RESEARCH

Open Access

Phenetic and cladistic analyses of Boraginaceae Juss.

Usama K. Abdel-Hameed^{1,2*}, Wael A. Obaid¹, Walaa A. Hassan³, Najla A. Al Shaye⁴ and Salma S. Abd El-Ghany²

Abstract

Background The systematics of family Boraginaceae draw attention of many botanists for many years. The current study's primary goals are to clarify phenetic and phylogenetic relationships within Boraginaceae according to morphology and molecular characteristics and to evaluate the morphological characters that can be applied in systematics of Boraginaceae.

Results The macromorphological characters of 39 species, 2 subspecies and 5 varieties of wild boraginaceous plants were extracted and subjected to phenetic and principal component analysis that was performed for detecting the most important characters differentiating the studied taxa. The generated dendrogram is divided into five clear groups; *Arnebia decumbens* var. *macrocalyx* and *Heliotropium curassavicum* are the most distantly related species, while *Echium angustifolium* subsp. *angustifolium* and *E. angustifolium* subsp. *sericeum* are the most closely related species. The phylogenetic relations among the examined taxa were determined using DNA barcoding of the *rbcl* gene. The phylogenetic analysis generated a cladogram showing that among the studied taxa of Boraginaceae there is a bolster for three clear lineages with resolved relationships.

Conclusions It is concluded that the chosen morphological characters were important in species delimitation, where more than half of the total morphological variations (67.94%) were explained by the first two principal components, indicating that the morphological characters showed high variability, which is useful for discrimination, and these characters, in addition to molecular characters, shared in drawing the phenetic and phylogenetic relationships within Boraginaceae that were considered not monophyletic groups. Boraginaceae contained some monophyletic genera such as *Heliotropium* and *Alkanna*, while the other studied taxa expressed a non-monophyletic relationships.

Keywords Cladogram, MrBayes, PAST, PCA, Phenogram

*Correspondence:

Usama K. Abdel-Hameed

uabdelhameed@taibahu.edu.sa; usama_abdelhameed@sci.asu.edu.eg ¹ Biology Department, College of Science, Taibah University, Al Madinah

- Al-Munawarah, Kingdom of Saudi Arabia
- ² Botany Department, Faculty of Science, Ain Shams University, Cairo, Egypt

⁴ Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Kingdom of Saudi Arabia

1 Background

Boraginaceae Juss. includes around 1600 to 1700 species in 90 genera [1] and is widely widespread in tropical (Northern and Central South America), subtropical, and temperate (Irano-Turanian and Mediterranean) regions of the world [2, 3]. This family is represented in the wild Egyptian flora by 15 genera [4] viz. Adelocaryum, Alkanna, Anchusa, Arnebia, Cordia, Echiochilon, Echium, Heliotropium, Lappula (=Echinosperma), Lithospermum, (=Moltiopsis), Myosotis, Nonnea, Onosma (=Podonosma), Paracaryum and Trichodesma. These genera include 44 species and 5 varieties. The largest

© The Author(s) 2023. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

³ Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt

genus is *Heliotropium* (11 species), *Echium* (7 species), and *Anchusa* (6 species). On the other hand, the genera *Adelocaryum*, *Echiochilon*, *Myosotis*, *Nonnea* and *Podonosma* are represented in Egypt by one species. [5] transferred *Cordia* species and *Coldenia* to the family Ehretiaceae and combined four additional genera: *Asperugo*, *Eritrichium*, *Gastrocotyle* and *Hormuzakia*, which include 52 species and 9 varieties.

Many botanists were interested in the systematic categorization of the family for many years, viz. [6-10].

The infrafamilial classification of Boraginaceae was traditionally divided into five subfamilies: Boraginoideae, Cordioideae, Ehretioideae, Heliotropioideae and Wellstedioideae. [11–19] accepted this subfamilial treatment although other scientists not. [20–22] moved Cordioideae, Heliotropioideae and Ehretioideae to Heliotropiaceae based on embryological criteria, while [17, 23–25] treated Wellstedioideae at familial level as Wellstediaceae. Conversely, Hoplestigmataceae, Hydrophyllaceae and Lennoaceae were widely recognized as different families. [3] recognize eight subfamilies, viz. Boraginoideae, Cordioideae, Ehretioideae, Namoideae and Wellstedioideae.

Boraginaceae comprises about 13 tribes divided into eight subtribes [26]. [27] recognizes six tribes Boragineae, Cynoglosseae, Eritrichieae, Lithospermeae, Myosotideae and Trigonotideae but molecular criteria of [10] nest Eritrichieae, Myosotideae and Trigonotideae within Cynoglosseae *s. l.* so support four tribes based on both molecular characteristics and morphology [28, 29] including Boragineae, Cynoglosseae, Echiochileae and Lithospermeae. Cynoglosseae *s. l.* is the largest and morphologically complex tribe that contains more than half of the family's species.

Boraginaceae is regarded as monophyletic due to morphological, molecular and phytochemical traits [30–34]. Other phylogenetic studies demonstrate that Boraginaceae traditionally is paraphyletic with regard to Hoplestigmataceae, Hydrophyllaceae and Lennoaceae [9, 10, 30, 32, 35, 36].

