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Abstract 

Background  Monkeypox virus (MPV), an endemic pathogen in Africa, shares clinical similarities with smallpox. 
Recent reports indicate a concerning increase in the number of MPV cases detected outside its endemic region, 
highlighting the emergence of a multi-country outbreak. Given the importance of the cell surface-binding protein 
E8L in facilitating viral attachment to host cells, this study aimed to identify potential small interfering RNAs (siRNAs) 
capable of silencing E8L and thereby serving as a basis for therapeutic development.

Results  siRNAs have emerged as promising candidates for genetic therapies and antiviral and antibacterial treat-
ments. In this investigation, we employed computational assays, including GC content analysis, binding free energy 
assessment, folding properties evaluation, melting temperature determination, and siRNA efficacy prediction. Our 
comprehensive analysis identified five siRNAs with high potential for effectively silencing the cell surface-binding 
protein of the monkeypox virus. Among these siRNAs, molecular docking revealed that “S8” (Guide-UUA​UGG​AUC​
CAA​UCA​CUU​GAU, Passenger-CAA​GUG​AUU​GGA​UCC​AUA​AUC) demonstrated the strongest affinity with the human 
argonaute-2 protein.

Conclusions  The siRNA “S8” represents a promising therapeutic target for developing treatments against monkeypox 
virus infection by specifically silencing the cell surface-binding protein E8L. Our research lays the foundation for future 
endeavors in genome-level therapies. It can potentially create chemically produced RNA molecules as effective antivi-
ral drugs targeting Monkeypox virus infection. These findings contribute to advancing therapeutic strategies and offer 
new avenues for combating the spread of MPV, particularly in regions affected by the multi-country outbreak.
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1 � Background
The Orthopoxvirus genus within the Poxviridae fam-
ily consists of several human pathogens, including cow-
pox (CPXV), Vaccinia (VACV), monkeypox (MPV), and 
Variola (VARV) viruses. Among these, the scientific com-
munity is particularly concerned about the recent global 
outbreak of monkeypox viruses. Monkeypox is a viral 
illness that closely resembles smallpox, causing symp-
toms such as fever, muscle aches, and blistering [1]. In 
May 2022, the Monkeypox virus was identified as the 
primary cause of a widespread epidemic spanning mul-
tiple countries, with approximately one hundred distinct 
cases reported outside of Africa’s endemic regions [1]. 
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Although research is still in its preliminary stages, there 
are indications that the monkeypox virus (MPV) could 
pose a significant public health threat in the USA and 
worldwide, particularly in the aftermath of the COVID-
19 pandemic.

The Monkeypox and Variola viruses are members of 
the Orthopoxvirus family, which are double-stranded 
DNA viruses. Monkeypox is responsible for the disease 
of the same name, while smallpox is caused by the Vari-
ola virus. Remarkably, smallpox was successfully eradi-
cated worldwide in 1980, but monkeypox continues to 
be prevalent in Sub-Saharan Africa [2]. Beyond Africa, 
monkeypox has been reported in nearly a hundred cases 
across 12 countries, including Australia, Belgium, Can-
ada, France, Germany, Italy, the Netherlands, Portugal, 
Spain, Sweden, the United Kingdom, and the USA [3, 4]. 
It is worth noting that occurrences of monkeypox outside 
of Africa have been documented since 2003. However, 
the current outbreak stands out as unprecedented due to 
the substantial number of affected individuals [5–7].

There are two distinct genetic clades of the Monkeypox 
virus, known as the West African clade and the Central 
African (or Congolese) clade. Both clades demonstrate 
similar clinical and pathological characteristics, as docu-
mented in references [8, 9]. The World Health Organi-
zation has reported on a concerning situation, titled 
"Multi-country monkeypox epidemic in non-endemic 
nations" [10]. According to this article, as of May 21, 
there have been a total of 92 laboratory confirmed cases 
of Monkeypox virus in twelve countries where it is not 
commonly found. Notably, the cases confirmed through 
PCR testing belong to the MPV lineage observed in West 
Africa.

The orthopoxviridae have various distinguishing char-
acteristics. For example, they have the biggest genome 
(186 kilobase pairs for VARV) and the most genes (200 
open reading frames) [11]. In terms of etiology and 
genetic measures, the Monkeypox virus is thought to be 
closely linked to the Variola and Cowpox viruses [12–
14]. The MPXV genome is made up of 197  kb of linear 
double-stranded DNA that is covalently connected at its 
terminals by palindromic hairpins, and the inverted ter-
minal repeats (ITRs) are made up of hairpin loops, tan-
dem repeats, and some open reading frames (ORFs) that 
include 191 non-overlapping genes [15].

RNA interference (RNAi) is a natural biological pro-
cess that regulates gene expression by suppressing 
mRNA through post-transcriptional gene silencing. 
This mechanism shows great potential in combating 
human viral infections [16, 17]. Within the RNAi path-
way, small interfering RNAs (siRNAs) play a crucial 
role. They bind to complementary mRNA molecules 

and effectively neutralize them, leading to the suppres-
sion of gene expression [18]. Typically, siRNAs consist 
of a 19–25 base pair long RNA duplex with two nucleo-
tide overhangs at the 3’ end. Through their attachment 
to target mRNA, siRNAs initiate post-translational 
gene silencing (PTGS), resulting in enzymatic degrada-
tion of the mRNA molecule [19].

The process of gene expression suppression through 
siRNA is a complex phenomenon. Once the siRNA 
duplex enters the cell, it undergoes a series of intricate 
steps. To begin with, a dicer enzyme, resembling RNase 
III, initiates the breakdown of the siRNA duplex. Sub-
sequently, the resulting fragments integrate into the 
RNA-induced silencing complex (RISC), a protein com-
plex [20, 21]. Within RISC, the RNA helicase domain, 
which relies on ATP, carries out the task of separating 
the RNA strands. The sense strand undergoes degrada-
tion within RISC, while the antisense single-stranded 
RNA facilitates RISC’s alignment with the target 
mRNA. This alignment triggers the catalytic activity of 
RISC, particularly through an argonaut protein, lead-
ing to the cleavage of the target mRNA strands [22]. In 
summary, the suppression of gene expression by siRNA 
involves a complex series of events, starting from 
siRNA entry into the cell, dicer-mediated breakdown, 
integration into RISC, strand separation, and ulti-
mately, the slicing of the target mRNA by the catalytic 
RISC protein.

