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Abstract 

Background It is unequivocally believed that phenolics and flavonoids from fruits and vegetables hold robust 
prevention potentials against age-related disease development through their abundant hydroxyl groups. This study 
explored the potential neuromuscular enhancement and anti-aging effects of dietary supplemented proanthocyan-
idins-rich fraction from Tamarindus indica on Drosophila melanogaster model. One- to three-day-old male and female 
D. melanogaster were fed with a proanthocyanidins-rich fraction-supplemented diet for 7 days at two different con-
centrations. Following the effective dose determination, longevity assay (rate of survival), behavioral assay (negative 
geotaxis and eclosion), and biochemical assays (aging and antioxidant enzymes activities) were conducted to assess 
the fraction’s longevity, antioxidant, and anti-aging effects on D. melanogaster model.

Result The results showed a significant (p < 0.05) improvement in the rate of emergence and lifespan of the flies fed 
with proanthocyanidins-rich fraction-supplemented diet at both concentrations (1.5 mg/g and 2.5 mg/g) compared 
to the normal control. A significant decrease in acetylcholinesterase (AChE) activity and the level of caspase-3 and cas-
pase-9 were observed in the D. melanogaster flies fed with the fraction-containing diet when compared with the nor-
mal control. The supplemented diet also significantly increases the activity of catalase, superoxide dismutase (SOD), 
and glutathione-s-transferase (GST) in a concentration-dependent manner but not nicotinamide quinone oxidore-
ductase one (NQO1) in D. melanogaster upon comparison with the normal control.

Conclusion The observable changes in the experiment were attributed to the T. indica-derived proanthocyanidins, 
flavonoids with robust biological activities. The flavonoid-rich fraction proved its potential by enhancing the anti-
oxidant system in D. melanogaster via the increase in the activities of some of the phase II antioxidant enzymes. The 
present study provides more insights into the wider perspectives of societies on the use of plant-derived natural 
compounds as the potential approach toward prevention against aging and age-related morbidities which enhance 
wellness and the quality of life in humans and animals.
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1  Background
Despite its complexity, aging is considered a gradual 
accumulation of changes over time that are associated 
with increased vulnerability to morbidities and mortal-
ity [1]. As the global population ages, neurodegenera-
tive diseases like Alzheimer’s and Parkinson’s become 
increasingly common, posing a serious threat to human 
health [2, 3]. Mitochondria play a pivotal role in generat-
ing free radicals such as reactive oxygen (ROS) and nitro-
gen species (RNS) that alter the redox status of the body 
[3]. Progressive oxidation of macromolecules generates 
large amounts of ROS to pathological levels that trig-
ger mitochondrial damage through oxidative stress with 
consequent apoptotic cell death [3, 4]. The production 
of ROS and the subsequent response to oxidative stress 
have been established as important factors in the deter-
mination of longevity [5, 6].

The process of aging is a multifaceted molecular phe-
nomenon that is influenced by a variety of molecular 
pathways and biochemical occurrences, which are influ-
enced by both genetic and environmental factors [7]. 
Aging can be specifically described as a gradual decrease 
in functional capacity and stress resistance over time, 
which is accompanied by an increased likelihood of expe-
riencing illness and death [8]. The effects relate to the 
progressive accumulation of stressors associated with 
aging, leading to the gradual deterioration of biomol-
ecules and subsequent disruption of cellular homeostasis 
[9]. However, previous studies demonstrated that genetic 
or dietary interventions have the potential to extend the 
lifespan of a wide range of organisms, suggesting that it 
is possible to delay mortality through such interventional 
approaches [10–12].

Natural compounds are a vast collection of structurally 
diverse scaffolds that hold great potential as candidate 
chemical entities for addressing the significant health-
care challenge of extending health-spans and/or slowing 
down the aging process [13, 14]. One of the medicinal 
plants rich in bioactive phytochemicals is Tamarindus 
indica commonly called Tamarin tree. T. indica holds 
significant dietary importance in sub-Saharan Africa and 
possesses considerable medicinal attributes [15, 16]. The 
fruit contains a variety of bioactive phytochemicals, such 
as alkaloids, phenolic, and bioflavonoids [16]. The pri-
mary focus of this research has been on proanthocyani-
dins, the principal bioflavonoid found in the fruit part of 
the plant. Several studies have investigated its medicinal 
effect in various model organisms and reported its poten-
tial to be considered for clinical trials [17, 18].