Multiple phylogenetic analyses on Boraginaceae are centered on connections inside a genus or among genera that are closely related [37, 38], although other studies carried on tribal level [28, 29, 35, 39] that resolve the interrelationship among tribes but the relationships inside each tribe still largely unsettled [37].

The main objectives of the present study were to clarify phenetic and phylogenetic relationships within Boraginaceae according to morphology and molecular characters and to evaluate the morphological characters that can be used in systematics of Boraginaceae.

2 Methods

2.1 Plant material

The current study was carried out on 46 taxa (39 species, 2 subspecies, 5 varieties) belonging to 14 genera (Table 1) representing more than 93% of the Boraginaceae in the flora of Egypt according to [4].

2.2 Macromorphological characters investigation

The easily observable character states of (42) morphological characters are summarized in Table 2. These characters were investigated from herbarium specimens deposited at the Herbaria of Ain Shams University, Faculty of Science (CAIA), Cairo University, Faculty of Science (CAI), Flora and Phytotaxonomy Research Department (CAIM) and Orman Botanical Garden, Giza. Published descriptions also were consulted [40]. The identification and nomenclature were authenticated using [5, 41] and International Plant Name Index [42].

2.3 Extraction of DNA and amplification of rbcL primers

In an Eppendorf tube, liquid nitrogen was used to crush 100 mg of leaves into a powder, and then, DNA was extracted with the aid of CTAB (cetyltrimethylammonium bromide) protocol of Doyle and Doyle (1987). The *rbcL* region of the purified DNA was amplified with the aid of PCR with the following universal primers:

Forward primer: 5'-ATG TCA ACA CAA ACA GAG ACT AAA GC-3';

Reverse primer: 5'-GAA ACG GTC TAT CCA ACG CAT-3'.

The reactions of the amplification were performed in 25 μL as follows: $5 \times GoTaq^{\circledast}$ Flexi buffer 5 $\mu L,$ MgCl2 (25 mM) 2.5 µL, dNTPs (10 mM each) 0.5 µL, forward primer (10 μ M) 1.2 μ L, reverse primer (10 μ M) 1.2 μ L, Go Taq^{1M} (5 U/µL) 5 µL, DNA stock 2 µL, H₂O 7.6 µL up to make 25 µL total volume. The following were the reaction conditions: initial denaturation at 95 °C for 5 min, 40 cycles at 94 °C for 30 s, 58 °C for 30 s, 72 °C for 45 s and 72 °C for 10 min. The purification kit of the PCR product (Thermo PCR Purification Kit, USA) was used to separate all positive PCR amplicons from other unwanted materials such as dimers, RNA, free nucleotides, and unamplified DNA fragments. It is a necessary step prior to the automated DNA sequencing. Macrogen Korea, 6F, 172, Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do (Jeongja-dong, Seoul National University Bundang Hospital Healthcare Innovation Park) received the purified DNA for sequencing.

