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Abstract 

Background Tuberculosis is an air-borne contagious disease caused by slow-growing Mycobacterium tuberculosis 
(Mtb). According to Global Tuberculosis Report 2022, 1.6 million people were infected by tuberculosis in 2021. The 
continuing spread of drug-resistant tuberculosis (TB) is one of the most difficult challenges to control the tubercu-
losis. So new drug discovery is essential to the treatment of tuberculosis. This study aims to develop a QSAR model 
to predict the antitubercular activity of tetrahydronaphthalene derivatives. The QSARINS was used in this study 
to develop the QSAR predictive model.

Results A number of tetrahydronaphthalene derivatives with  MIC90 values were obtained from the literature 
to develop the QSAR predictive model. The compounds were divided into two sets: a training set consisting of 39 
compounds and a test set containing 13 compounds. The best predictive Model 4 has R2: 0.8303, Q2

LOO: 0.7642, LOF: 
0.0550, Q2-F1: 0.7190, Q2-F2: 0.7067, Q2-F3: 0.7938 and CCC ext: 0.8720. Based on the developed QSAR equation, the new 
compounds were designed and subjected to molecular docking, molecular dynamics and ADMET analysis.

Conclusion In the QSAR model, the molecular descriptors of MATS8s, Chi4, bcutv8, Petitjeant and fr_aniline were 
highly influenced the antitubercular activity. The developed QSAR model helps to predict the antitubercular activity 
of tetrahydronaphthalene derivatives.

Keywords QSAR, Tetrahydronaphthalene derivatives, Mycobacterium tuberculosis, ATP synthase, Molecular docking, 
MD simulation, ADMET study

1  Background
Mycobacterium tuberculosis is an air-borne bacte-
rial infectious agent that causes tuberculosis (TB), a 
chronic disease that spreads through the air [1]. It is one 
of the most common causes of mortality from a single 

pathogenic agent that mainly affects the lungs. It is an 
acid-fast, slow-growing gram-positive bacteria with a 
very impermeable cell wall. According to Global Tuber-
culosis Report 2022, 1.6 million people were diagnosed 
with TB in 2021, an increase of 4.5% from 1.1 million 
people in 2020. In 2021, there were an estimated 14 lakh 
TB patient death among HIV-negative people and 1.87 
lakhs TB patients’ deaths among HIV-positive people [2].

The World Health Organization (WHO) has issued 
guidelines for treating tuberculosis through a program 
known as Directly Observed Treatment (DOTS short-
course). This approach involves a six-month treatment 
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regimen of four first-line TB drugs: rifampicin, isoniazid, 
pyrazinamide and ethambutol. The treatment begins with 
a two-month course of all four drugs, followed by a four-
month course of rifampicin and isoniazid [3]. One of the 
major issues with the treatment of TB is the emergence 
of multidrug-resistant tuberculosis. Genetic mutations 
mainly cause resistance [4]. The emergence of multidrug-
resistant (MDR) and extensively drug-resistant (XDR), 
and totally drug-resistant-TB (TDR), along with the tox-
icity of existing antitubercular drugs leading to adverse 
side effects, leads to reviving the efforts of antitubercular 
drug discovery [5].

Therefore, it is imperative to develop new therapeu-
tics with improved toxicity profiles in order to overcome 
these challenges. After more than 40  years, the discov-
ery of delamanid (mycolic acid biosynthesis inhibitor) 
and bedaquiline (mitochondrial ATP synthase inhibitor) 
provided a degree of relief in the treatment of MDR-TB. 
However, the two medications have some notable side 
effects, such as ADME issues and hERG toxicity [6]. The 
discovery of new antitubercular agents with low toxicity 
is the only choice to face this difficult situation. But it is a 
costly and time-consuming process. Nowadays, various 
in silico tools are used to speed up the drug discovery 
process. So in this work, we used the quantitative struc-
ture–activity relationship (QSAR) to develop the pre-
dictive model. The QSAR is an adorable computational 
tool; it helps to find the relationship between the physio-
chemical properties of the compounds and its biological 
activity. Throughout the past thirty years, lead optimi-
zation has been sped up using the QSAR (quantitative 
structure–activity relationship) model. It helps to pre-
dict the pharmacological activity of novel compounds; it 
aids in the development of mathematical QSAR models. 
It gives ideas for lead optimization and virtual screening 
priority [7].

The current study deals with  QSARINS, an ador-
able computational software that helps develop a robust 
QSAR  model, which  allows the design of novel com-
pounds with higher mycobacterial tubercular inhibitory 
activity [8, 9]. In this study, we are investigating the in 
silico theoretical studies to develop novel mycobacterium 
tuberculosis inhibitors. We present here the results of a 
QSAR study on derivatives of tetrahydronaphthalene that 
are effective inhibitors of mycobacterium tuberculosis. 
Tetrahydronaphthalene is one of the excellent building 
blocks in medicinal chemistry. It has a wide range of bio-
logical properties, including antitubercular activity [10], 
anticancer [11, 12], anti-inflammatory [13], antiviral [14], 
anti-Alzheimer [15], antimicrobial [16] and antimalarial 
[17].

With the significant biological activity of tetrahy-
dronaphthalene and its derivatives, we chosen this 

scaffold for our QSAR study. The current study aimed 
to construct a QSAR model of new tetrahydronaphtha-
lene derivatives for their mycobacterium tuberculosis 
inhibitor and to explain how structural variation affects 
the antitubercular activity. The tetrahydronaphthalene 
derivatives showed good mycobacterium tuberculosis 
inhibition activity with a range of  MIC90 values of 0.21μg/
mL to 13.5μg/mL. The QSAR model development was 
performed to investigate and explore the structural char-
acteristics of tetrahydronaphthalene analogs required to 
inhibit Mycobacterium tuberculosis. According to the 
OECD regulatory guidelines, thorough validation was 
done, and its parameters were well-fit. The applicabil-
ity domain was also developed. We performed ligand-
based in silico studies to interpret the relationship 
between structural features and the biological activity 
of the compounds. In this paper, we present an analysis 
of 2D-QSAR studies conducted on the tetrahydronaph-
thalene derivatives that have been identified as effective 
inhibitors against mycobacterium tuberculosis [18–20].