In our research, we have discovered siRNAs that tar-
get the Monkeypox virus, suggesting their potential 
to effectively silence genes of related viruses in living 
organisms. Currently, there are no officially approved 
vaccines or drugs available for treating the Monkeypox 
virus. However, dedicated scientists are actively work-
ing toward developing a targeted treatment for this 
virus. For our study, we focused on a specific protein 
found on the surface of Monkeypox virus cells, known 
as the chondroitin sulfate (CS) binding protein. This 
protein is well-characterized, located on the viral mem-
brane, and plays a vital role in viral infection [23].

Furthermore, binding to cell-surface carbohydrates is 
required for poxvirus cell infection. In addition, block-
ing the CS binding protein (CSBP) found on Vaccinia 
intracellular mature virus reduces infectivity [24]. 
Thus, the characteristics that make chondroitin sulfate 
binding proteins (CSBPs) excellent candidates for the 
creation of affinity probes also make them viable tar-
gets for treatments development. Many prior research 
employed similar antiviral techniques against other 
orthopoxviruses, such as inhibiting viral interaction to 
cell receptors and HIV [25–27]. We hypothesized this 
study will aid in the development of a similar therapeu-
tic technique for this viruses in vivo.
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2 � Methods
The complete methodology for predicting the potential 
siRNA molecules against Monkeypox virus is shown in 
Fig. 1.

2.1 � Sequence retrieval of CDS of cell surface binding 
protein

The genomic sequence of cell surface binding protein 
was obtained from the NCBI virus database under the 
accession number NC_063383, which was reported by 
Mauldin,M.R., et  al. This is the refseq of monekypox 
virus whose Geo Location is Nigeria: Rivers State. Then, 
we identified the CDS of E8L or cell surface chondroi-
tin sulfate gene from the whole mRNA sequence. This 
is the cell surface binding protein gene of Monkeypox 
virus. We then selected and saved the CDS of this gene 
for further siRNA prediction analysis.

2.2 � Designing of siRNA from the CDS of cell surface 
binding protein

To identify potential siRNA molecules derived from the 
coding sequences (CDS) of the cell surface binding pro-
tein, we utilized the siDirect version 2.0 webserver [28]. 
The process involved inputting the fasta sequence of the 
cell surface binding protein CDS into the siDirect web-
server, which employed three distinct rules for siRNA 
prediction: Ui-Tei, Amarzguioui, and Reynolds [29–31]. 
By default, the webserver ensured that the melting tem-
perature (Tm) of the seed duplex was below 21 °C, opti-
mizing siRNA efficacy and minimizing off-target effects 
[28]. The Ui-Tei algorithm applies specific rules to iden-
tify potential siRNAs: (1) the 5′ terminus of the anti-
sense/guide strand should contain an A/U nucleotide, 
(2) the 5′ end of the sense/passenger strand must have 
a G/C nucleotide, (3) the 5′ terminal 7 base pairs of the 
sense/passenger strand should include at least 4 A/U 
nucleotides, and (4) the GC stretch should not exceed 9 

Fig. 1  Flowchart summarizing the protocols for siRNA prediction to silence the cell surface binding protein of monkeypox virus



Page 4 of 17Islam et al. Beni-Suef Univ J Basic Appl Sci           (2024) 13:17 

nucleotides [29]. On the other hand, the Amarzguioui 
rules encompass the following parameters: (1) strong 
binding of the 5′ sense/passenger strand, (2) a positive 
A/U differential at the duplex end, (3) an A at position 6, 
(4) any base except U at position 1, (5) weak binding of 
the 3′ sense/passenger strand, and (6) any base except G 
at position 19 [30]. The Reynolds algorithm follows sev-
eral criteria: (1) the sense/passenger strand must main-
tain ≥ 3 base pairs between positions 15 and 19, (2) the 
designed siRNA should have a GC content between 30 
and 52%, (3) positions 19 and 3 of the sense/passenger 
strand must contain an A, (4) low internal stability at the 
target site, (5) a U at position 10 of the sense/passenger 
strand, and (6) any base except G at position 13 of the 
sense/passenger strand [31]. By utilizing these three algo-
rithms, we aimed to design effective siRNAs for target-
ing the cell surface binding protein CDS. Investigation of 
parameters for siRNA refinement.

To identify the most effective siRNAs from a large pool 
initially obtained through the siDirect webserver, we 
applied various refinement techniques to select highly 
potent siRNAs. Initially, we assessed the GC content of 
the siRNA molecules using the OligoCalc webserver [32]. 
Any siRNAs with a GC content below 30% were excluded 
from the study. Next, we used the RNA structure website 
[33] to predict the secondary structure and free energy 
of folding of the siRNAs. SiRNAs with a negative free 
energy of folding, as predicted by the webserver, were 
removed from further analysis. To evaluate the RNA-
RNA interaction between the target and guide strands of 
the siRNAs, we employed the Bifold tool from the RNA 
structure webserver [33]. A stronger interaction between 
the target and guide strands indicated higher siRNA effi-
cacy. Additionally, we generated heat capacity and con-
centration plots using the DINA Melt webserver [34]. 
The detailed heat capacity figure displayed the ensemble 
heat capacity (Cp) as a function of temperature, with the 
melting temperature Tm (Cp) indicated. The concentra-
tion plot helped us determine the melting temperature 
Tm (Conc), which corresponds to the point where the 
concentration of double-stranded molecules is half of its 
maximum value. Lastly, we utilized the SMEpred web-
server [35] to further analyze the selected siRNAs and 
refine our pool of candidates.

SMEpred is a website specifically designed for predict-
ing the efficiency of chemically modified siRNAs and 
has been validated using different datasets, including a 
normal siRNA dataset (2182) and a cm-siRNA dataset 
(3031 cm-siRNAs), both of which have been experimen-
tally validated. In addition, we used the SVM algorithm 
and performed a tenfold cross-validation using SME-
pred. Overall, these refinement procedures enabled us to 
identify the most effective siRNAs from the initial pool, 

incorporating considerations such as GC content, sec-
ondary structure, thermodynamic interaction, and chem-
ically modified siRNA prediction.

