leu61 (−  1.109 kcal/mol), Leu 62 (−  1.757 kcal/

mol), Leu81 (−  0.923 kcal/mol), Met82 (−  0.749 kcal/
mol), Leu 84 (−  1.986 kcal/mol) Val 85 (−  1.424 kcal/
mol), Val 88 (−  1.496 kcal/mol), Arg89 (−  1.488 kcal/
mol), Tyr317 (−  1.505 kcal/mol), Val 318 (−  2.444 kcal/
mol), Leu321 (−  2.116 kcal/mol), Ser322 (−  1.072 kcal/
mol), Tyr324 (−  0.474 kcal/mol), Leu326 (−  1.129 kcal/
mol), Leu 328 (− 1.321 kcal/mol), Tyr 354 (− 0.911 kcal/
mol), Trp356 (−  0.329kcal/mol), Phe 487 (−  0.653kcal/
mol), Met491 (−  2.174 kcal/mol), Ile492 (−  2.26 kcal/
mol), Glu 493 (−  0.261 kcal/mol), Gly495 (−  0.94 kcal/
mol), Ala496 (−  1.67 kcal/mol), Ser 499 (−  1.546 kcal/
mol), and Leu500 (− 1.492 kcal/mol). (Fig. 3). Validation 
of the docking performance and accuracy was illustrated 
in Additional file  1: Fig. S3.  Autodocking vina  dock-
ing results for Extracted  compounds docked into the  
catalytic domain binding site in comparison to the  
co-crystallized IMS ligand was provided in Additional 
file 1: Table S1.

3.11  Ligand–residue interaction network profiles
The principal objective of drug design is making struc-
ture adjustment for the tested compounds in order to 
boost bioavailability, lower toxicity, and enhance phar-
macokinetics [59]. COX-1 enzyme is found in the kidney, 
stomach, and platelets of humans [60] and stimulates 
the formation of thromboxanes, platelet aggregation, 
and vasoconstriction via promoting the eicosanoids gen-
eration [61, 62]. It should be highlighted that natural 
products have the potential to be both safer and more 
effective than manufactured drugs. Therefore, it is vitally 
necessary to develop novel natural products with the 
ability to inhibit the COX-1 enzyme. In this investigation, 
it was discovered that the structural interactions of both 
compounds in the catalytic binding site of the COX-1 
receptor were hydrophobic and electrostatic.

Figure  4 illustrates Chrysin’s chromen ring being 
extended into the catalytic active site and producing Pi-Pi 
T-shaped contact with Tyr 354 and Trp 356, respectively. 
Additionally, Chrysin’s chromen ring has formed a Pi-
alkyl connection with Val 318 and Leu 321. Nevertheless, 
because of the massive size of β-sitosterol-d-glucoside, 
the glycoside ring can form a hydrogen bonding connec-
tion with Tyr 317. Moreover, the cyclopentyl phenan-
threne ring has established Pi-alkyl interactions with Ile 

Table 5 Calculated energy binding for the compound against the catalytic binding site receptor of COX‑1 receptor

∆EvdW van der Waals energy, ∆Eele electrostatic energy, ∆Gsolv solvation free energy, ∆Gbind calculated total binding free energy

Energy components (kcal/mol)

Complex ΔEvdW ΔEelec ΔGgas ΔGsolv ΔGbind

Chrysin − 38.57 ± 0.12 − 19.82 ± 0.36 − 53.94 ± 0.51 19.88 ± 0.22 − 38.50 ± 0.16

β‑Sitosterol‑d‑glucoside − 75.712 ± 0.17 − 20.159 ± 0.419 − 95.87 ± 0.39 16.27 ± 0.19 − 79.59 ± 0.27
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58, Leu 62, Val 85, Val 318, Tyr 324, Leu 326, Ala 496, and 
Leu 500.

4  Discussion
A lot of effort has gone into researching natural antiox-
idants of plant origins [49, 50]. Due to a variety of ste-
roidal and flavonoidal constituents in F. ananassa calyx, 
steroidal (non-polar) and flavonoidal (polar) extracts 
demonstrated considerable free radicals scavenging and 
anti-inflammatory impacts. The biological capabilities of 
flavonoids depend on their structure, whereas the flavo-
noids have fifteen carbons in the flavone skeleton (C6–
C3–C6), comprising of double benzene rings (A and B) 
connected through pyran ring (C) [51]. It is worthily to 
mention that antioxidant effect of flavonoids is correlated 

to their chemical structures with numbers and locations 
of the OH groups, besides the conjugations and reso-
nances [52].