2  Materials and methods
2.1  Softwares
QSARINS software was used to develop the 2D QSAR 
predictive model. The 2D structure of the compounds 
was sketched by ACD/Labs ChemSketch (Freeware) 
2021.1.1. The energy minimization of the 2D structure 
was done using the MM2 force field in Chem3D pro 
version 12.0.2.1076 [21, 22]. PaDEL Descriptor soft-
ware (version 2.20) was used to construct the molecular 
descriptors [23, 24]. The physiochemical and pharma-
cokinetic properties (ADME) of the compounds were 
evaluated using the SWISSADME online server. The 
quality of the selected protein was evaluated by the 
Ramachandran plot using a procheck webserver. The var-
ious toxicity studies including hepatotoxicity and carci-
nogenicity were predicted using the Protox-II webserver 
[39, 40]. The active site of the selected target protein was 
predicted by the Supercomputing Facility for Bioinfor-
matics & Computational Biology (SCFBio), IIT- Delhi as 
DBT’S center of excellence. The molecular docking of the 
ATP synthase was performed using AutoDock Vina.

2.2  Molecular sketching and 3D optimization
QSARINS software was used to develop the MLR-QSAR 
predictive models by ordinary least squares. The develop-
ment of QSAR was pioneered at the University of Insub-
ria, Italy [25]. QSARINS uses a hybrid approach that 
combines genetic algorithms (GAs) and multiple linear 
regressions (MLRs) [25]. It helps build QSAR models that 
are both highly predictive and comprehensible [26]. The 
compounds structure was drawn by ChemSketch and 
saved as a mol file format. The energy minimization of 
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the 2D structure was done by using the MM2 force field 
in Chem3D pro and saved as the mol file format. The 
molecular descriptor for 55 compounds was calculated 
by the PaDEL Descriptor version 2.20 software [27, 28].

2.3  Dataset collection, splitting and model development
For the studies, 55 molecules with antitubercular activity 
on H37Rv were collected from the literature. Wide varia-
tions in activity further enhance the performance of com-
pounds with good activity [10]. The obtained data set was 
split into two sets, namely the training set or modeling 
set (70%) and the test set or prediction set (30%). The 
training set is used to model development and the test set 
is used to validation of the developed model. This work 
uses the MLR using the ordinary least-square approach 
to construct a good QSAR model. Multiple linear regres-
sion was used to correlate the relationship between the 
biological activity  (MIC90) and molecular descriptors. 
Here biological activity is the dependent variable and 
molecular descriptors are the independent variables. A 
genetic algorithm was used to selection of good molec-
ular descriptors to build the QSAR model. It shows the 
direct correlation between independent variable X and 
dependent variable Y  (descriptors). The dependent vari-
able Y (biological activity) in an MLR analysis depends 
on independent variable X (molecular descriptors) [29].

Y is the dependent variable (biological activity), x is 
the independent variable (molecular descriptor), ‘C’ is 
a regression intercept and ‘k’s are the regression coeffi-
cients [30].

2.4  Applicability domain
The applicability domain of a QSAR model is a theo-
retical spatial region defined by the molecular proper-
ties or structural information of the compounds used 
in the QSAR model development. In which the Wil-
liam plot was used to define the applicability domain so 
that reliable prediction of the QSAR model has a lever-
age value (h) of the compounds below the critical lever-
age value (h*) with a standard deviation value of ± 3. The 
compounds that are outside the spatial region of the 
applicability domain may be considered an outlier. This 
method used to find the influential molecules reveals the 
model’s ability to make predictions in the limited region. 
The term "outlier" refers to any molecule that deviates 
from the domain space or range. If the cross-validated 
standardized residual produced by the model is greater 
than ± 3, then the data are said to be an outlier. The lever-
aged method goes into more detail on the QSAR model’s 
applicability domain [31, 32]. The formula for the warn-
ing leverage (H*) is as follows:

Y = k1 ∗ x1 + k2 ∗ x2 + k3 ∗ x3 + C

H* = The warning leverage value to check the effective 
molecule.

p = The number of molecular descriptors to build the 
QSAR model.

n = The number of molecules in the training dataset.

2.5  Y‑randomization
It serves as an external validation factor to assess the 
validity and reliability of the developed QSAR model. 
The  Y-randomization test was performed on the train-
ing dataset. In the Y-randomization test, the dependent 
variables (biological activity data) were shuffled, while 
the independent factors remained unchanged to create 
the MLR-QSAR model [33]. The developed QSAR model 
should have low R2 and Q2 values, in order to ensure that 
the model equation is reliable.  R2

Yscr needs less to get a 
reliable model. It confirmed that the developed model 
was not obtained by the random chance correlation. If 
the developed QSAR model’s internal validation process 
was good, then the values of R2 and Q2 of each iteration, 
and their averages  (R2

Yscr and  Q2
Yscr) should be lesser 

with respect to the values of the model [34, 35].

2.6  Validation of the developed QSAR model
The stability, reliability, predictive strength, fitting cri-
teria and the robustness of the QSAR models were vali-
dated by internal validation parameters and external 
validation parameters using QSARINS software. We used 
various statistical parameters like correlation coefficient 
(R2), adjusted correlation coefficient (R2

adj), leave-one-out 
squared correlation coefficient (Q2

LOO) and leave-many-
out squared correlation coefficient (Q2

LMO) to evaluate 
the internal validation of the model. We also used some 
statistical parameters like Q2-F1,  Q2-F2,  Q2-F3 and con-
cordance correlation coefficient (CCC) to evaluate the 
internal validation of the model. Higher  R2 for goodness 
of fit, Higher Q2

LOO for robustness, lowest difference 
between  R2 and  Q2

LOO for stability, low Kxx for less cor-
relation among the descriptor and high Kxy for high cor-
relation among the descriptor and biological response. 
The lower  RMSETr,  RMSECV, and  RMSEext must be less 
and as close as possible to get good model. The minimum 
suggested statistical values tabulated must be met for the 
QSAR model to be considered acceptable [36–38].