Drosophila melanogaster is among the most influential 
model organism in biomedical research, and it has been 
used extensively for biochemical research such as molec-
ular mechanisms that underline human diseases [19–21]. 

The model has revealed a noteworthy resemblance in 
neurotoxicity between Homo sapiens (humans) and D. 
melanogaster (fruit flies) [22]. Researchers took advan-
tage of the flies’ simple neural network for the explora-
tion of antioxidant activities of bioactive compounds with 
potential neuroprotective activities [23]. These and other 
reasons strengthen the use of the fly model to unveil the 
mystery of life at a molecular level and screen the poten-
tial therapeutic agents [24]. In this study, we focused on 
evaluating the anti-aging activity of proanthocyanidins-
rich fraction from T. indica and its ability to enhance lon-
gevity in a D. melanogaster model.

2  Methods
2.1  Collection of sample and preparation
A sample of the whole fruit of Tamarin was collected 
from Zaria main market of Kaduna State Nigeria and was 
identified by a botanist with a Boucher number 5451. 
Upon drying and removal of the shelves, the pulp parts 
were crushed into finely powdered particles using a stain-
less steel blender. The powdered sample was soaked in 
ethanol for 72 h. The filtrate was reduced to dryness by 
a rotary evaporator, and the percentage yield was 8.2% 
w/w, which was kept in the refrigerator until needed.

2.2  Stocking and culturing of Drosophila melanogaster
Drosophila melanogaster (Harwich strain) was donated 
by the College of Medicine, University of Ibadan, Nige-
ria. The flies originated from the National Species Stock 
Center, Bowling Green, Ohio, USA, and were grown in 
the Drosophila Research Laboratory, Department of 
Biochemistry, Kaduna State University. They were main-
tained at the respective standard temperature (24 ± 2 °C) 
and relative humidity (60 – 70%), under 12 h of lightness/
darkness cycle conditions on a cornmeal diet contain-
ing 0.08% w/v methylparaben, 1% w/v agar–agar, 1% w/v 
brewer’s yeast, and 2% w/v sucrose.

2.3  Experimental design
Two- to three-day-old male and female flies were placed 
into three separate groups, namely normal control (diet 
without fraction), treatment group 1 (1.5  mg proantho-
cyanidins / g diet) and treatment group 2 (2.5 mg proan-
thocyanidins / g diet) as the most effective doses of the 
fraction. Each group comprised three replicates contain-
ing 100 flies and were fed for seven days.

2.4  Behavioral assays
2.4.1  Longevity assay
To ascertain the impact of proanthocyanidins-rich 
fraction on the lifespan of experimental D. mela-
nogaster, a total of 100 flies per vial in triplicates were 
subjected to seven days treatment with or without a 
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proanthocyanidins-rich fraction at 1.5 and 2.5 mg/g diet. 
Daily mortality of the flies was observed and recorded 
for seventy-seven (77) days. The survival rate was ana-
lyzed using GraphPad Prism and presented in the result 
section.

2.4.2  Negative geotaxis assay
Locomotor activity of D. melanogaster supplemented 
with proanthocyanidins-rich fraction at two concen-
trations (1.5 and 2.5  mg/g diet) were evaluated using a 
negative geotaxis assay as described by [25] with modi-
fications. Briefly, following anesthesia, a total of twenty 
(20) flies out of the 100 from each experimental vial were 
picked and placed into a graduated column of 15  cm 
in height and 1.5  cm in diameter. The 8  cm of the col-
umn was considered a threshold and was marked, and 
the number of flies that traversed the line and those that 
remained at the bottom within 8  s were recorded. The 
experiment was conducted three times per vial at the 
interval of 1  min between readings, and the data were 
analyzed and presented.

2.4.3  Emergence rate determination
The rate of flies’ offspring emergence in the ADFP frac-
tion treatment group was evaluated as previously 
described by [26].