As well as the structure of sterols affects their pharma-
cological actions, where their structures consist of a ster-
oid skeleton with saturated connection of C-5 and C-6. 
Their biological activities are influenced by the hydroxyl 
group associated to the C-3 atom and the aliphatic side 
chain (saturation level and side-chain length) coupled to 
the C-17 atom in their chemical structures [53].

The molecular dynamic simulation has been con-
ducted for forecasting how the isolated compound could 
behave when it bound with the protein’s site as well as its 
interaction and stabilization [29, 30]; the results showed 
that chrysin and β-sitosterol-d-glucoside binded to the 

Fig. 3 Per‑residue decomposition plots showing the energy contributions to the binding and stabilization of Chrysin (A) 
and β‑sitosterol‑d‑glucoside (B) into catalytic binding site of COX‑1 receptor, corresponding inter‑molecular interactions are shown (a, b), 
while catalytic interaction residues are indicated in black arrow
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protein complex system in considerably higher firm 
configuration and less residual fluctuation compared to 
the other compounds under study. Furthermore, after 
reviewing the SASA results with RMSD, RMSF, and ROG 
calculated data, it was found that the β-sitosterol-d-
glucoside complex system exists in its entirety inside the 
COX1 receptor’s catalytic binding site.

Additionally, MD simulation revealed that Chrysin’s 
chromen ring was extended into the catalytic active 
site of COX-1 receptor, producing a Pi-Pi T-shaped 
contact with Tyr 354 and Trp 356. In addition, Chry-
sin’s chromen ring has formed a Pi-alkyl bond with 
Val 318 and Leu 321. However, due to the huge size of 
ꞵ-sitosterol-d-glucoside, the glycoside ring can form a 
hydrogen bond with Tyr 317. The cyclopentyl phenan-
threne ring also possesses Pi-alkyl interactions with Ile 
58, Leu 62, Val 85, Val 318, Tyr 324, Leu 326, Ala 496, 
and Leu 500. In this investigation, it was discovered that 
the structural interactions of both compounds in the 
catalytic binding site of the COX-1 receptor were hydro-
phobic and electrostatic.

The binding affinity of the Chrysin-complex and 
ꞵ-sitosterol-d-glucoside-complex towards the COX-1 
receptor was −  31.81  kcal/mol and −  40.80  kcal/mol, 

respectively. According to the binding free energy com-
ponent analysis, the van der Waals energy component 
is the primary energy component driving this synergis-
tic impact. The breakdown of total energies into cox-1 
receptor active site residue contributions revealed 
that amino acid residues Tyr 317, Val 318, Leu321, 
Ser322, Tyr324, Phe350,Leu 353, Tyr 354,Trp356, 
Phe 487, Met491, Ile492,Met494, Gly495,Ala496, Ser 
499,Leu500 are important in COX-1 receptor.

5  Conclusion
Petroleum ether and ethyl acetate extracts of F. anana‑
ssa calyx proved significant free radicals scavenging and 
anti-inflammatory impacts due to variety of steroidal and 
flavonoidal compounds having a number of pharmaco-
logical functions. After that, the interaction’s stabilization 
has been evaluated utilizing the standard atomistic 20 ns 
dynamic simulation research. Various parameters from 
MD simulation trajectories have been estimated and con-
firmed for the protein–ligand complex’s stabilization in 
dynamic settings. The selectivity mechanism of Chrysin 
and ꞵ-sitosterol-d-glucoside against COX-1 receptor has 
been examined by means of comparative MD simula-
tion and binding free energy analysis. The findings of our 

Fig. 4 The interaction residue of Chrysin (A) and β‑sitosterol‑d‑glucoside (B) into the catalytic binding site of COX‑1 receptor
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study are crucial in establishing the molecular bases for 
Chrysin and ꞵ-sitosterol-d-glucoside action against anti-
inflammatory targets and for developing more effective 
selective inhibitors.
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