2.7  ADMET study
The physicochemical and pharmacokinetic properties 
(ADME) of the compounds were evaluated using SWIS-
SADME online server. The druglikeness property was 
evaluated by Lipinski’s rule of five. According to the 
Lipinski rule of five, molecular weight should be less than 

H∗ = 3(p + 1) / n
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500 dalton, hydrogen bond donor should be less than 5, 
hydrogen bond acceptor should be less than 10 and parti-
tion coefficient (LogP) should be less than 5. The various 
toxicity studies including AMES toxicity, hepatotoxicity, 
hERG I inhibitor and hepatotoxicity were predicted using 
an online server called pkCSM server [39, 40].

2.8  Protein and ligand preparation
The drug target proteins were retrieved from the RCSB-
PDB database with higher resolution. The crystal struc-
ture of the ATP synthase (PDB ID 7NK7) was predicted 
by the electron microscopy method, resolution of 2.11 Å 
[41, 42]. This protein is mainly involved in the catalysis 
for the synthesis of ATP from ADP and phosphate in 
mycobacterium tuberculosis. The retrieved proteins were 
prepared by removal of cocrystallized ligand and water 
molecules using Molegro Molecular Viewer and saved 
as the PDB file format. The 3D structure of ligand mol-
ecules was sketched by ChemSketch and saved in mol file 
format. These 2D structures of the ligand molecules were 
energy-minimized by Chem3D pro 12.0 software and 
saved as the PDB file format. The physiochemical proper-
ties of the molecules were calculated using SWISSADME 
online server [43–45].

2.9  Active site prediction and molecular docking
The active site of the selected target protein was pre-
dicted by the Supercomputing Facility for Bioinformatics 
& Computational Biology (SCFBio), IIT- Delhi as DBT’S 
center of excellence. The newly designed molecules 
were docked to the drug target protein. The molecular 
docking was to find the potential binding affinity of the 
designed compounds with the target protein. The process 
of molecular docking the ligands to the target protein 
encompasses several stages: preparation of the protein, 
preparation of the ligand, generation of the receptor grid, 
and actual molecular docking. The molecular docking 
study of the ATP synthase and tetrahydronaphthalene 
derivatives was performed using AutoDock Vina with 
grid coordinates of Center x (246.074), center y (194.992) 
and center z (251.111), respectively. The grid spacing was 
set to 70 Å with default docking parameters. The binding 
interaction of the protein and ligand was visualized and 
analyzed using Biovia Discovery Studio Visualizer 2021 
[46, 47].

2.9.1  Molecular dynamic simulation
Molecular dynamics (MD) simulation was carried out 
using GROMACS 2022.2. The following steps were 
utilized.

2.9.2  Preparation of enzyme
The three-dimensional (3D) model of the ligand–protein 
complex was exported to.pdb format using Pymol. The 
dynamic behavior of the complex was evaluated using 
molecular dynamic (MD) simulation in the GROMACS 
package program (version 2022.2) [48–50]. Protein topol-
ogy was constructed by pdb2gmx with the CHARMM27 
force field [51], and ligand topology was generated using 
the SwissParam server [52].

2.9.3  Setting up a system for simulation
After applying the force field, the complex was inserted 
into the system. It was solvated with the TIP3P water 
model [53] in a cubic box greater than 1  nm from the 
edge of the protein with periodic boundary conditions. 
The system was neutralized by adding Na + ions, and 
energy minimization was done for 50,000 steps using 
the steepest descent algorithm. It was then followed by 
100 ps of NVT simulation at 300 K and 100 ps of NPT 
simulation to equilibrate the whole system. Leapfrog 
algorithm was employed in the constant-temperature, 
constant-pressure (NPT) ensemble to separately couple 
each component like protein, ligand, water molecules, 
and ions [54]. The Berendsen temperature and pressure 
coupling constants were set to 1 and 2, respectively, to 
keep the system in a stable environment (300 K tempera-
ture and 1 bar pressure) [55]. The NPT ensemble step in 
molecular dynamics (MD) simulations plays a vital role 
by controlling pressure and temperature. This equilib-
rium-seeking step enhances the accuracy and stability of 
simulations, ensuring that they reflect the true thermo-
dynamic behavior of molecules. It also facilitates efficient 
sampling of phase space, which is critical for obtain-
ing statistically relevant results. Additionally, the NPT 
ensemble maintains realistic density and compressibil-
ity, which is crucial for systems with different phases or 
phase transitions. Finally, MD simulation for 100 ns was 
performed in isothermal and isobaric condition ensem-
ble at 300  K. The pressure coupling with time constant 
was set at 1 ps to maintain pressure constant at 1 bar, and 
the LINCS algorithm [56] was used to constrain the bond 
lengths. The van der Waals and Coulomb interactions 
were truncated at 1.2  nm, and the PME algorithm [57] 
inbuilt in GROMACS was used to minimize the error 
from truncation.

2.9.4  Visualization and analysis of simulation
The trajectory file was visualized through VMD (Visual 
Molecular Dynamics) 1.9.2. [58] and analyzed by indig-
enously developed tool HeroMDAnalysis and Xmgrace 
5.1.25 [59, 60].
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2.9.5  Molecular mechanics generalized born and surface 
area (MM/GBSA) calculations

The binding free energies of the protein–ligand complex 
were calculated at the time of 0 ns, 50 ns and 100 ns by 
using molecular mechanics/generalized born surface 
area (MM/GBSA) methods. All the water molecules and 
ions were removed before MM/GBSA calculations. MM/
GBSA free energy decomposition analysis was also used 
to calculate the binding free energy between the protein–
ligand complex.