2.3 � Conservancy checking against other strains 
and human genomic transcript

In the final step of siRNA prediction, a conservancy 
checking was performed against the 83 strains of 2022 
monkeypox outbreak through NCBI Blastn search and 
multiple sequence alignment through CLC Drug Discov-
ery Workbench 3.0 software [36, 37]. In the NCBI Blastn 
database, we manually uploaded the CDS of cell surface 
binding protein of all strains and all other parameters 
were selected as default for Blast search. For phylogenetic 
tree construction, we employed neighbor joining phylo-
genetic tree with a bootstrap value of 500. Jukes-Cantor 
nucleotide distance measurement was selected while 
constructing the phylogenetic tree [38]. CLC Drug Dis-
covery Workbench 3.0 software was used for alignment 
and phylogenetic tree construction [39]. Finally, we did a 
single blast analysis in NCBI to compare the resulting 
siRNAs to human genomic transcripts. The e-value was 
adjusted to 1e−10 in order to lessen the stringency of 
the search criterion and hence increase the likelihood of 
arbitrary matches.

2.4 � Molecular docking of guide siRNA and argonaute‑2 
protein

The right interaction between siRNA duplex (primarily 
guide strand) and RISC complex protein (mostly human 
argonaute protein) is required to initiate an adequate 
antiviral response via RNAi-mediated viral gene silenc-
ing [40]. Molecular docking of the siRNA guide strand 
with argonaute-2 protein was conducted with HDOCK 
webserver [41]. Before molecular docking, we predicted 
the 3D model of the siRNA’s and argonaute-2 protein. 
For identifying the 3D structure of human argonaute-2 
Robetta webserver was used [42]. This is a homology 
modeling webserver that employs deep learning algo-
rithms, RoseTTAFold and TrRosetta, as well as an inte-
grated reporting facility for specific sequence alignments 
for homology modeling. For predicting the 3D structure 
of siRNA guide strand, we used Mfold and RNA Com-
poser webserver [43]. The mfold web server, which is 
used to calculate the folding pattern of DNA/RNA at 
37 °C, is one of the oldest known online servers in com-
putational molecular biology. The RNAComposer sys-
tem, on the other hand, provides a new user-friendly 
technique to fully autonomous modeling of huge RNA 
3D structures. The method relies on the automatic trans-
lation concept and uses the RNA FRABASE database as 
a lexicon to connect RNA secondary and tertiary design 
components. Finally, after modeling of the guide siRNA 
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and human argonaute-2 protein, we docked the siRNA 
with RISC complex (argonaute-2) through molecular 
docking. After docking we visualize the interaction pat-
tern through PDBsum webserver and discovery studio 
visualizer [44]. PDBsum is a web server that provides 
structural information on Protein Data Bank entries 
(PDB). Protein secondary structure, protein ligand and 
proteinDNA interactions, PROCHECK structural qual-
ity evaluations, and other image-based analysis are all 
included in the PDBsum analysis.

3 � Results
3.1 � Sequence retrieval and 35 siRNA prediction 

through siDirect
The complete CDS (coding sequence) of monkey-
pox cell surface binding protein was retrieved from the 
NCBI virus webserver (refseq ID: NC_063383). Here, 
we selected the refseq strain of the virus (Geo Location: 
Nigeria: Rivers State) for siRNA design. After that siDi-
rect webserver was used to identify the potential siRNA’s 
from CDS of cell surface binding protein. siDirect used 
several parameters including Ui-Tei, Renold and Amar-
guioui rules to identify potential siRNA’s with melting 
temperature below 21.5  °C to reduce the seed depend-
ent off-target binding. Initially, siDirect webserver pre-
dicted 35 potential siRNA’s from CDS of omicron spike 
protein. We, then, filtered this 35 siRNA’s to 10 siRNa’s 

by combining the three parameters (Ui-Tei, Renold and 
Amarguioui rules) and by also selected those siRNA’s 
whose melting temperature is below 21.5  °C. So, this 10 
siRNA’s are highly off target reduced siRNA’s (Table 1).

3.2 � GC content calculation of the predicted 10 siRNA’s
The exact amount of GC content in the predicted 10 
siRNA molecules were identified though GC-content 
calculator. It is generally recommended to pick siRNA 
sequences with low GC content (between 30 and 52%) 
[45]. This is because smaller GC content may limit the 
efficacy of target mRNA identification and hybridization. 
On the contrary, higher GC content may cause to take 
longer time to unwind the siRNA duplex [30]. GC con-
tent of all our ten siRNA’s predicted in the range of 26.1–
39.1%. We then filtered the rest of the siRNA’s whose GC 
content is under 30% from this study. This subsequently 
reduces our siRNA’s from 10 to 8 (Table 2).

3.3 � Secondary structure prediction of the 8 siRNA’s
The calculated free energy of folding as well as the 
secondary structure of the 8 siRNA’s was predicted 
through RNA Structure webserver. According to previ-
ous research, an RNA molecule should have the highest 
free energy of folding [46]. Study found that formation 
of secondary structure in siRNA molecules owing to 
lower folding free energy may prevent target cleavage 

Table 1  siRNA’s with target sequences predicted by siDirect webserver

Here all these 10 siRNA’s follows the all three rules of siRNA selection e.g., Ui-Tei, Reynolds and Amarzguioui

Alias Target sequence
(21nt target + 2nt overhang)

Target position in mRNA of 
cell surface binding protein

RNA oligo sequences 
21nt guide (5′ → 3′)
21nt passenger (5′ → 3′)

Functional siRNA 
selection: Ui-Tei 
Reynolds
Amarzguioui

Seed duplex 
stability (Tm) (°C)