No.	Таха	Voucher	rbcl
1.	Alkanna orientalis Boiss., Diagn. Pl. Orient. ser. 1, 4: 46 (1844)	UKA201	OP933830
2.	Alkanna strigosa Boiss. & Hohen., Diagn. Pl. Orient. ser. 1, 4: 46 (1844)	UKA202	OP933831
3.	Alkanna tinctoria Tausch, Flora 7(1): 234 (1824)	UKA203	OP933832
4.	Anchusa aegyptiaca DC., Prodr. [A. P. de Candolle] 10: 48 (1846)	UKA204	OP933833
5.	Anchusa hispida Forssk., Fl. AegyptArab. 40. (1775)	UKA205	OP933834
6.	Anchusa humilis I.M.Johnst., Contr. Gray Herb. 73: 55 (1924)	UKA206	OP933835
7.	Anchusa milleri Lam. ex Spreng., Bot. Gart. Halle Erster Nachtrag: 11 (1801)	UKA207	OP933836
8.	Anchusa undulata L., Sp. Pl. 1: 133 (1753)	UKA208	OP933837
9.	Arnebia decumbens var. decumbens Coss. & Kralik, Bull. Soc. Bot. France 4: 398, 402 (1857)	UKA200	OP933838
10.	Arnebia decumbens var. macrocalyx Coss. & Kralik, Bull. Soc. Bot. France 4: 403 (1857)	UKA210	OP933839
11.	Arnebia hispidissima DC., Prodr. [A. P. de Candolle] 10: 94 (1846)	UKA211	OP933840
12.	Arnebia linearifolia DC., Prodr. [A. P. de Candolle] 10: 95 (1846)	UKA212	OP933841
13.	Arnebia tinctoria Forssk., Fl. AegyptArab. 63. (1775)	UKA213	OP933842
14.	Asperugo procumbens L., Sp. Pl. 1: 138 (1753)	UKA214	OP933843
15.	Buglossoides incrassata (Guss.) I.M.Johnst., J. Arnold Arbor. 35(1): 43 (1954)	UKA215	OP933844
16.	Buglossoides tenuiflora (L.f.) I.M.Johnst., J. Arnold Arbor. 35(1): 42 (1954)	UKA216	OP933845
17.	Coldenia procumbens L., Sp. Pl. 1: 125 (1753)	UKA217	OP933846
18.	Echiochilon fruticosum Desf., Fl. Atlant. 1: 166, t. 47 (1798)	UKA218	OP933847
19.	Echium angustifolium subsp. angustifolium Mill., Gard. Dict., ed. 8. n. 6 (1768)	UKA219	OP933848
20.	Echium angustifolium subsp. sericeum (Vahl) Klotz, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, MathNaturwiss. Reihe 11: 298 1962	UKA220	OP933849
21.	Echium horridum Batt., Bull. Soc. Bot. France 39: 336 (1893)	UKA221	OP933850
22.	Echium rauwolfii Delile, Descr. Egypte, Hist. Nat. 195, t. 19, f. 3 (1813)	UKA222	OP933851
23.	Echium rubrum Forssk., Fl. AegyptArab. 41 (1775)	UKA223	OP933852
24.	Echium sabulicola Pomel, Nouv. Mat. Fl. Atl. 1: 90 1874	UKA224	OP933853
25.	Heliotropium aegyptiacum Lehm., Ind. Sem. Hort. Hamburg. (1820) 8	UKA225	OP933854
26.	Heliotropium arbainense Fresen., Mus. Senckenberg. i. (1833) 168	UKA226	OP933855
27.	Heliotropium bacciferum var. bacciferum Forssk., Fl. AegyptArab. 38. (1775)	UKA227	OP933856
28.	Heliotropium bacciferum var. erosum (Lehm.) Hadidy, in L. Boulos, Fl. Egypt Checklist 118 (1995)	UKA228	OP933857
29.	Heliotropium curassavicum L., Sp. Pl. 1: 130 (1753)	UKA229	OP933858
30.	Heliotropium digynum Asch. ex C.Chr., Dansk Bot. Ark. iv. No. 3, 14 (1922)	UKA230	OP933859
31.	Heliotropium hirsutissimum Weber, Pl. Min. Cogn. Decuria 1 (1784)	UKA231	OP933860
32.	Heliotropium lasiocarpum Fisch. & C.A.Mey., Index Seminum [St.Petersburg (Petropolitanus)] iv. 38	UKA232	OP933861
33.	Heliotropium ovalifolium Forssk., Fl. AegyptArab. 38. (1775)	UKA233	OP933862
34.	Heliotropium pterocarpum Hockst. & Steud. ex Bunge, Bull. Soc. Imp. Naturalistes Moscou 42(1): 331, (1869)	UKA234	OP933863
35.	Heliotropium ramosissimum Sieber ex DC., Prodr. [A. P. de Candolle] 9: 536 (1845)	UKA235	OP933864
36.	Heliotropium strigosum var. brevifolium (Wall.) C.B.Clarke, Fl. Brit. India [J. D. Hooker] 4: 151 (1883)	UKA236	OP933865
37.	Heliotropium supinum L., Sp. Pl. 1: 130 (1753)	UKA237	OP933866
38.	Heliotropium zeylanicum Lam., Encycl. [J. Lamarck & al.] 3(1): 94 (1789)	UKA238	OP933867
39.	Lappula sinaica (A.DC.) Asch. & Schweinf., Mém. Inst. Égypt. 2: 111 (1887)	UKA239	OP933868
40.	Lappula spinocarpos (Forssk.) Asch. ex Kuntze, Trudy Imp. SPeterburgsk. Bot. Sada 10: 215 (1887)	UKA240	OP933869
41.	Moltkiopsis ciliata (Forssk.) I.M.Johnst., J. Arnold Arbor. 34: 3 (1953)	UKA241	OP933870
42.	Nonea viviani A.DC., Prodr. [A. P. de Candolle] 10: 31 (1846)	UKA242	OP933871
43.	Paracaryum intermedium Lipsky, Trudy Imp. SPeterburgsk. Bot. Sada xxvi. 487 (1910)	UKA243	OP933872
44.	Paracaryum rugulosum Boiss., Diagn. Pl. Orient. ser. 1, 11: 129 (1849)	UKA244	OP933873
45.	Trichodesma africanum (L.) Sm., Cycl. [A. Rees], (London ed.) 36: Trichodesma no. 2 (1817)	UKA245	OP933874
46.	Trichodesma ehrenberaii Schweinf. ex Boiss., Fl. Orient. [Boissier] 4(2): 281 (1879)	UKA246	OP933875

Table 1 Voucher specimens of Boraginaceae, their numbers that were kept in the public herbarium of Ain Shams University and their accession numbers in GenBank (46 taxa, 14 genera)

Table 2 The extracted morphological characters (42), their states (107) and codes of the studied taxa