3  Results
3.1  QSAR model development and validation
The tetrahydronaphthalene and its antitubercular activ-
ity  (pMIC90) were used for this QSAR modeling study. 
The QSARINS software was utilized to generate multiple 
MLR-QSAR models. In this study, we focus exclusively 
on the most optimal QSAR models. For the studies, 55 
molecules with antitubercular activity on H37Rv were 
collected from the literature. Wide variations in activity 
further enhance the performance of compounds with good 

activity. The molecular descriptors were calculated using 
PaDEL descriptor software and ChemDes online web soft-
ware. It calculated around 2813 molecular descriptors for 
all the compounds. During the prereduction of the molec-
ular descriptor step, it removed around 2413 molecular 
descriptors which have more than 80% of constant value 
and more than 95% of intercorrelated among the molecu-
lar descriptors. The compounds THN-13, THN-14 and 
THN-56 were entirely different from the rest of the com-
pounds in the applicability domain. So they were excluded 
as outliers. The obtained data set was split into two sets, 
namely the training set or modeling set (70%) and the test 
set or prediction set (30%). The training dataset (39 com-
pounds) was used to QSAR model development, and the 
test dataset (13 compounds) was used for validation of the 
developed QSAR model. Table  1 lists the various statisti-
cal parameters for developed QSAR models. Table 2 shows 
the correlation matrixes among the molecular descriptors 
in developed QSAR model 4. Table 3 enlists the calculated 
and predicted antitubercular activity by model equation 
and LOO method. The Williams plot helped to find the 

Table 1 Statistical parameters of QSAR model 1, 2, 3 and 4

Statistical parameters Threshold value QSAR Model 1 QSAR Model 2 QSAR Model 3 QSAR Model 4

Fitting criteria

R2  > 0.60 0.9103 0.8747 0.8680 0.8303

S  < 0.30 0.1422 0.1654 0.1698 0.1895

R2
adj  > 0.60 0.8900 0.8512 0.8432 0.8046

R2 –  R2
adj  < 0.30 0.0203 0.0235 0.0248 0.0257

LOF  < 0.30 0.0391 0.0468 0.0494 0.0550

RMSEtr Better < 0.3 0.1268 0.1498 0.1538 0.1743

CCC tr  > 0.85 0.9530 0.9332 0.9293 0.9073

F Higher than the theoretical value 44.9295 37.2277 35.0570 32.3028

Internal validation criteria

Q2
loo  (r2

cv)  > 0.50 0.8629 0.8205 0.8274 0.7642

R2 –  Q2
LOO  < 0.30 0.0473 0.0542 0.0406 0.0661

Q2
LMO  > 0.50 0.8333 0.7836 0.7526 0.7473

RMSEcv  < 0.30 0.1567 0.1793 0.1759 0.2055

R2
Yscr  <  R2 (smallest is better) 0.1837 0.1578 0.1540 0.1300

Q2Yscr  <  Q2 (smallest is better)  − 0.4265  − 0.3807  − 0.4455  − 0.2260

External validation criteria

R2
ext  > 0.60 0.7229 0.6696 0.6056 0.7751

RMSEext  < 0.30 0.2357 0.2349 0.2349 0.1922

Q2-F1  > 0.70 0.5776 0.5803 0.5804 0.7190

Q2-F2  > 0.70 0.5590 0.5618 0.5619 0.7067

Q2-F3  > 0.70 0.6900 0.6920 0.6921 0.7938

CCC ext  > 0.85 0.8282 0.8106 0.7107 0.8720

r2m aver  > 0.50 0.5578 0.5419 0.3699 0.6769

Δr2m  < 0.20 0.2531 0.1841 0.3567 0.1894

K’ (pred by model equation) 0.85 < k or k’ < 1.15 0.9961 0.9988 1.0102 1.0040

K(pred by model equation) 0.85 < k or k’ < 1.15 1.0021 0.9994 0.9883 0.9949
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applicability domain of the developed QSAR model. The 
applicability domain was defined within a squared area of 
leverage threshold of h* = 0.423 (x-axis) and ± 3 standard 
residuals (y-axis) for QSAR model 4. h* = 3p´/n, where n 
is the number of molecules used in the developed QSAR 
model, p´ is the number of the molecular descriptors in the 
model plus one, and h* is the warning leverage value.

Figure 1 shows a scatter plot of the experimental value 
versus the predicted value by the model equation. In this 
diagram, the pale circles depict the compounds belongs 
to the training set, while the deep circles symbolize the 
compounds belonging to prediction set. Figure 2 depicts 
the scatter plot of experimental value versus predicted 
value by the leave-one-out (LOO) method. Figure  3 
shows the scatter plot of leave-many-out (LMO) valida-
tion. This plot explains the intercorrelation among the 
molecular descriptors. Figure  4 illustrates the scatter 
plot of residual predicted by leave one out (LOO). Fig-
ure 5 shows the Williams plot of the Hat diagonal lever-
age value versus standardized residuals. It helps to find 
the outliers of the developed QSAR model. In this devel-
oped model, only one compound shown as an outlier. 
Figure  6 illustrates the scatter plot of the Y-scrambled 
model. This Y-scramble plot explains the external valida-
tion parameters.)