Guide Passenger

S1 GCG​AAT​ATC​GTT​GAC​TCA​TAAGA​ 18–40 UUA​UGA​GUC​AAC​GAU​AUU​CGC​
GAA​UAU​CGU​UGA​CUC​AUA​AGA​

U R A 20.3 8.8

S2 GAG​AAT​AGC​GGT​GAG​TAT​AAATA​ 43–65 UUU​AUA​CUC​ACC​GCU​AUU​CUC​
GAA​UAG​CGG​UGA​GUA​UAA​AUA​

U R A 6.3 20.4

S3 TAC​GAA​TAC​TAT​GGC​AAT​AATTG​ 64–86 AUU​AUU​GCC​AUA​GUA​UUC​GUA​
CGA​AUA​CUA​UGG​CAA​UAA​UUG​

U R A 15.3 14.5

S4 GAC​GAC​AAT​AGT​GTT​CTG​AATTT​ 302–324 AUU​CAG​AAC​ACU​AUU​GUC​GUC​
CGA​CAA​UAG​UGU​UCU​GAA​UUU​

U R A 20.4 16.1

S5 ATG​TTT​ATT​GGT​GTT​GGA​AAAAT​ 344–366 UUU​UCC​AAC​ACC​AAU​AAA​CAU​
GUU​UAU​UGG​UGU​UGG​AAA​AAU​

U R A 20.1 − 1.4

S6 AGG​TAG​CAA​ATT​GTC​TAG​ATAAA​ 433–455 UAU​CUA​GAC​AAU​UUG​CUA​CCU​
GUA​GCA​AAU​UGU​CUA​GAU​AAA​

U R A 20.2 19.7

S7 ATC​CAA​TTG​ATT​GAC​TAT​CTTTT​ 499–521 AAG​AUA​GUC​AAU​CAA​UUG​GAU​
CCA​AUU​GAU​UGA​CUA​UCU​UUU​

U R A 18.9 13.8

S8 ATC​AAG​TGA​TTG​GAT​CCA​TAATC​ 671–693 UUA​UGG​AUC​CAA​UCA​CUU​GAU​
CAA​GUG​AUU​GGA​UCC​AUA​AUC​

U R A 21.2 19.2

S9 GTC​TTC​CTT​TCC​CCA​ATA​TATAT​ 694–716 AUA​UAU​UGG​GGA​AAG​GAA​GAC​
CUU​CCU​UUC​CCC​AAU​AUA​UAU​

U R A 0.0 18.7

S10 TGG​TTG​GTT​TCG​ACT​CAT​TATAA​ 813–835 AUA​AUG​AGU​CGA​AAC​CAA​CCA​
GUU​GGU​UUC​GAC​UCA​UUA​UAA​

U R A 13.4 18.8
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by RISC complex [46]. That’s why free energy of folding 
with associate secondary structure prediction is crucial 
for functional siRNA selection. In our study, the cal-
culated free energy of folding of the 8 siRNA’s ranged 
from − 0.1 to 1.8 (Table  3). Among them two siRNA’s 
molecule (S4 and S10) has no pair calculated by the 
webserver. We then filtered those non-pair and nega-
tive free energy of folding molecules from this study. 

This ultimately resulted in 5 siRNA molecule after anal-
ysis (Fig. 2).

3.4 � Computation of RNA‑RNA binding, heat capacity, 
concentration plot, and validation

The RNA structure webserver was utilized to compute 
the free energy of hybridization between the guide and 
target strand of the last five siRNAs. The efficacy of RNA 

Table 2  GC-content calculation of the predicted siRNA’s through GC-content calculator

Alias Target sequence
(21nt target + 2nt overhang)

Target position in mRNA of cell 
surface binding protein

RNA oligo sequences 
21nt guide (5′ → 3′)
21nt passenger (5′ → 3′)

GC content %

S1 GCG​AAT​ATC​GTT​GAC​TCA​TAAGA​ 18–40 UUA​UGA​GUC​AAC​GAU​AUU​CGC​
GAA​UAU​CGU​UGA​CUC​AUA​AGA​

39.1

S2 GAG​AAT​AGC​GGT​GAG​TAT​AAATA​ 43–65 UUU​AUA​CUC​ACC​GCU​AUU​CUC​
GAA​UAG​CGG​UGA​GUA​UAA​AUA​

34.8

S3 TAC​GAA​TAC​TAT​GGC​AAT​AATTG​ 64–86 AUU​AUU​GCC​AUA​GUA​UUC​GUA​
CGA​AUA​CUA​UGG​CAA​UAA​UUG​

30.4

S4 GAC​GAC​AAT​AGT​GTT​CTG​AATTT​ 302–324 AUU​CAG​AAC​ACU​AUU​GUC​GUC​
CGA​CAA​UAG​UGU​UCU​GAA​UUU​

34.8

S5 ATG​TTT​ATT​GGT​GTT​GGA​AAAAT​ 344–366 UUU​UCC​AAC​ACC​AAU​AAA​CAU​
GUU​UAU​UGG​UGU​UGG​AAA​AAU​

26.1

S6 AGG​TAG​CAA​ATT​GTC​TAG​ATAAA​ 433–455 UAU​CUA​GAC​AAU​UUG​CUA​CCU​
GUA​GCA​AAU​UGU​CUA​GAU​AAA​

30.4

S7 ATC​CAA​TTG​ATT​GAC​TAT​CTTTT​ 499–521 AAG​AUA​GUC​AAU​CAA​UUG​GAU​
CCA​AUU​GAU​UGA​CUA​UCU​UUU​

26.1

S8 ATC​AAG​TGA​TTG​GAT​CCA​TAATC​ 671–693 UUA​UGG​AUC​CAA​UCA​CUU​GAU​
CAA​GUG​AUU​GGA​UCC​AUA​AUC​

34.8

S9 GTC​TTC​CTT​TCC​CCA​ATA​TATAT​ 694–716 AUA​UAU​UGG​GGA​AAG​GAA​GAC​
CUU​CCU​UUC​CCC​AAU​AUA​UAU​

34.8

S10 TGG​TTG​GTT​TCG​ACT​CAT​TATAA​ 813–835 AUA​AUG​AGU​CGA​AAC​CAA​CCA​
GUU​GGU​UUC​GAC​UCA​UUA​UAA​

34.8

Table 3  RNA structure webserver prediction of free energy of folding of the predicted siRNA’s

Alias Target sequence
(21nt target + 2nt overhang)

Target position in mRNA of cell 
surface binding protein

RNA oligo sequences 
21nt guide (5′ → 3′)
21nt passenger (5′ → 3′)