No.	Character	Character state and its (code)
1.	Habit	Herb (0) Woody shrub (1)
2.	Texture	Glabrous (1) Hairy (0)
3.	Strength	Erect (0) Prostrate (1)
4.	Stem branching	From base (0) Above the base (1)
5.	Basal leaves arrangement	Alternate (1) Opposite (0)
б.	Upper leaves petioles	Pedicelled (0) Sessile to sub-sessile (1)
7.	Lamina composition	Simple (0) Pinnatipartite (1)
8.	Lamina shape	Lanceolate (0) Linear (1) Oblong (2) Ovate (3)
9.	Lamina surface	Wrinkled (0) Smooth (1)
10.	Base of lamina	Symmetric (0) Asymmetric (1)
11.	Leafveins	Prominent (0) Not prominent (1)
12.	Leaf margin	Entire (0) Serrate (1) Undulate (2)
13.	Leaf apex	Acute (0) Obtuse (1)
14.	Hairs on leaves	Absent (1) Simple (0) Glandular (2) Bulbs (3) Hispid (4) Woolly (5) Simple & glandular (6) Simple & bulbs (7) Simple & hispid (8) Simple & wooly (9) Glandular & hispid (10) Bulb & hispid (11)
15.	Bracteoles	Absent (0) Enclosing calyx (1) Not enclosing calyx (2)
16.	Inflorescence type	Raceme (0) Circinnate (1)
17.	Inflorescence leaves	Leafy (0) Leafless (1)
18.	Number of flowers	Less than 8 (0) More than 10 (1)
19.	Flower	Pedicelled (0) Sessile to sub-sessile (1)
20.	Sepal fusion	Less than half the length (0) More than half the length (1)
21.	Apex of calyx lobes	Acute (0) Filiform (1)
22.	Hairs on sepals	Absent (0) Simple (1) Glandular (2) Hispid (3) Wooly (4) Simple & glandular (5) Simple & hispid (6) Simple & wooly (7) Glandular & hispid (8) Simple, glandular and wooly (9)
23.	Petal color	Blue, purple or pink (0) Yellow or white (1)
24.	Petal texture	Glabrous (0) Hairy (1)
25.	Petal apex	Acute (0) Obtuse (1)
26.	Petal fusion	Less than half the length (0) More than half the length (1)
27.	Petal lobes	Equal (0) Unequal (1)
28.	Corolla throat	With scales (0) Without scales (1)
29.	No. of stamens	Two (0) Five (1)
30.	Anthers level	Exerted (0) Included (1)
31.	Filaments texture	Glabrous (0) Hairy (1) Reduced (2)
32.	Appendix on anther	Absent (0) Present (1)
33.	Anthers shape	Sagittate (0) Not sagittate (1)
34.	Style texture	Glabrous (0) Hairy (1)
35.	Style origin	Terminal (0) Gynobasic (1)
36.	Style position	Inserted (0) Exerted (1)
37.	Style shape	Bifid (0) Undivided (1)
38.	Stigma shape	Conical (0) Capitate-globose (1)
39.	Stigma length	As long as style or shorter (0) Much longer than style (1)
40.	Ovary texture	Glabrous (0) Hairy (1)
41.	Nectar disk	Absent (0) Present (1)
42.	Gynophore	Absent (0) Present (1)

2.4 Phenetic analysis

Character states (107) by taxon (46) matrix (Additional file 1: Appendix A) were subjected to phenetic analysis by use of PAleontological STatistics version 3.23 [43]. PCA (principal component analysis) ordination and similarity matrix were created using the same software, based on the investigated morphological characters of the studied taxa.

2.5 Phylogenetic analysis

Phylogenetic analyses that are based on maximum parsimony were performed on the produced data matrix using MrBayes 3.2 [44] with Markov chain Monte Carlo simulation. The sample and print frequency is 500, the diagnostic frequency is 5000 and the run length is 1,000,000. *Vahlia digyna* (Vahliaceae) was used as an outgroup for rooting the cladogram.

3 Results

The phenetic analysis of the coded data matrix of the investigated morphological character states generated a dendrogram (Fig. 1) that is divided into five clear groups: The first one consists of Alkanna strigosa, Arnebia tinctoria, Echiochilon fruticosum, Echium horridum, Lappula spinocarpos, Moltkiopsis ciliata and Nonea vivianii at 0.6 taxonomic distance. The second group comprises Alkanna orientalis, A. tinctoria, Anchusa aegyptiaca, A. hispida, A. humilis, A. milleri, A. undulata, Arnebia decumbens var. decumbens, A. decumbens var. macrocalyx, A. hispidissima, A. linearifolia, Asperugo procumbens, Buglossoides incrassata, B. tenuiflora, Paracaryum intermedium and P. rugulosum at about 0.675 similarity index. The third group includes Echium angustifolium subsp. Anugstifolium, E. angustifolium subsp. sericeum, E. rauwolfii, E. rubrum and E. sabulicolum at taxonomic distance (0.675). All the studied taxa of genus Heliotropium are nested in the fourth group at about 0.45 taxonomic distance. The last group comprises Trichodesma africanum and T. ehrenbergii at about 0.375 similarity index. Coldenia procumbens and Lappula sinaica are separated as distinct identities at taxonomic distances 0.375 and 0.525, respectively.