QSAR Model 1

pMIC90 =94.2403+ 1.0546 ∗ MDEC− 11

+ 2.9961 ∗ bcutv8 − 0.8756

∗ bcutm6 −30.7053 ∗ bcute1

+ 9.7121 ∗ bcutp1 −17.4800

∗ petitjeant − 0.6645 ∗ fr_aniline

R2
= 0.9103, Q2

LOO = 0.8629, Q2
− F1

: 0.5776, Q2
− F2 : 0.5590,

Q2
− F3 : 0.6900,

CCCext : 0.8282

QSAR Model 2

QSAR Model 3

QSAR Model 4

3.2  Design, molecular docking and ADMET results
Based on the QSAR model, we designed some struc-
tural analogs of the tetrahydronaphthalene com-
pounds, and its antitubercular activity was predicted. 
The Mycobacterium smegmatis ATP synthase F1 state 
1 (PDB ID:7NK7) was chosen as the drug target, which 
is determined by the electron microscopy method 

pMIC90 =94.6383+ 3.5063 ∗ bcutv8

− 0.0115 ∗ LogP2 − 30.0538

∗ bcute1 + 7.6727 ∗ bcutp1

− 15.2670 ∗ petitjeant

− 0.6416 ∗ fr_aniline

R2
= 0.8747, Q2

LOO = 0.8205, Q2
− F1

: 0.5803, Q2
− F2 : 0.5618,

Q2
− F3 : 0.6920,

CCCext : 0.8106

pMIC90 =97.3640 + 0.1292 ∗ SHBint8

+ 2.3249 ∗ bcutv8

− 30.4088 ∗ bcute1

+ 8.1841 ∗ bcutp1

− 15.8477 ∗ petitjeant

− 0.6230 ∗ fr_aniline

R2
= 0.8680, Q2

LOO = 0.8274, Q2
− F1

: 0.5804, Q2
− F2 : 0.5619, Q

2
− F3 : 0.6921,

CCCext : 0.7107

pMIC90 =7.1879+ 1.1936 ∗ MATS8s

3.5538 ∗ bcutv8 − 0.2939

∗ Chi4 − 16.1015 ∗ petitjeant

− 0.4963 ∗ fr_aniline

R2
: 0.8303, Q2

LOO : 0.7642, Q2
− F1

: 0.7190, Q2
− F2 : 0.7067, Q

2
− F3

: 0.7938, CCCext : 0.8720

Table 2 Correlation matrixes between the descriptors

MATS8s bcutv8 Chi4 Petitjeant fr_aniline

MATS8s 1.0000

bcutv8  − 0.0142 1.0000

Chi4 0.02630 0.7653 1.0000

Petitjeant  − 0.1946 0.0436  − 0.1388 1.0000

fr_aniline 0.2573  − 0.03447  − 0.0095 0.2257 1.0000
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Table 3 Calculated and predicted antitubercular activity by model equation and LOO

S.No. Code Exp. endpoint Pred. by model eq Pred.Mod. Eq Res Pred. LOO Pred. LOO Res

1. THN-1 6.1549 6.1091  − 0.0458 6.1043  − 0.0506

2. THN-2 6.0458 6.1333 0.0875 6.1447 0.099

3. THN-3 5.7212 5.6667  − 0.0545 – –

4. THN-4 5.4089 5.8036 0.3947 – –

5. THN-5 5.8125 5.9075 0.095 5.9224 0.1099

6. THN-6 6.0269 5.7034  − 0.3234 5.6733  − 0.3536

7. THN-7 5.7212 5.7354 0.0142 5.7368 0.0156

8. THN-8 6.0044 5.8261  − 0.1783 – –

9. THN-9 5.8416 5.7658  − 0.0758 5.7525  − 0.0892

10. THN-10 5.4437 5.4471 0.0034 5.4476 0.0039

11. THN-11 5.71 5.9024 0.1925 5.9369 0.2269

12. THN-12 5.1367 5.4535 0.3168 5.4915 0.3549

13. THN-13 Excluded

14. THN-14 Excluded

15. THN-15 5.5467 5.2989  − 0.2478 5.2456  − 0.3011

16. THN-16 5.719 5.6229  − 0.0961 5.6048  − 0.1141

17. THN-17 5.6615 5.6545  − 0.007 – –

18. THN-18 6.0706 6.1091 0.0385 – –

19. THN-19 5.9066 5.9071 0.0005 5.9071 0.0005

20. THN-20 5.7645 5.8604 0.0959 5.8697 0.1052

21. THN-21 5.7077 5.8602 0.1525 5.8936 0.1858

22. THN-22 5.7595 5.8026 0.0431 5.8074 0.048

23. THN-23 6.3188 6.2812  − 0.0376 6.2735 –0.0453

24. THN-24 6.1487 6.261 0.1122 6.2772 0.1285

25. THN-25 5.4237 5.6746 0.2509 – –

26. THN-26 6.3372 6.2  − 0.1373 6.184  − 0.1532

27. THN-27 6.6778 6.2596  − 0.4181 6.1984  − 0.4793

28. THN-28 6.0223 5.6841  − 0.3381 5.6523  − 0.37

29. THN-29 5.1427 5.5862 0.4435 5.6363 0.4937

30. THN-30 5.4191 5.4753 0.0562 5.4827 0.0637

31. THN-31 5.4078 5.4436 0.0358 – –

32. THN-32 5.1308 5.2398 0.1091 5.2512 0.1205

33. THN-33 5.1367 5.2107 0.0741 – –

34. THN-34 5.4214 5.307  − 0.1143 5.2851  − 0.1363

35. THN-35 5.1487 5.2162 0.0675 5.2229 0.0741

36. THN-36 5.1549 5.3746 0.2197 5.4158 0.2609

37. THN-37 5.1367 5.1372 0.0005 5.1373 0.0006

38. THN-38 5.0809 4.9796  − 0.1013 4.9621  − 0.1188

39. THN-39 5.4547 5.4032  − 0.0515 5.3887  − 0.066

40. THN-40 4.8539 4.7545  − 0.0994 4.7286  − 0.1253

41. THN-41 5.4584 5.5108 0.0524 – –

42. THN-42 4.8697 4.6874  − 0.1822 – –

43. THN-43 5.7167 5.7594 0.0427 5.7695 0.0528

44. THN-44 5.7352 5.4611  − 0.2741 5.3474  − 0.3877

45. THN-46 5.433 5.4085  − 0.0245 5.4036  − 0.0294

46. THN-47 5.4283 5.1707  − 0.2576 – –

47. THN-48 6.1024 6.3042 0.2018 6.3377 0.2354

48. THN-49 6.0177 5.8456  − 0.1721 – –

49. THN-50 6 5.8997  − 0.1003 5.8275  − 0.1725
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Table 3 (continued)

S.No. Code Exp. endpoint Pred. by model eq Pred.Mod. Eq Res Pred. LOO Pred. LOO Res