2.5  Evaluation of aging‑related markers in Drosophila 
melanogaster

2.5.1  Determination of total protein and estimation 
of Caspase‑3 and Caspase‑9 levels

The levels of caspase-3 and caspase-9 were estimated 
spectrophotometrically using a GenScript colorimetric 
assay kit (GenScript, Piscataway, NJ, USA). Upon comple-
tion of the experimental period, flies were homogenized 
in ice-cold PBS in a ratio of 1 fly to 10 µL PBS. To lyse the 
cells of the flies, about 50 µL cold lysis buffer containing 
0.25 µL phenylmethanesulfonyl fluoride (PMSF) and 0.5 
µL Dithiothreitol (DTT) was added to tubes containing 
the homogenate. The tubes were kept on ice for an hour 
with a thorough vortex at intervals of 8–12 min. The tube 
content was centrifuged at 10,000 rpm under 4 °C for one 
minute, and protein concentrations were measured using 
the Bradford assay in the collected supernatant thereaf-
ter as highlighted by [27]. Then, 200  µg of protein was 
added to a tube containing 50 µL reaction buffer com-
prising 0.25 µL PMSF and 0.5 µL DTT, and the contents 
were vortexed and allowed to stay on ice. The suspension 
was transferred to 96-well plates upon the addition of 5 
µL caspases substrates. The plate was covered with alu-
minum foil and placed in the dark at physiological tem-
perature for four (4) hours. The levels of caspase-3 and 
caspase-9 were estimated spectrophotometrically at 

405 nm using a microplate reader (Universal Microplate 
Reader; Biotech, Inc).

2.5.2  Estimation of acetylcholinesterase activities
AChE activity was measured using the modified method 
of [28]. Briefly, a reaction mixture comprising 135 µL 
 dH2O, 20 µL 10  mM DTNB, 20 µL 100  mM potassium 
phosphate buffer (pH 7.4), 5 µL homogenate sample, and 
20 µL 8  mM ACh substrate was shaken vigorously. The 
activity of acetylcholinesterase was observed using a UV/
visible spectrophotometer for 5  min (at an interval of 
15 s) at 412 nm. The resulting data were corrected using 
protein content upon calculation with blank and sample 
blank.

2.6  Evaluation of antioxidants related markers Drosophila 
melanogaster

2.6.1  Estimation of catalase activity
A modified method reported by [29] was used to measure 
catalase activity. A reaction vessel containing 1800 µL of 
50 mM phosphate buffer (pH 7.0), 20 µL of homogenate 
sample (1:50 dilution), and 180 µL of 300 mM  H2O2 sub-
strate. The disappearance of the substrate was monitored 
for 2 min at an interval of 10 s using a UV/visible spec-
trophotometer at 240 nm. The results were expressed as 
µmol of hydrogen peroxide  (H2O2) consumed/min/mg of 
protein.

2.6.2  Estimation of superoxide dismutase (SOD) activity
The SOD activity was evaluated according to [29] meth-
ods with slight modification, by reducing nitrite for-
mation in 40  min at 37  °C. The test was based on the 
SOD-mediated inhibition of nitrite formation from 
hydroxyl ammonium in the presence of  O2 generators. 
The activity was measured spectrophotometrically at 
550 nm, and the results were presented as the unit of the 
enzyme’s activity/mg of protein.

2.6.3  Estimation of glutathione‑s‑transferase activity
As demonstrated in [30], the activity of glutathione-s-
transferase was determined by careful monitoring of the 
increase in the absorbance at 340  nm wavelength. The 
sample (50 µL) was added to the tube containing 20 µM 
each of 1-chloro-2,4-dinitrobenzene (CDNB) and a 
reduced form of glutathione. Optical density was taken at 
406 nm for three minutes, and the result was expressed 
as the quantity of protein necessary to inhibit half of the 
quercetin auto-oxidation.

2.6.4  Estimation of N‑quinone oxidoreductase one (NQO1) 
Activity

The activity of NQO1 enzyme was estimated spectro-
photometrically using 2,6-Dichlorophenolindophenol 
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(DCPIP) reduction method as described by [31] with 
some modifications. Briefly, the experiment was con-
ducted kinetically on a microplate reader (Universal 
Microplate Reader; Biotech, Inc) at 600  nm, employing 
the enzyme’s substrate (DCPIP) and its inhibitor (dicu-
marol). To calculate the activity, the mean value of DCPIP 
reduction from 0 to 1 min in the presence of dicumarol 
was subtracted from the mean value of the reduction 
without the inhibitor. The NQO1 activity was expressed 
as mole DCPIP reduced/min/mg protein.