Free 
energy of 
folding

S1 GCG​AAT​ATC​GTT​GAC​TCA​TAAGA​ 18–40 UUA​UGA​GUC​AAC​GAU​AUU​CGC​
GAA​UAU​CGU​UGA​CUC​AUA​AGA​

− 0.1

S2 GAG​AAT​AGC​GGT​GAG​TAT​AAATA​ 43–65 UUU​AUA​CUC​ACC​GCU​AUU​CUC​
GAA​UAG​CGG​UGA​GUA​UAA​AUA​

1.8

S3 TAC​GAA​TAC​TAT​GGC​AAT​AATTG​ 64–86 AUU​AUU​GCC​AUA​GUA​UUC​GUA​
CGA​AUA​CUA​UGG​CAA​UAA​UUG​

1.5

S4 GAC​GAC​AAT​AGT​GTT​CTG​AATTT​ 302–324 AUU​CAG​AAC​ACU​AUU​GUC​GUC​
CGA​CAA​UAG​UGU​UCU​GAA​UUU​

–

S6 AGG​TAG​CAA​ATT​GTC​TAG​ATAAA​ 433–455 UAU​CUA​GAC​AAU​UUG​CUA​CCU​
GUA​GCA​AAU​UGU​CUA​GAU​AAA​

1.7

S8 ATC​AAG​TGA​TTG​GAT​CCA​TAATC​ 671–693 UUA​UGG​AUC​CAA​UCA​CUU​GAU​
CAA​GUG​AUU​GGA​UCC​AUA​AUC​

1.5

S9 GTC​TTC​CTT​TCC​CCA​ATA​TATAT​ 694–716 AUA​UAU​UGG​GGA​AAG​GAA​GAC​
CUU​CCU​UUC​CCC​AAU​AUA​UAU​

1.8

S10 TGG​TTG​GTT​TCG​ACT​CAT​TATAA​ 813–835 AUA​AUG​AGU​CGA​AAC​CAA​CCA​
GUU​GGU​UUC​GAC​UCA​UUA​UAA​

–
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interference (RNAi) is closely associated with the bind-
ing energies of siRNAs to their corresponding target 
mRNAs. Therefore, the free energy of binding with the 
target (referred to as computational RNA-RNA interac-
tion) serves as a significant metric [47]. A lower binding 
energy indicates stronger interactions, thereby increas-
ing the likelihood of inhibiting the target. In our study, 
all five siRNAs from the previous analysis exhibited 
improved hybridization efficacy, with binding energies 
ranging between − 29.5 and − 34.5 (as depicted in Table 4 
and Fig.  3). This further confirms that the guide strand 
of these five siRNAs could effectively hybridize with the 
target strand in the mRNA.

Subsequently, following the binding energy calculation, 
we determined the heat capacity (TmCp) and duplex 
concentration (TmConc). The higher values of Tm (Cp) 
and Tm (Conc) also indicate the enhanced effectiveness 
of the siRNAs. The heat capacity plot represents Cp as a 
function of temperature, while TmCp is denoted when 
Cp is a function of Tm. Similarly, the concentration plot 

illustrates mole fractions as a function of temperature, 
with Tm (Conc) representing the point where the con-
centration of the double-stranded molecule is half of its 
maximum value [34]. The DINAMelt web server was 
employed to calculate the complete equilibrium melt-
ing profiles across a range of temperatures. In our case, 
the higher the TmCp and Tm (Conc) values, the more 
efficient the RNAi molecules were, as evidenced by the 
significant melting profiles listed in Table  4. Finally, we 
validated the efficacy of both siRNA molecules by assess-
ing their effectiveness using the SMEpred webserver. All 
five siRNAs demonstrated the highest inhibitory efficacy 
as calculated by the SMEpred webserver, as presented in 
Table 4.

3.5 � Calculation of off‑target effect and conservancy search 
against other strains

Despite the fact that our siRNAS has reduced off-target 
binding (as the seed-duplex Tm of all of these siRNA’s is 
under 21.5 °C), we BLASTn the final two siRNAs against 

Fig. 2  Prediction of free energy of folding of the putative siRNA’s
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the human genomic transcript to find out possible 
homology. This finding revealed that our projected siR-
NAs are unique and have no link to any human genomic 
target.

After, that, we employed conservancy analysis of the 
5 siRNA molecules target against 83 strains of monk-
eypox virus from recent outbreak of 2022 through mul-
tiple sequence alignment and NCBI Blast search. All of 
the siRNA molecule’s target except S2 and S8 molecules 
showed 100% conservancy after conservancy analysis 
(Table 4 and Fig. 4). S2 and S8 molecules showed 98.80% 
conservancy (out of 83 sequences, 82 sequences matched 
with target). We also build a phylogenetic tree of the 83 
strains for cell surface binding protein coding sequences. 
No strains showed any significant divergence after tree 
analysis (bootstrap value ≥ 100%) (Fig.  5). These results 
stated that our predicted siRNA’s are mostly conserved 
among the other strains of recent monkeypox outbreak.

3.6 � Molecular modeling and docking analysis of final 
siRNA’s and Ago2

Molecular modeling of the final siRNA molecules was 
conducted by Mfold and RNA Composer webserver. 
First of all we imputed the five guide siRNA sequences 
in the Mfold webserver to form the RNAdraw format. 
Then we used this RNAdraw format in the RNA Com-
poser webserver to compose the final 3D structure of the 
final siRNA molecules. After designing the 3D models 

of siRNA’s, we modeled the 3D structure of the human 
Ago2 (argonaute 2) protein through Robetta homol-
ogy modeling webserver. We used the refseq sequence 
of the human Ago2 e.g., UniprotKB: Q9UKV8 to model 
the Ago2 protein. The template for the homology mod-
eling selected was 4Z4D crystal structure (Human argo-
naute protein bound to t1-G target RNA) as this protein 
showed maximum sequence similarity with our Ago2 
sequence. The modeled protein was then refined with the 
GalaxyRefine webserver. The quality of the model was 
checked using Ramachandran plot analysis of ZLab web-
server [48]. Ramachandran analysis of Ago2 3D struc-
ture revealed good plot with 99.062% residues laid in the 
highly preferred observation. Only 0.938% residues laid 
in the preferred region and no residues found lied in the 
questionable region (Fig. 6).