50. THN-51 6 6.2941 0.2941 – –

51. THN-52 6.2147 6.2198 0.0051 6.2203 0.0057

52. THN-53 5.1805 5.313 0.1325 5.3649 0.1844

53. THN-54 5.4202 5.3236  − 0.0967 5.3057  − 0.1145

54. THN-55 5.1805 5.3702 0.1898 5.4581 0.2776

55. THN-56 Excluded

Fig. 1 Scatter plot of experimental  pMIC90 versus predicted value by model equation
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with a resolution of 2.11  Å. The quality of the pro-
tein was determined by Ramachandran plot using the 
Prockeck webserver. Figure  7 depicts the Ramachan-
dran plot of the ATP synthase protein. Based on the 
developed QSAR model, we designed 10 compounds 
enlisted in Table 4. All the newly designed compounds 
showed good docking scores ranging from − 7.5 kcal/
mol to − 9.1 kcal/mol. The standard drug Bedaquiline 
had a docking score of − 7.5 kcal/mol toward the pro-
tein. The THN_RD9 had docking score of − 9.1 kcal/
mole also had various Hydrogen bond interactions 
with ARG A:174, LYS A:175, LYS A:178 and GLN 
A:435, Pi-Cation interaction with LYS A:276 and Pi-
Alkyl interaction with ALA A:180, VAL A:183, ALA 

A:222 and VAL A:219 amino acids of ATP synthase 
protein. Figure  8 illustrates the 3D and 2D interac-
tion of THN_RD9 with ATP Synthase protein. All the 
designed compounds don’t have any Lipinski viola-
tion and toxicity (hepatotoxicity and carcinogenicity) 
(Tables 5, 6, 7).

3.3  Molecular dynamic simulations results
In order to understand the conformational changes 
and evaluate the binding of THN_RD9 against Mtb 
ATP synthase (PDB ID: 7NK7), we have carried out 
MD simulation for a period of 100  ns for THN_RD9-
Mtb ATP synthase complex. The simulation was evalu-
ated using various statistical parameters including 

Fig. 2 Scatter plot of experimental  pMIC90 versus predicted by leave one out (LOO)
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root-mean-square deviation (RMSD), root-mean-square 
fluctuation (RMSF), h-bond interactions, and its % 
occupancies over the time. Figure  9 illustrates the pro-
tein–ligand complex of Mtb ATP synthase protein with 
THN_RD9 for molecular dynamics simulation.

3.3.1  RMSD analysis
Analyzing the RMSD can give insights into any struc-
tural conformation that protein and ligand undergo 
during the simulation. The multiplot for protein Cα 
versus time for the simulation is shown in Fig.  10. 
Both the ligand and protein in the complex form have 

attained a plateau in RMSD values (of less than 0.3 nm), 
which indicated that the ligand–protein complex was 
stable during the simulation.

3.3.2  RMSF analysis
The protein-RMSF is useful for characterizing local 
changes along the protein chain. The plot for protein-
RMSF (nm) versus residue number index is shown in 
Fig. 11. Notably, the plot describes a fluctuation of less 
than 0.3  nm for the protein. Particularly the residues, 
which were involved in binding with the ligand, have 

Fig. 3 Scatter plot of Leave many out (LMO) validation compared with the original model
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shown very small fluctuations. It also indicated the sta-
bility of ligand–protein in complex form.

3.3.3  H‑bond interaction
Molecular interactions, particularly the h-bond inter-
actions, are distance and angle depend and liable to 
disrupt under dynamic conditions. Herein, we have ana-
lyzed the ligand–protein interactions. The plot for the 
number of hydrogen vs time is shown in Fig. 12. From 
the plot, it was observed that THN_RD9 displayed 
1–2  h-bond contact in binding Mtb ATP synthase. To 

access the residues involved in such interactions and 
their stabilities, the %occupancies vs the residues were 
also calculated.

Figure  13 represents the histogram of % occupancies 
of the h-bond contacts formed by THN_RD9 in binding 
Mtb ATP synthase. This graph has displayed the ability of 
THN_RD9 to form stable h-bond contacts with residues 
VAL139, LYS212, LYS175 and THR215, with occupancies 
of 16.16, 6.86, 1.59 and 1.04%, respectively. So overall, it 
can be concluded that the THN_RD9 can be efficient in 
binding with Mtb ATP synthase.

Fig. 4 Scatter plot of residual predicted by leave one out (LOO)
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3.4  MM/GBSA calculation
Further, to understand the energy contributions of indi-
vidual residues inside the active site, the per-residue 
interaction energies were calculated for the Mtb ATP 
synthase in complex with THN_RD9. The major con-
tributing residues include ASP241, ASP272 and GLU331 
(Fig.  14) The binding free energy of the protein–ligand 
complex was calculated using MM/GBSA calculation. 
In this result, the binding free energy of the initial time 
(0 ns) of the protein-THN RD9 complex was − 31.57 kcal/
mol, at 50 ns the binding free energy was -39.85 kcal/mol; 
at the final stage(100  ns), the binding free energy was 
-34.29 kcal/mol.

4  Discussion
We created four QSAR models that exhibited strong 
model fitting and adhered to the OECD guidelines for 
producing reliable predictive QSAR models. However, we 
selected model 4 as the best model based on the exter-
nal validation parameters. Hence, we are focusing on the 
validation, significance and predictive ability of the devel-
oped QSAR model 4. This model exhibits strong internal 
predictive capability, as indicated by a Q2 value of 0.7642. 
The goodness of fit of the developed model was the cor-
relation coefficient (R2 = 0.8303). The developed QSAR 
model’s predictive ability was evaluated by an external 
correlation coefficient (R2

adj = 0.7751). The lower R2
Yscr 

Fig. 5 Williams plot of Hat diagonal leverage value versus standardized residuals
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values indicate that the proposed QSAR models are not 
obtained by the chance correlation. The importance of 
the quantity of molecular descriptors in the developed 
QSAR model was validated by the minimal difference of 
0.0257 (less than 0.3) observed between  R2 and  R2

adj. The 
stability of the developed QSAR model was confirmed 
by the lowest difference of 0.0661(less than 0.3) between 
the R2 and Q2

LOO. In this method, we excluded one com-
pound and computed the model with the remaining 
compounds and then we predicted the activity of the 
excluded one. The next stronger technique included in 
the QSARINS is the leave-many-out (LMO) method, in 

which 30% of the compounds were left out to develop the 
predictive model and to study the behavior of the model.