PCA ordination and matrix of similarity that based on the investigated morphological characteristics of the studied taxa are presented in Fig. 2 and Additional file 1: Appendix B. Among the investigated taxa, the most distant and the closest species are determined. *Arnebia decumbens* var. *macrocalyx* and *Heliotropium curassavicum* are the species that are the most distantly linked (percentage dissimilarity: 13.49074), while *Echium* angustifolium subsp. angustifolium and E. angustifolium subsp. sericeum are the species that are most closely linked (percentage dissimilarity: 1.7320508). The outline of the analysis indicated that contributions for the first two principal components to total variation of 42 characters were (42.79%) and (25.15%) eigenvalues, respectively. The biological meaning of the components was analogized by the correlation between the component and character (Table 3). The first component is positively correlated with inflorescence type (0.29), petal color (0.23), stigma length (0.24) and ovary texture (0.23), and negatively with upper leaves petioles (-0.29), bracteoles (-0.29), style origin (-0.28) and stigma shape (-0.32). The second component is positively correlated with petal texture (0.29), petal fusion (0.26), style texture (0.24), style position (0.36) and nectar disk (0.23) and negatively with anthers level (-0.36), filament texture (-0.24) and style shape (-0.28).

The sequences were submitted to GenBank and assigned accession numbers from OP933830 to OP933875. The phylogenetic analysis generated a cladogram (Fig. 3) showing that among the studied taxa of Boraginaceae there is a bolster for three clear lineages with resolved relationships viz. *Heliotropium* lineage that included all studied taxa of genus *Heliotropium*, lineage II (*Anchusa undulata, Arnebia hispidissima, A. tinctoria, Echium angustifolium* subsp. *angustifolium, E. angustifolium* subsp. *sericeum, E. rubrum*) and lineage III (*Alkanna orientalis, A. strigosa, A. tinctoria, Anchusa aegyptiaca, A. hispida, A. humilis, A. milleri, Asperugo procumbens, Buglossoides tenuiflora, Lappula sinaica, Paracaryum intermedium, P. rugulosum, Trichodesma africanum and T. ehrenbergii).*

4 Discussion

From phenetic point of view as revealed in the produced phenogram, the studied taxa *Alkanna strigosa, Arnebia tinctoria, Echiochilon fruticosum, Echium horridum, Lappula spinocarpos, Moltkiopsis ciliata* and *Nonea vivianii* are grouped together in a single phenetic group. This is in accord with [28] where *Alkanna, Arnebia, Echiochilon* and *Echium* are included in the same tribe Lithospermeae. [45] agree with this but exclude *Echiochilon* in tribe Echiochileae and [15, 26, 38, 46] treated *Moltkiopsis* in tribe Lithospermeae along with *Alkanna, Arnebia* and *Echium*, while [27, 28] put it under tribe Trigonotideae. On the other hand, [10] put *Nonea* and *Lappula* in two distinct tribes: Boragineae and Cynoglosseae, respectively.

Fig. 1 UPGMA clustering of the studied boraginaceous taxa based on (42) morphological characters

Fig. 2 Principal component analysis of the studied boraginaceous taxa based on (42) morphological characters

Alkanna orientalis, A. tinctoria, Anchusa aegyptiaca, A. hispida, A. humilis, A. milleri, A. undulata, Arnebia decumbens var. decumbens, A. decumbens var. macrocalyx, A. hispidissima, A. linearifolia, Asperugo procumbens, Buglossoides incrassata, B. tenuiflora, Paracaryum intermedium and P. rugulosum are grouped together in an exclusive group. This is consistent with the positioning of Alkanna, Arnebia and Buglossoides in the same tribe Lithospermeae [10, 27, 28, 45]. Taxonomic systems, viz. [10, 15, 27, 28, 46, 47], distribute Asperugo, Anchusa and Paracaryum in tribes Eritrichieae, Boragineae and Cynoglosseae, respectively.

Echium angustifolium subsp. *Anugstifolium*, *E. angustifolium* subsp. *sericeum*, *E. rauwolfii*, *E. rubrum* and *E. sabulicolum* are clustered together. This is consistent with the positioning of *Echium* in tribe Echieae according to [15, 26, 48] and in tribe Lithospermeae according to [10, 27, 28, 47].

The clustering of all the studied taxa of genus *Heliotropium* in a single group is confirmed by [26] classification system in placing all the taxa of *Heliotropium* at the same tribe Heliotropieae also [46] in placing them at the same subfamily Heliotropioideae.

T. africanum and *T. ehrenbergii* are grouped together in a single phenetic group. This is in accord with [10, 15, 28, 47, 48] where the present genera were included in the same tribe Cynoglosseae. [26, 27] placed it under tribe Trichodesmeae but [49] put it in subtribe Rindereae under the tribe Boragineae. *Coldenia procumbens* is separated as a distinct identity, and this is in accord with [46] in placing it under subfamily Cordioideae.

PCA can be useful in providing information on character variability [50]. The cumulative variance values of the main components obtained reveal the investigated features in boraginaceous taxa, because of their large variance value that can be useful in explaining discrepancies among taxa. Furthermore, among the examined specimens, the morphological features were chosen for PCA to assess the qualities that are relevant in description change.