Finally, molecular docking of the final five siRNA 
molecule and human Ago2 was conducted by HDOCK 
webserver (Fig.  7). Human Ago2 is selected for dock-
ing as targeting the coding sequence (CDS) with siRNA 
is suggested for modulating transcript levels via Argo-
naute 2 (Ago2) mediated transcript cleavage. And com-
plementary siRNA targeting the 3′untranslated region 
(UTR) of mRNA causes translational repression, which 
is mediated by Ago1, Ago3, and Ago4 [45]. As we have 
targeted the CDS of Monkeypox virus, that’s why we 
docked our siRNA’s with human Ago2 protein [49, 50]. 
In addition, we also docked a 20nt length RNA (UUC​

Table 4  Calculation of free energy of binding, heat capacity, concentration plot and conservancy search against other strains of 
monkeypox virus

Alias Target position 
in mRNA of 
Spike

Target sequence
(21nt target + 2nt 
overhang)

RNA oligo sequences 
21nt guide (5′ → 3′)
21nt passenger 
(5′ → 3′)

Free energy 
of binding

Tm (°C) Validity % of RNA sequence 
matched with other 
strainsTm (Cp) Tm (Conc)

S2 43–65 GAG​AAT​AGC​GGT​GAG​
TAT​AAATA​

UUU​AUA​CUC​ACC​GCU​
AUU​CUC​
GAA​UAG​CGG​UGA​GUA​
UAA​AUA​

− 33.9 89.8 88.7 74.6 98.80% (82/83)

S3 64–86 TAC​GAA​TAC​TAT​GGC​AAT​
AATTG​

AUU​AUU​GCC​AUA​GUA​
UUC​GUA​
CGA​AUA​CUA​UGG​CAA​
UAA​UUG​

− 29.5 83.6 82.2 68.9 100.00% (83/83)

S6 433–455 AGG​TAG​CAA​ATT​GTC​
TAG​ATAAA​

UAU​CUA​GAC​AAU​UUG​
CUA​CCU​
GUA​GCA​AAU​UGU​CUA​
GAU​AAA​

− 33.0 83.6 82.2 84.6 100.00% (83/83)

S8 671–693 ATC​AAG​TGA​TTG​GAT​
CCA​TAATC​

UUA​UGG​AUC​CAA​UCA​
CUU​GAU​
CAA​GUG​AUU​GGA​UCC​
AUA​AUC​

− 32.8 87.3 86.1 97.7 98.80% (82/83)

S9 694–716 GTC​TTC​CTT​TCC​CCA​ATA​
TATAT​

AUA​UAU​UGG​GGA​AAG​
GAA​GAC​
CUU​CCU​UUC​CCC​AAU​
AUA​UAU​

− 34.5 92.9 92.7 70.6 100.00% (83/83)
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ACA​UUG​CCC​AAG​UCU​UU) with our Ago2 receptor 
as a control. The RNA that was used as a control is the 
ligand of human argonaute-2 protein of PDB ID: 4Z4D. 
We docked this 20nt RNA with our modeled Ago2 pro-
tein to find out if the docking is successful or not. Our 
docking analysis through HDOCK docking server 
revealed control RNA binds in the same pocket (Energy: 
− 1081.52, ligand RMSD: 0.21) as resembled to 4Z4D 
Human Argonaute2 with t1-G Target RNA (Table  5). 
After docking of the control RNA we docked the five 
siRNA molecules with our modeled human Ago2 pro-
tein. Among the five docked complex, siRNA complex 
S8-Ago2 showed lowest docking energy (− 408.24) with 
lowest ligand RMSD (27.29). The others complex also 
showed docking energy lower than − 300 except com-
plex no S6 (Table 5). We then selected this best docked 
complex (S8) for interaction analysis through Discovery 
studio and PDBsum webserver. Interaction analysis with 
receptor protein showed that our predicted siRNA mol-
ecule S8 binds in the same cavity as like as the control 
and spanning mostly between the PAZ and PIWI domain 
of Ago2 (Fig. 8 and Table 6). The interacting residues are 

also found similar to the control RNA bound with Ago2 
e.g., LYS65, CYS66, PRO67, LYS124, ASP125, ARG277, 
LYS278, TYR279, PHE294, TYR311, ARG315, GLN332, 
LYS335, HIS336, THR337, ARG351, ILE365, THR368, 
LYS525, LYS550, VAL598, THR599, LYS709, ARG710, 
HIS753, GLN757, GLY758, THR759, SER760, ARG761, 
TYR790, ARG792, CYS793, ARG795, VAL797, SER798, 
TYR804, PHE811, TYR815. Some residues of the docked 
complex are also found similar with previously reported 
studies which are ARG277, ARG315, ARG351, ILE353, 
ILE365, LYS709, ARG710, GLN757, THR759, ARG761, 
ARG792, SER798, TYR804 [51–53]. So, it can be stated 
that these residues are conserved for binding of the siR-
NA’s with human Ago2 protein. While identifying prom-
ising siRNA candidates in silico represents a significant 
step toward developing therapeutic interventions against 
the Monkeypox virus, several challenges remain to be 
addressed for successful translation into clinical appli-
cations. These include siRNA instability within biologi-
cal fluids, limited cellular absorption by target cells, and 
the need for reliable and targeted delivery methods. To 
overcome these hurdles, future research will focus on 

Fig. 3  Prediction of free energy of binding of the putative siRNA’s
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investigating the efficacy of various siRNA modifications, 
such as 2’-O-methyl or LNA, to enhance their stability 
and in  vivo persistence. Additionally, the application of 
diverse delivery systems, including liposomes, nanopar-
ticles, and cell-penetrating peptides, will be explored to 
facilitate efficient cellular uptake of the siRNAs. Further-
more, strategies such as ligand conjugation and micro-
fluidic devices will be investigated for targeted delivery 
to specific cell types infected by the Monkeypox virus. 
Through a multifaceted approach combining in vitro and 
in  vivo studies, we aim to identify the most promising 
siRNA modifications and delivery methods, paving the 
way for the development of effective siRNA-based thera-
pies against the Monkeypox virus.