2.7  Statistical analysis
The data were presented as means ± standard deviations, 
and statistical analysis was performed using one-way 
analysis of variance (ANOVA) followed by Tukey post 
hoc test on GraphPad Prism (v 6) (San Diego, CA, USA). 
Differences in the results were considered statistically 
significant (p < 0.05) at 95% confidence level. All experi-
ments were conducted in three replications (n = 3).

3  Results
3.1  Effect of proanthocyanidins‑rich 

fraction‑supplemented diet on longevity in D. 
melanogaster

The life span in D. melanogaster was improved signifi-
cantly upon supplemented with a proanthocyanidins-
rich fraction of T. indica for thirty days compared to the 
normal control that received only diet. The effect was 
in a concentration-dependent manner as the flies sup-
plemented with 2.5  mg of the fraction per gram of diet 
showed a higher increase in the lifespan than those that 
received 1.5 mg/g diet, though the difference between the 
two concentrations was not remarkable as seen in Fig. 1.

3.2  Effect of proanthocyanidins fraction on emergence 
rate and locomotor function in D. melanogaster

Figure 2 shows the effect of proanthocyanidins-rich frac-
tion-supplemented diet on the rate of flies emergence 
and locomotor activities in D. melanogaster. The frac-
tion enhanced significantly (p < 0.05) the emergence of 
new flies supplemented at both concentrations (1.5 and 
2.5 mg fraction/g diet) compared to the normal control. 
The effects seemed to be in concentration-dependent 
manner as 2.5 mg/g appeared to be more effective than 
1.5 mg/g as seen in Fig. 2a. Furthermore, the locomotor 
activity of the flies supplemented with proanthocyani-
dins-rich fraction increased significantly (p < 0.05) in a 
dose-dependent manner compared to the normal control 
group (Fig. 2b).

3.3  Effect of proanthocyanidins‑rich fraction dietary 
supplement on aging‑related enzymes’ activities 
and quantity in D. melanogaster

The effect of the fraction was further evaluated on aging-
related enzymes where the fraction showed inhibi-
tory activity on acetylcholinesterase in D. melanogaster. 
Only 2.5  mg of fraction/ g of diet revealed a significant 
(p < 0.05) difference but not the 1.5 mg/g when compared 
to the normal control (Fig. 3a). Likewise, Caspase-3 level 
dropped significantly (p < 0.05) in the flies that received 
proanthocyanidins-rich fraction at both concentrations. 
Again, the increase in the level of the enzyme occurs in 
a concentration-dependent manner (Fig.  3b). Similarly, 
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the level of Caspase-9 was lowered by the fraction at 
2.5  mg/g when compared to the normal control. How-
ever, the 1.5 mg/g fraction did not show any effect on the 
level of Capspase-9 in the flies fed with the supplemented 
diet (Fig. 3c).

3.4  Effect of proanthocyanidins‑rich fraction supplement 
on antioxidants and age‑related enzymes’ activities 
in D. melanogaster

Figure 4 shows the effect of proanthocyanidins-rich frac-
tion dietary supplemented diet on selected antioxidant 
markers in D. melanogaster. A 2.5  mg/g of the fraction 
effectuated a significant (p < 0.05) increase in catalase 
activities in the flies when compared with the normal 

control group (flies that were fed with only diet without 
the fraction). However, there was no significant effect on 
the activity when the flies were fed with 1.5  mg/g sup-
plemented diet (Fig.  4a). The result also revealed a sig-
nificant (p < 0.05) increase in the activity of superoxide 
dismutase (SOD) in the flies upon fed with the fraction-
supplemented diet compared to the normal control flies. 
The two concentrations of the supplemented fraction 
showed a similar pattern of effect on the SOD activity 
since there was no observable difference in their means 
(Fig.  4b). Similarly, we observed a significant (p < 0.05) 
increase in the activity of glutathione-s-transferase 
by the fraction in a concentration-dependent manner 
when compared with the normal control group. The 