All the statistical parameters of the four models are 
given in Table 1, in which the fourth model’s coefficient 
of determination, denoted as R2, is 0.8303, which helps to 
evaluate the goodness of fit. A good model should have an 
R2 value greater than 0.6. In the fourth model, the coeffi-
cient of determination denoted as R2 is 0.8303, aiding in 
the assessment of goodness of fit. A robust model should 
exhibit an R2 value greater than 0.6. R2

adj represents the 
adjusted coefficient of determination; it gives insight into 
the suitability by addition of new molecular descriptors 

Fig. 6 Scatter plot of Y-scrambled model compared with the original model
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to the QSAR model. For a model to be considered good, 
R2

adj should exceed 0.6. LOF refers to Friedman’s lack of 
fit criteria, which assesses overfitting in the QSAR model. 
For a model to be deemed good, LOF should be below 
0.3. Kxx represents the overall correlation among the 
descriptors. Delta K indicates the difference in correla-
tion between the descriptor (kx) and the correlation dif-
ference between the descriptor and the response (kxy).

RMSEtr stands for root-mean-square error in the train-
ing set calculations. For a model to be considered good, 
its RMSE should be under 0.3. MAE represents the 
mean absolute error in the adjustment calculated within 
the training series; for a model to be considered good, it 
should be below 0.3. S stands for the standard estima-
tion error. A good model should exhibit an S value lower 
than 0.3. Additionally, both R2

Yscr and Q2
Yscr should be 

minimized to indicate that the developed model is not 
obtained by chance correlation. The model 4 fulfills all 
the required statistical parameters. Q2-F1, Q2-F2, and 
Q2-F3 values are helpful to quantify the predictive power 
of the developed model; it should also exceed 0.7 for a 

Fig. 7 Ramachandran plot of the ATP synthase

Table 4 The structures and SMILES of newly designed compounds

Code Compound structure SMILES

THN_RD1 CN1CCN(CC1)c1ccc(C)c2CC[C@H](NC(= O)c3ccc(cc3)c3ccc(F)cc3C)Cc12

THN_RD2 CN1CCN(CC1)c1ccc(C)c2CC[C@H](NC(= O)c3ccc(cc3)c3ccc(OC)cc3C)Cc12

THN_RD3 CN1CCN(CC1)c1cccc2CC[C@H](NC(= O)c3ccc(Oc4ccc(F)cc4)cc3)Cc12

THN_RD4 CN1CCN(CC1)c1cccc2CC[C@H](NC(= O)c3ccc(Oc4cccc(F)c4)cc3)Cc12
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good predictive model. The CCC represents the con-
cordance correlation coefficient; for a model to be con-
sidered good, it must surpass 0.85. This CCC value 
quantifies the similarity of the predicted and experi-
mental values. While Q2F3 and CCC are the most stable 
and reliable parameters. The value of F denotes Fisher’s 

F value, which should exceed the theoretical threshold. 
The domain of applicability of the selected model was 
illustrated in William’s plot. It showed that most of the 
compounds were placed within the theoretical space of 
the model’s applicability domain. One compound (THN-
42) with leverage values (h = 0.6130) is greater than the 

Table 4 (continued)

Code Compound structure SMILES

THN_RD5 CN1CCN(CC1)c1cccc2CC[C@H](NC(= O)c3ccc(Oc4ccccc4F)cc3)Cc12

THN_RD6 CN1CCN(CC1)c1ccc(C)c2CC[C@H](NC(= O)c3ccc(Oc4ccc(O)cc4)cc3)Cc12

THN_RD7 CN1CCN(CC1)c1ccc(Cl)c2CC[C@H](NC(= O)c3ccc(Oc4ccc(O)cc4)cc3)Cc12

THN_RD8 CN1CCN(CC1)c1ccc(C)c2CC[C@@H](Cc12)NC(= O)c1nn(nn1)c1ccc(Cl)cc1

THN_RD9 CN1CCN(CC1)c1cccc2CC[C@H](NC(= O)c3ccc(cc3)S(= O)(= O)c3ccccc3)Cc12

THN_RD10 CN1CCN(CC1)c1ccc(C)c2CC[C@H](NC(= O)c3ccc(cn3)c3ccc(F)cc3)Cc12
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warning leverage value (h* = 0.462), However, the plot 
shows that standardized residual value was within the 
limits. This compound must be considered as possible 
outliers; however, its behavior is relatively similar to the 
remaining compounds, so we did not exclude them from 
this study.

Fig. 8 3D interaction of THN_RD9 with ATP synthase protein

Table 5 ADMET properties of newly designed compounds

S.No. Compound code Mol weight Log P HBD HBA Lipinski rule Hepatotoxicity Carcinogenicity

1 THN_RD1 471.61 4.63 1 3 Nil inactive inactive

2 THN_RD2 483.64 4.68 1 3 Nil inactive inactive

3 THN_RD3 459.56 4.57 1 4 Nil active inactive

4 THN_RD4 459.56 4.41 1 4 Nil inactive inactive

5 THN_RD5 459.56 4.31 1 4 Nil inactive inactive

6 THN_RD6 471.59 4.26 2 4 Nil active inactive

7 THN_RD7 492.01 4.24 2 4 Nil active inactive

8 THN_RD8 465.98 4.41 1 5 Nil active inactive

9 THN_RD9 489.63 4.16 1 4 Nil inactive inactive

10 THN_RD10 458.57 3.93 1 4 Nil inactive inactive

Table 6 Molecular docking result of the designed compounds

S.No. Compound code Docking 
score (kcal/
mol)