4 � Discussion
The Poxviridae family’s Orthopoxvirus genus contains 
multiple human diseases, including monkeypox (MPV), 
Vaccinia (VACV), cowpox (CPXV), and Variola (VARV) 
viruses [54]. Vaccination is now the only way to protect 
against exposure with these viruses, and no authorized 

antiviral medication therapy is accessible [54]. Monkey-
pox virus (MPV) was first isolated in cynomolgus mon-
keys bred in laboratories [55]. The virus is thought to 
be propagating throughout central and western Africa 
for a long period in a variety of animal hosts, including 
squirrels. Early human infestations with MPV, which 
were discovered in Zaire and later in Liberia and Sierra 
Leone, were caused by exposure to infected animals 
[56]. However, individual transmission has lately been 
reported [57]. Monkeypox illness symptoms are compa-
rable to smallpox, but with fewer mortality and a more 
concentrated pustular rash distribution [58]. Because 
of the ceasing of smallpox vaccination in the early 
1980s, contemporary public immunity to poxviruses 
is termed non-protective, and younger generations are 
called immunological naive [59]. There are currently no 
licensed medications to treat poxvirus infections, and the 
use of antiviral Cidofovir and ST-246 could slowly decline 
as resistant viral strains evolve or  therapeutic adverse 
effects are detected [60–63]. As a result, there is an 
urgent need for more effective medications and unique 

Fig. 4  Conservancy analysis of the siRNA’s against all other strains of monkeypox virus
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therapy procedures that can survive field application con-
ditions. Furthermore, recently the outbreak of Monkey-
pox virus The World Health Organization just published 
a paper entitled "Multi-country monkeypox epidemic in 
non-endemic countries" that describes the current sce-
nario [10]. According to the post, as of May 21, 13:00, "92 
laboratory confirmed cases of MPV also have been sub-
mitted to WHO" from twelve countries where the virus is 
not prevalent. So far, the majority of these cases actually 

have been reported in Western Europe and North Amer-
ica. According to the WHO article, the cases "confirmed 
by PCR" are from the MPV lineage seen in West African 
clade. So, an updated and new protecting method is nec-
essary against the virus and which is our concern.

In this study, we have used the RNAi interference 
technology to identify the possible siRNA’s against the 
Monkeypox virus E8L or cell surface binding protein 
gene. Because viruses have relatively tiny genomes with 

Fig. 5  Phylogenetic tree analysis of the 83 strains for cell surface binding protein coding sequences of monkeypox virus
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a limited number of targetable genes, the utilization of 
the RNAi pathway as a new method in antiviral drug dis-
covery is especially promising. Furthermore, the genetic 
difference among mammalian and viral genomes offers a 
benefits in terms of decreasing off-target hits and adverse 
effects [64]. RNAi studies have being very useful in 
understanding gene functions in a wide range of prokary-
otic and eukaryotic cells [65]. Recent developments in 
siRNA delivery technologies  have also emphasized the 
RNAi pathway’s enormous value as a therapeutic option 
for infectious, neurological, cancer, and genetic disor-
ders [66]. Thus, in this study we thus identified the pos-
sible siRNA’s against the Monkeypox virus by analyzing 
through different webservers and molecular docking. 
We also did a literature review of the previous work of 
siRNA prediction against other orthopox viruses. In 
a 2009 study, Abdulnaser Alkhalil and his colleagues 
reported the efficiency of RNA interference in inhibit-
ing Monkeypox viral reproduction [54]. They discovered 
two siRNA pools with significant antiviral characteris-
tics that reduced virus replication to less than 10% of its 
proliferation in control untreated cells. They targeted the 
E8L and A6R gene of Monkeypox virus and finally iden-
tified 4 siRNA’s for each of the gene. Among them two 
siRNA’s of E8L gene e.g., siE8L-a (CGA​CAA​TAG​TGT​
TCT​GAA​T) and siE8L-d (GAA​TAG​CGG​TGA​GTA​TAA​
A) is also found in our study (S2 and S4). They showed 
that siE8L-d severly disrupted MPV replication in their 
study. Furthermore, another study against Vaccinia virus 

double-stranded RNA binding protein [E3L] displays sig-
nificant antiviral activities which was published in 2006 
[67]. Rajnish S. Dave et al. targeted the E3L gene of vac-
cinia virus for siRNA prediction in the study, and their 
data show that E3L-C siRNAs are capable of suppressing 
Vaccinia viral replication by 97% and 98%, respectively, 
when compared with the control infection in two human 
cell types, HeLa and 293T cells [67]. In another study, 
Solenne vignee demonstrated the selective suppression of 
orthopoxvirus replication by a short interfering RNA tar-
geting the D5R gene [68]. They discovered that whether 
applied prophylactically or therapeutically, a 100  nM 
siRNA (siD5R-2) targeting the D5 protein reduced vac-
cinia virus strain western reserve (VACVWR) multipli-
cation by up to 90% in human lung cancer A549 cells. 
At a dose of 100 Nm, this siRNA inhibited VACVWR 
replication in a concentration-dependent manner and 
had a 72-h preventive antiviral effect. They also con-
firmed siD5R-2’s antiviral effectiveness against additional 
harmful orthopoxviruses including cowpox and mon-
keypox, which were suppressed up to 70% at the lowest 
dose (1 nM). In another work, Solenne Vigne et al. [69] 
employed RNA interference, by itself or in conjunc-
tion with cidofovir, to limit orthopoxvirus replication. 
They employed plaque reduction and virus yield tests to 
test the antiviral efficacy of two chosen small interfering 
RNAs (siRNAs) designated siB1R-2 and siG7L-1, as well 
as a previously published siRNA, siD5R-2, against vac-
cinia virus (VACV). They discovered that siB1R-2 and 

Fig. 6  Homology modeling and Ramachandran plot analysis of human argonaute-2 protein
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Fig. 7  Molecular docking of the 5 final siRNA’s and control with human argonaute-2 protein
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siG7L-1, when given before to or after viral infection, 
inhibited VACV multiplication by more than 90%. Fur-
thermore, at a dose of 1 nM, these two siRNAs reduced 
monkeypox viral multiplication by 95%. Also when 
siB1R-2, siG7L-1, or siD5R-2 was coupled with cidofovir, 
strong synergistic effects were seen. This finding shown 
that siRNAs are effective in  vitro inhibitors of not only 
wild-type VACV but also numerous cidofovir-resistant 
VACV.