PC1 explained 42.79% of total morphological variation which was positively and negatively determined by some floral characters, while PC2 explained 25.15% of total morphological variability that related to floral characters as the same as PC1; accordingly, more than half of total information (67.94%) could be explained by the first two principal components. This indicates that the component was determined by flower variables. So, the results indicate that floral structure showed variability, which is useful for discrimination. In this regard, [51] indicates that the morphological variability in Boraginaceae is explained to greater degree by floral variables.

From phylogenetic point of view, the produced cladogram showed that Boraginaceae are not monophyletic **Table 3** PCAvariableloadingsofatwo-dimensions,eigenvalues, contributions and scores of the components for (42)morphological characters of the studied taxa of Boraginaceae

No.	Character	Axis 1	Axis 2
1.	Habit	0.22	-0.04
2.	Texture	-0.09	0.08
3.	Strength	-0.14	0.13
4.	Stem branching	-0.08	-0.04
5.	Basal leaves	0.02	-0.15
6.	Upper leaves petioles	-0.29	0.05
7.	Lamina composition	-0.05	-0.04
8.	Lamina shape	0.19	0.01
9.	Lamina surface	-0.08	0.17
10.	Base of lamina	-0.05	-0.04
11.	Leaf veins	-0.16	-0.15
12.	Leaf margin	0.1	-0.03
13.	Leaf apex	-0.02	0.09
14.	Hairs on leaves	-0.07	0.08
15.	Bracteoles	-0.29	-0.04
16.	Inflorescence type	0.29	0.13
17.	Inflorescence	0.1	0.04
18.	Number of flowers	0.13	0.08
19.	Flower	0.14	0.1
20.	Sepal fusion	-0.06	0.02
21.	Apex of calyx lobes	-0.02	0.02
22.	Hairs on sepals	-0.01	-0.03
23.	Petal color	0.23	-0.06
24.	Petal texture	0.19	0.29
25.	Petal apex	-0.04	0.11
26.	Petal fusion	0.13	0.26
27.	Petal lobes	-0.11	0.2
28.	Corolla throat	0.15	0.2
29.	No. of stamens	-0.05	0.03
30.	Anthers level	0.07	-0.36
31.	Filaments texture	0.11	-0.24
32.	Appendix on anther	0.04	-0.18
33.	Anthers shape	-0.13	0.17
34.	Style texture	0.12	0.24
35.	Style origin	-0.28	0.14
36.	Style position	-0.0/	0.36
37.	Style shape	0.11	-0.28
38.	Stigma shape	-0.32	0.03
39.	Stigma length	0.24	0.01
40.	Ovary texture	0.23	0.05
41.	Nectar disk	0.13	0.23
4Z.	Gynophore	-0.01	-0.02
Eigenvalue		11.28	06.62
Cumulative contribution		24.79	25.15
Cumulative contribution		67.94	93.09

group contrary to some previous studies based on the data of morphology, phytochemistry and molecular structure that indicate the monophyly of Boraginaceae within its specific boundaries [31, 33, 34, 52]. *Heliotropium* lineage included all exemplars of genus *Heliotropium* confirming that *Heliotropium* is a monophyletic group. Tribe Heliotropieae is now typically recognized as subfamily Heliotropioideae [2, 28, 52].

Some exemplars of *Anchusa, Arneba* and *Echium* were grouped together in lineage II, and this is in accordance with placement of *Arneba* and *Echium* in tribe Lithospermeae according to [10, 27, 28, 46, 47], while [53] placed *Arneba* and *Echium* in one tribe Boraginoideae. Some taxonomic systems, viz. [10, 15, 26–28, 46–48, 53], put *Anchusa* in tribe Boragineae. Previous phylogenetic studies found a sister relationship between Boragineae and Lithospermeae [10, 39].

Alkanna orientalis, A. strigosa, A. tinctoria, Anchusa aegyptiaca, A. hispida, A. humilis, A. milleri, Asperugo procumbens, Buglossoides tenuiflora, Lappula sinaica, Paracaryum intermedium, P. rugulosum, Trichodesma africanum and T. ehrenbergii were grouped together. This is in accord with placing Alkanna and Anchusa in the same tribe Boragineae [10, 15, 26-28, 46-48, 53] keep placing Anchusa in tribe Boragineae but place Alkanna in tribe Lithospermeae. Taxonomic systems viz. [10, 15, 27, 28, 46, 47] placed Asperugo in tribe Eritrichieae. [10, 48, 54] put it in tribe Cynoglosseae. [26] put it in tribe Asperugeae. Phylogenetic studies found that Cynoglosseae is closest relative to Boragineae and Lithospermeae [10, 39]. Lappula and Trichodesma were included in the same tribe Cynoglosseae. [15, 47] also placed Trichodesma and Paracaryum in the same tribe Cynoglosseae.

5 Conclusion

It is concluded that the chosen morphological characters were important in species delimitation, where more than half of total morphological variations (67.94%) were explained by the first two principal components, indicating that the morphological characters showed high variability, which is useful for discrimination, and these characters shared in drawing the phenetic relationships within Boraginaceae. In addition, the phylogenetic relationships clarified that Boraginaceae is not a monophyletic group, but it contained some monophyletic genera such as *Heliotropium* and *Alkanna*, while the other studied taxa expressed non-monophyletic relationships.