Fig. 3 Effect of proanthocyanidins-rich fraction-supplemented diet on the activity and level of acetylcholinesterase (a), Caspase-3 (b), 
and Caspase-9 (c) in D. melanogaster. The results were expressed as mean ± SD of the activity and quantity of the enzymes. Differences in the results 
were considered statistically significant (p < 0.05) at 95% confidence level. All experiments were conducted in three replications (n = 3)
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increasing effect of 1.5  mg/g fraction on the enzyme’s 
activity was significantly lowered (p < 0.05) when the 
two were compared statistically (Fig. 4c). In contrast, the 
fraction-supplemented diet had no effect on the activity 
of nicotinamide quinone oxidoreductase one (NQO1) at 
both concentrations (Fig. 4d).

4  Discussion
The effects of various flavonoids and polyphenols on lifes-
pan extension, health improvement, and aging-related 
morbidities have been investigated using Drosophila mel-
anogaster model [32–34]. However, the specific impact of 
proanthocyanidins on longevity, redox status, and aging 
conditions remained to be elucidated. Proanthocyani-
dins demonstrated numerous health benefits on various 
model organisms [18, 35]. The role of oxidative stress has 
been suggested in the process of aging and the develop-
ment of various age-related diseases [36]. Oxidative stress 
is characterized by a disparity between the generation 
of ROS and RNS, and the ability of the cellular antioxi-
dant defense system to counteract the generated species 
[37]. This condition arises when there is an elevation in 
ROS/RNS levels or a decline in antioxidant capacity [37]. 
Meanwhile, the aging process is influenced by the detri-
mental effects on lipids, proteins, and DNA in different 
tissues [38]. According to the findings of this study, the 
inclusion of proanthocyanidins-rich fraction in the diet 
has been shown to improve the lifespan of the flies above 
those that have not received the fraction (Fig. 1). The cur-
rent findings align with prior research that demonstrated 
the life-extending effects of a phenolic and other forms of 
flavonoids from fruits [39–41]. Phenolics and flavonoids 
are robust bioactive compounds found primarily in veg-
etables and several other fruits including T. indica [42]. 
Their demonstrated antioxidant properties are attrib-
uted to the hydroxyl groups on their aromatic ring struc-
tures and the presence of highly activated carbon atom 
between the two methoxyphenol rings [34, 42].

On the other hand, several studies have shown that 
the cholinergic system and intrinsic mitochondrial 
pathway play an important role in the pathophysiol-
ogy of aging and other neurodegenerative diseases 
[43–45]. Acetylcholine (ACh), a cholinergic neuro-
transmitter, plays a crucial role in modulating choliner-
gic functions such as learning, memory, and locomotor 
activity [46, 47]. AChE, a serine protease, however, 
hydrolyses acetylcholine to choline and acetate, affect-
ing cholinergic neurotransmission [47]. The cholinergic 
marker enzyme (AChE) is specific for the active state 
of cholinergic neurons, and it is crucial for maintain-
ing acetylcholine levels at cholinergic neurons and 
responsible for acetylcholine degradation in the synap-
tic cleft [48]. AChE activities have been linked to other 

neurodegenerative diseases and the aging process [49]. 
When compared to the control, the proanthocyanidins-
rich fraction-supplemented diet resulted in a signifi-
cant decrease in AChE activity (Fig. 3a) and an increase 
in climbing activity (Fig. 2b), translating to neuromus-
cular strength enhancement in the experimental flies. 
These findings are consistent with previous reports on 
in vitro and in vivo findings [50–54]. Thus, in our study, 
the decrease in AChE activity after dietary proantho-
cyanidins supplementation could lead to an increase in 
acetylcholine levels in the synaptic cleft and, as a result, 
increase cholinergic neurotransmission efficiency in 
the flies.