The COVID-19 pandemic stressed the significance of 
developing effective vaccinations quickly. While research 
is still in its early stages, the monkeypox virus (MPV) 
has the potential to become a serious public health haz-
ard in the USA and throughout the world. Today, there 
are various vaccinations available now that give some 
protection against monkeypox as well as smallpox. How-
ever, a newer smallpox vaccine (MVA-BN, also known 

as Imvamune, Imvanex, or Jynneos) was authorized in 
2019 for use in treating monkeypox but is not yet read-
ily accessible [70]. Vaccines for smallpox and JYNNEOS 
provide protection against MPV, although vaccine devel-
opment should continue because to vaccination escape. 
Furthermore, because smallpox immunization was dis-
continued in 1980, many younger individuals were never 
even immunized and so lack immunity [70]. That is why a 
newer protection method is necessary against the Monk-
eypox virus. Although fewer studies is now begin to con-
duct against the monkepox virus, (For example, Andrew 
Gao et al identified non-cross reactive epitopes for 2022 
outbreak of Monkeypox cell surface binding protein) 
much more study is needed to fully protected against this 
virus [23]. Thus, our study could be a promising outcome 
in this sector.

However, the potential of siRNAs for targeted gene 
silencing in therapeutic applications may face vari-
ous challenges, including siRNA instability, limited cel-
lular absorption, and the absence of a reliable delivery 
method [71]. To enable effective gene therapy, a pro-
moter-controlled vector can facilitate the transport of 
therapeutic genes to the intended cells [72]. In order to 
evaluate the effectiveness of newly generated siRNA, a 
vector-based siRNA in plasmid form can be employed 
to specifically target genes within a cell line [73]. In our 
research, we have identified potential siRNA molecules 
for RNAi activity against the cell surface binding pro-
tein of Monkeypox virus. Further in vitro investigations 

Table 5  Docking parameters of the final siRNA’s with human 
Argonaute-2 protein

Alias HDOCK docking score Ligand RMSD (Å)

Control − 1081.52 0.21

S2 − 345.82 114.66

S3 − 337.59 29.25

S6 − 286.13 35.11

S8 − 408.24 27.29

S9 − 343.07 144.99

Fig. 8  Docking interaction analysis of the siRNA complex S8-Argonaute-2 protein through PDBsum webserver
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using vector-based approaches are required to assess 
the efficacy of our proposed siRNAs. We anticipate 
that our research will make a valuable contribution 
to this field. Ultimately, the discovery of this siRNA 

therapeutic approach could offer a promising alternative 
to traditional vaccine design in mitigating the spread of 
Monkeypox.

Table 6  Docking interaction analysis of the best binding complex S8 siRNA and human Argonaute-2

a Residues matched with previous studies
b Residues matched with control

Alias RNA oligo sequences 
21nt guide (5′ → 3′)

Docking score Interacting residues in Ago2 domains

N-terminal (36–166) L1 (176–226) PAZ (238–375) Mid (429–511) PIWI (517–818)

S8 UUA​UGG​AUC​CAA​UCA​
CUU​GAU​

 −408.24 GLU64 VAL177b MET275, LYS276 VAL434 LYS525b, LYS550b

LYS65b GLY178b ARG277a,b, LYS278b TRP435 VAL598b, THR599b

CYS66b TYR279b, PHE294b ASP436 HIS600, PRO601

PRO67b GLU299, TYR311b ARG438 PRO602, ALA603

LYS124b ARG315a,b, VAL330 GLY604, ARG635

ASP125b GLY331, GLN332b LYS709a,b, ARG710a,b

ARG126 LYS335b, HIS336b HIS753b, GLN757a,b

THR337b, ARG351a,b GLY758b, THR759a,b

ILE353a,b LYS355 SER760b, ARG761a,b

THR357, ASP358 TYR790b, ARG792a,b

ASN359, THR361 CYS793b, ARG795b

SER362, ILE365a,b VAL797b, SER798a,b

ARG366, THR368b ILE799, TYR804a,b

HIS807, PHE811b

ARG814, TYR815b

Control UUC​ACA​UUG​CCC​AAG​
UCU​UU

 −1081.52 LYS65 PRO176 LYS266 LEU522, GLY524

CYS66 VAL177 ILE269 LYS525, THR526

PRO67 GLY178 ARG277 TYR529, LYS533

ARG68 ARG179 LYS278 THR544, GLN545

VAL70 TYR279 CYS546, VAL547

ASP95 ARG280 GLN548, LYS550

ARG97 PHE294 ASN551, GLN558

GLY121 LEU296 THR559, ASN562

GLY123 VAL308 N/A LEU563, LYS566

LYS124 TYR311 LYS570, VAL598

ASP125 PHE312 THR599, HIS600

ARG315 GLY670, VAL671

HIS316 SER672, GLY674

GLN332 GLN675, LYS709

LYS335 ARG710, ARG714

HIS336 HIS753, ALA754

THR337 GLY755, ILE756

TYR338 GLN757, GLY758

LEU339 THR759, SER760

PRO340 ARG761, PRO762

ARG351 TYR790, ARG792

MET364 CYS793, ARG795

ILE365 SER796, VAL797

THR368 SER798, TYR804

ARG375 PHE811, ARG812

TYR815, ALA859
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5 � Conclusions
While the current study has identified potential siRNA 
candidates against the Monkeypox virus through in sil-
ico analysis, it is important to acknowledge the limita-
tions inherent to such computational approaches. The 
identified siRNAs require further validation and test-
ing in experimental settings, including cell culture and 
animal models, to confirm their efficacy and address 
concerns related to potential off-target effects, siRNA 
instability, and delivery efficiency. Despite these limita-
tions, this research highlights the potential of siRNA 
technology as a promising avenue for developing novel 
therapeutic strategies against the Monkeypox virus. 
By targeting the E8L gene or the cell surface-binding 
protein gene, siRNAs offer a targeted approach with 
potentially reduced off-target effects compared to 
conventional antiviral drugs. This study builds upon 
prior research demonstrating the effectiveness of 
RNAi against poxviruses, adding to the growing body 
of evidence supporting its potential as a valuable tool 
in the fight against emerging viral threats. In light of 
the urgent need for effective interventions against the 
Monkeypox virus, further research is crucial to trans-
late the findings of this study into practical applications. 
This includes in  vitro validation using vector-based 
siRNA delivery systems, addressing challenges related 
to siRNA stability and delivery efficiency, and demon-
strating efficacy in animal models. By overcoming these 
hurdles, siRNA-based therapeutics have the potential 
to offer a viable alternative to existing preventive meas-
ures, such as vaccination, and contribute significantly 
to the management of the Monkeypox pandemic.
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