Abbreviations

- CAI Herbaria of Cairo University, Faculty of Science
- CAIA Herbaria of Ain Shams University, Faculty of Science
- CAIM Herbaria of Flora and Phytotaxonomy Research Department
- CTAB Cetyltrimethylammonium bromide
- IPNI International Plant Name Index
- PCA Principal component analysis
- PCR Polymerase chain reaction

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s43088-023-00456-8.

Additional file 1. Appendix A. Data matrix of (42) morphological characters and their (107) states of the studied taxa of Boraginaceae and outgroup. Appendix B. Similarity matrix among the studied boraginaceous taxa based on (42) morphological characters.

Acknowledgements

Not applicable.

Author contributions

UA was involved in study conception and design, data curation, analysis and interpretation of data, writing—original draft preparation and supervision. SA was involved in acquisition of data, methodology, investigation and visualization. WO was involved in validation and resources. UA and SA were involved in formal analysis. WO, WH and NA were involved in critical revision and editing. WH and NA were involved in project administration. NA was involved in fund-ing acquisition.

Funding

The APC was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2023R187), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Availability of data and materials

All data are available from corresponding author upon request.

Declarations

Ethics approval and consent to participate

All materials that were used in the current research do not need ethically approved permission, human or animal materials.

Consent for publication

Not applicable.

Competing interests

None. The authors declare no competing interests. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Received: 9 August 2023 Accepted: 6 December 2023 Published online: 17 December 2023

References

- 1. Luebert F, Cecchi L, Frohlich MW et al (2016) Familial classification of the Boraginales. Taxon 65:502–522
- 2. Al-Shehbaz IA (1991) The genera of Boraginaceae in the southeastern United States. J Arnold Arboretum Suppl Ser 1:1–169
- Byng J, Chase MW, Christenhusz MJM et al (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20. https://doi.org/10.1111/ boj.12385

- 5. Taeckholm V (1974) Students flora of Egypt, ed. 2.- Beirut
- 6. Cohen JI (2014) A phylogenetic analysis of morphological and molecular characters of Boraginaceae: evolutionary relationships, taxonomy, and patterns of character evolution. Cladistics 30:139–169
- Nasab F, Nejad Falatoury A, Mehrabian A (2023) Pollen morphology in Iranian species of Onosma (Boraginaceae). Plant Biosyst Int J Deal with all Asp Plant Biol 157:1–28
- Nasab F, Nejad Falatoury A, Mehrabian A (2023) Pollen morphology in Iranian species of Onosma (Boraginaceae). Plant Biosyst Int J Deal with all Asp Plant Biol 157:437–454
- Refulio-Rodriguez NF, Olmstead RG (2014) Phylogeny of lamiidae. Am J Bot 101:287–299
- Weigend M, Luebert F, Gottschling M et al (2014) From capsules to nutlets—phylogenetic relationships in the Boraginales. Cladistics 30:508–518
- 11. Bentham G, Hooker JD (1862) Genera plantarum, vol 1, part 1. Reeve, Williams and Norgate, London
- 12. de Candolle AP (1838) Prodromus systematis naturalis regni vegetabilis, vol 6. Treuttel & Würtz, Paris, p 687
- Chadefaud M, Emberger L (1960b) Traité de botanique: systématique. (No Title)
- Cronquist A (1988) The evolution and classification of flowering plants, 2nd edn. New York Bot Z Gard Bronx, New York, USA 503–517
- 15. Gürke M, Harms H (1887) Borraginaceae (Asperifoliaceae). W. Engelmann
- 16. Melchior (1964) A. Engler's Syllabus der pflanzenfamilien.12. Auflage. Bd.2. Angiospermen
- 17. Takhtajan A (1987) Systema magnoliophytorum. Hayka
- Takhtajan AL (1980) Outline of the classification of flowering plants (magnoliophyta). Bot Rev 46:225–359. https://doi.org/10.1007/BF02861558
- Thorne RF (1992) An updated phylogenetic classification of the flowering plants. Aliso 13:365–390. https://doi.org/10.5642/aliso.19921302.08
- Di Fulvio TE (1978) Sobre la vasculatura floral, embriology cromosomas de Ixorhea tschudiana (Heliotropiaceae). Kurtziana 11:75–105
- Di Fulvio TE (1978) Sobre la vasculatura floral, embriolog{\\i}a y cromosomas de lxorhea tschudiana (Heliotropiaceae). Kurtziana 11:75–105
- 22. Svensson HG (1925) Zur Embryologie der Hydrophyllaceen, Borraginaceen und Heliotropiaceen
- Dahlgren RMT (1980) A revised system of classification of the angiosperms. Bot J Linn Soc 80:91–124
- 24. Merxmüller H (1960) Wellstediaceae. Mitt Bot Staatss München 3:619-622
- Merxmüller H (1960) Wellstediaceae. Mitteilungen der Bot Staatssammlung, Munchen 3:619–622
- Popov MG (1953) De generis Mertensiae Roth (Boraginaceae) systemate et evolutione comparatis speciebus Americanus et Asiatcis adnotationes. Not Syst Herb Institute Bot Mater Herb Bot Inst name VL Kamarov Acad Sci USSR 15:248–266
- 27. Riedl H (1997) Boraginaceae. Flora Malesiana-Series 1. Spermatophyta 13:43–144
- Långström E, Chase MW (2002) Tribes of Boraginoideae (Boraginaceae) and placement of Antiphytum, Echiochilon, Ogastemma and Sericostoma: a phylogenetic analysis based on atpB plastid DNA sequence data. Plant Syst Evol 234:137–153
- Weigend M, Luebert F, Selvi F et al (2013) Multiple origins for Hound's tongues (*Cynoglossum* L.) and Navel seeds (*Omphalodes* Mill.)—the phylogeny of the borage family (Boraginaceae s. str.). Mol Phylogenet Evol 68:604–618
- Ferguson DM (1998) Phylogenetic analysis and relationships in Hydrophyllaceae based on ndhF sequence data. Syst Bot 23:253–268
- 31. Gilg E (1908) Die systematische Stellung der Gattung Hoplestigma und einiger anderer zweifelhafter Gattungen
- Gottschling M, Hilger HH, Wolf M, Diane N (2001) Secondary structure of the ITS1 transcript and its application in a reconstruction of the phylogeny of Boraginales. Plant Biol 3:629–636
- Nowicke JW, Miller JS (1989) Pollen morphology and the relationships of Hoplestigmataceae. Taxon 38:12–16
- Wang W-M, Harley MM (2004) The Miocene genus Fupingopollenites: comparisons with ultrastructure and pseudocolpi in modern pollen. Rev Palaeobot Palynol 131:117–145