1. THN_RD1  − 7.5

2. THN_RD2  − 9.1

3. THN_RD3  − 9.1

4. THN_RD4  − 8.7

5. THN_RD5  − 8.2

6. THN_RD6  − 8.9

7. THN_RD7  − 8.5

8. THN_RD8  − 8.7

9. THN_RD9  − 9.1

10. THN_RD10  − 8.9

11. Bedaquiline  − 7.5

Table 7 Binding free energy of protein–ligand complex using 
MM/GBSA calculation

Code 0 ns (Kcal/
mol)

50 ns (Kcal/
mol)

100 ns (Kcal/
mol)

Averege 
(Kcal/
mol)

Protein-THN 
RD9 complex

 − 31.57  − 39.85  − 34.29  − 35.24
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Fig. 9 Protein–ligand complex of THN_RD9-Mtb ATP synthase, 
where protein is shown in cartoon representation and the ligand 
is shown in CPK representation

Fig. 10 Graphical representation of the plot showing protein Cα 
and Ligand RMSD (nm) versus time (100 ns) for (A) Mtb ATP synthase 
protein (green in color), and (B) THN_RD9 ligand (blue in color)

Fig. 11 Graphical representation of the plot showing the protein 
RMSF (nm) versus residue index number of protein for THN_RD9-Mtb 
ATP synthase complex

Fig. 12 Pictorial representation of the number of h-bond contacts 
formed by THN_RD9 in complex with Mtb ATP synthase (PDB ID: 
7NK7)

Fig. 13 Histogram representation of %occupancies of the h-bond 
protein ligand contacts of THN_RD9 in complex with Mtb ATP 
synthase (PDB ID: 7NK7)

Fig.14 Per-residue energy contribution using molecular mechanics/
generalized born and surface area continuum solvation (MM/GBSA)
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The Organization for Economic Co-operation and 
Development (OECD) Community gave five important 
principles to develop a good QSAR predictive model. 
OECD principle 1 deals with a defined end point which 
means it refers to a pharmacological or biological activ-
ity that could be measured. OECD principle 2 associated 
with unambiguous algorithm, it explained about how 
the molecular descriptor of the compounds there bio-
logical activity are related. OECD principle 3 deals with 
the Applicability Domain. It aids in identifying outli-
ers, which refer to compounds that fall outside the spa-
tial region of the applicability domain. OECD principle 
4 deals with robustness, predictive ability and goodness 
of fit of the developed QSAR model. OECD principle 4 
deals with the mechanistic interpretation, which is not 
mandatory for the model.

In model 4, various molecular descriptors such as 
MATS8s, bcutv8, Chi4, Petitjeant and fr_aniline influ-
ence the antitubercular activity, in which MATS8s and 
Chi4 were positively correlating and contributing toward 
the antitubercular activity. Other descriptors like bcutv8, 
Petitjeant and fr_aniline were negatively contributed to 
the antitubercular activity, in which bcutv8 was related 
to the atomic van der Waals volume. The molecu-
lar descriptor Chi is the atomic connectivity indices. 
MATS8s descriptor is the Moran autocorrelation of lag 8 
weighted by I-state. Petitjeant is the topological descrip-
tor. Based on the developed QSAR model equation, the 
newly designed 10 tetrahydronaphthalene compounds 
were subjected to molecular docking and ADMET 
analysis. All the designed compounds had good dock-
ing scores (greater than -7.1 kcal/mol) and zero Lipinski 
violation. The THN-RD09 compound has high  pMIC90, 
good binding affinity, zero Lipinski violation and no 
toxicity.

5  Conclusion
In the present study, the QSAR study was carried out 
on a series of tetrahydronaphthalene derivatives with 
antitubercular activity. The molecular descriptors were 
calculated using by the PaDEL Descriptor software and 
ChemDes webserver. It helps to develop a stable, predic-
tive and robust model with fulfilled OECD principles. 
The developed QSAR model’s robustness was evaluated 
through various internal  (Q2

LOO,  Q2
LMO and  R2

Yscr) vali-
dation parameters, and its predictive ability was assessed 
using external validation. In the QSAR equation, the 
molecular descriptors of MATS8s and Chi4 positively 
correlated with antitubercular activity. While the bcutv8, 
Petitjeant and fr_aniline were negatively correlated with 
antitubercular activity. Modification of these molecular 
descriptor parameters will lead to good antitubercular 

activity. The Mtb ATP synthase inhibition was greatly 
dependent on atomic van der Waals volume, Moran auto-
correlation, connectivity indices, topological factor and a 
fragment of aniline. Based on the developed QSAR model 
equation, the newly designed 10 tetrahydronaphthalene 
compounds were subjected to molecular docking and 
ADMET analysis. This developed QSAR predictive model 
will help to predict the antitubercular activity of tetrahy-
dronaphthalene derivatives. The molecular dynamics 
(MD) simulations were performed for 100 ns, using the 
Gromacs package. It evaluated the conformational sta-
bility and alteration of protein–ligand complexes during 
the simulation. Thus, our findings confirmed that newly 
designed THN-RD9, a tetrahydronaphthalene derivative 
and known strong ATP synthase inhibitor, may be used 
as an important “lead” molecule to be developed as an 
antitubercular drug in the future. However, we need to 
do an in vitro and in vivo study to confirm its antituber-
cular activity.

Abbreviations
QSAR  Quantitative structural activity relationship
ATP  Adenosine triphosphate
ADMET  Absorption, distribution, metabolism, excretion and toxicity
TB  Tuberculosis
MTB  Mycobacterium tuberculosis
MDR  Multidrug-resistant
XDR  Extensively drug-resistant
TDR  Totally drug-resistant
GA  Genetic algorithms
MLR  Multiple linear regressions
PDB  Protein data bank
MD  Molecular dynamics
NPT  Constant number, temperature and pressure
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