Furthermore, the impact of the fraction on caspase-3 
and caspase-9 levels in the flies also signified its key role 
in mitigating the development of age-related diseases. 
Caspase-3 and -9 are the primary markers for the mito-
chondrial intrinsic pathway that contribute to cellular 
senescence with eventual cell death, leading to aging and 
its associated complications. Study has shown that phe-
nolics enhance the longevity of organisms by decreas-
ing the level of caspases and consequent disruption of 
the intrinsic pathway [55]. Our findings revealed a sig-
nificant decreasing effect on the two caspases level by 
proanthocyanidins-rich fraction-supplemented diet in D. 
melanogaster (Fig. 3b, c). The present findings are in line 
with documented evidences that reported the inhibitory 
effects of phenolic on caspases level, activities, and their 
expression level in pathophysiological age-related mor-
bidities [56–58].

The current investigation demonstrates that the inclu-
sion of proanthocyanidins-rich fraction in the diet also 
leads to an enhancement in the antioxidant status of D. 
melanogaster, as depicted in Fig. 4. Multiple studies have 
demonstrated the antioxidative properties of phenolics, 
flavonoids and other important plant-derived active com-
pounds [55, 59–61]. The effective strategies employed 
by organisms to mitigate the harmful effects of reactive 
oxygen and nitrogen species (ROS and RNS) involve the 
enzymatic activity of numerous markers including cata-
lase, superoxide dismutase (SOD), glutathione-s-trans-
ferase, nicotinamide quinone oxidoreductase (NQO1) 
and others [16, 41, 62]. SOD aids in the transformation 
of superoxide anion into less harmful compounds, which 
are subsequently converted into water through the cata-
lytic activity of catalase [63]. The significance of this 
mechanism in the lifespan of D. melanogaster has been 
described in several reports [63, 64]. Previous studies 
have demonstrated that the genome of D. melanogaster 
contains individual single regions that exhibit the abil-
ity to enhance SOD and catalase activities, along with 
four regions that possess the capacity to suppress their 
respective activity as well [65, 66].
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It is currently observed that feeding D. melanogaster 
with proanthocyanidins-rich fraction results in a signifi-
cant alteration in the activities of SOD and catalase in 
comparison with the control group (Fig.  4a, b). Again, 
our findings coincide with the results presented in [67], 
which reported an increase in SOD and catalase activities 
in fruit flies fed with polyphenolic (curcumin) compared 
to those on the control diet. Another important antioxi-
dant marker is glutathione-s-transferase (GST) which 
represents a phase II group of multifunctional enzymes 
characterized by the presence of cysteine-rich domains 
[68]. The catalytic activity of GST in the conjugation of 
glutathione (GSH) with electrophilic molecules is a cru-
cial process in the detoxification of xenobiotics that could 
disrupt redox status in living organisms [69]. The pre-
sent findings demonstrated the positive effect of proan-
thocyanidins-rich fraction on GST activities in flies fed 
with the fraction compared to the normal control group. 
GST activity was increased significantly by curcumin 
even within a toxic environment. It also neutralized the 
noxious effect of the ecotoxic agent that alters redox sta-
tus of an organism [67]. However, the present findings 
revealed the ineffectiveness of the supplemented diet on 
the activities of NQO1, which is contrary to the previ-
ous reports on the impact of the enzyme, where NQO1 
and other phase II enzymes demonstrated strong anti-
oxidant activities [70, 71]. Our finding strengthened the 
existence of isoforms of the protein in some organisms 
and their respective physiological role in different model 
organisms.

5  Conclusion
Collectively, our findings indicate that proanthocyani-
dins-rich fraction slows down aging process in flies. It is 
posited that the anti-aging capacity of the flavonoid-rich 
fraction can be attributed to its antioxidative properties, 
as indicated by the observed increase in the activities 
of some phase II antioxidant enzymes with the conse-
quent decrease in acetylcholinesterase activity and level 
of mitochondrial intrinsic pathway caspases in D. mela-
nogaster. Therefore, proanthocyanidins-rich fraction 
of T. indica origin could be considered a potential anti-
aging intervention and may provide protection against 
neurological-related disorders particularly those associ-
ated with oxidative stress, such as Parkinson’s and Alz-
heimer’s diseases. Moreover, the findings of the current 
study provide additional evidence supporting the effec-
tiveness of Drosophila melanogaster as a valuable model 
organism for exploring potential therapeutic interven-
tions that hold promise in the management of neurode-
generative disorders.
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