- Nazaire M, Hufford L (2012) A broad phylogenetic analysis of Boraginaceae: implications for the relationships of Mertensia. Syst Bot 37:758–783
- Olmstead RG, Bremer B, Scott KM, Palmer JD (1993) A parsimony analysis of the Asteridae sensu lato based on rbcL sequences. Ann Missouri Bot Gard 80:700–722
- Hilger HH, Selvi F, Papini A, Bigazzi M (2004) Molecular systematics of Boraginaceae tribe Boragineae based on ITS1 and trnL sequences, with special reference to Anchusa sl. Ann Bot 94:201–212
- Weigend M, Gottschling M, Selvi F, Hilger HH (2009) Marbleseeds are gromwells–Systematics and evolution of Lithospermum and allies (Boraginaceae tribe Lithospermeae) based on molecular and morphological data. Mol Phylogenet Evol 52:755–768
- Mansion G, Selvi F, Guggisberg A, Conti E (2009) Origin of Mediterranean insular endemics in the Boraginales: integrative evidence from molecular dating and ancestral area reconstruction. J Biogeogr 36:1282–1296
- El-Gazzar A, El-Ghamery A, El-Saied A et al (2015) Computer-generated keys to the flora of Egypt. 6. The Boraginaceae. Ann Agric Sci 60:67–85
- Boulos L (2008) Flora and vegetation of the deserts of Egypt. Flora Mediterr 18:341–359
- Penev L, Paton A, Nicolson N et al (2016) A common registration-topublication automated pipeline for nomenclatural acts for higher plants (International Plant Names Index, IPNI), fungi (Index Fungorum, Myco-Bank) and animals (ZooBank). Zookeys 233
- 43. Hammer Ø, Harper DAT (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1
- Ronquist F, Teslenko M, Van Der Mark P et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542
- Angiosperm Phylogeny Group (2016) APG IV. Bot J Linn Soc 181:1–20. https://doi.org/10.1111/boj.12385,retrieved2016-06-11
- 46. Chase MW, Christenhusz MJM, Fay MF et al (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20. https://doi.org/10.1111/ boj.12385
- Bentham G, Hooker JD (1883) Genera plantarum, vol 3 part 2. L Reeve, London
- de Candolle AP (1838) Prodromus systematis naturalis regni vegetabilis, vol 6. Treuttel & Würtz, Paris
- Don G (1838) A general history of the dichlamydeous plants, comprising complete descriptions of the different orders... volume 4, corolliflorae. Rivington
- Ogwu MC, Osawaru ME (2016) Principal component analysis: A tool for multivariate analysis of genetic variability
- Boyd AE (2002) Morphological analysis of Sky Island populations of Macromeria viridiflora (Boraginaceae). Syst Bot 27:116–126. https://doi.org/10. 1043/0363-6445-27.1.116
- Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121
- 53. Engler A, Prantl KAE (1897) Die natürlichen Pflanzenfamilien: T. Abt.
- Abt. 5. Embryophyta siphonogama, Klasse Dicotyledoneae. Engelmann
 Sud KC (1984) Stomatal pecularities in *Catharanthus roseus* (Linn.) G. DON (Apocynaceae). Curr Sci 53:374–375

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- Convenient online submission
- ► Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com