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Abstract 

Background Numerical methods are used to solve differential equations, but few are effective for nonlinear ordi-
nary differential equations (ODEs) of order higher than one. This paper proposes a new method for such ODEs, based 
on Taylor series expansion. The new method is a second-order method for second-order ODEs, and it is equiva-
lent to the central difference method, a well-known method for solving differential equations. The new method 
is also simple to implement for higher-order differential equations. The proposed technique was applied to solve 
the Van der Pol and Van der Pol–Duffing equations. It is stable over a wide range of nonlinearity and produces accu-
rate and reliable results. For the self-excitation Van der Pol equation, the proposed technique was applied with differ-
ent values of nonlinear damping.

Results The results were compared with those obtained using the ODE15s solver in MATLAB. The two sets of results 
showed excellent agreement. For the forced Van der Pol–Duffing equation, the proposed technique was applied 
with different values of exciting force amplitude and frequency. It was found that for certain conditions, the solution 
obtained using the proposed technique differed from that obtained using ODE15s.

Conclusions The solution obtained using the proposed technique showed good agreement with the solutions 
obtained using ODE45 and Runge–Kutta fourth order. The results show that the proposed approach is very simple 
to apply and produces acceptable error. It is a powerful and versatile tool for solving of high-order nonlinear differen-
tial equations accurately.
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1  Background
Ordinary differential equations (ODEs) are used to model 
a broad range of problems, such as the motion of objects, 
the spread of diseases, and the behavior of financial mar-
kets. Many ODEs are nonlinear. Nonlinear ODEs can 

be difficult to solve analytically, so numerical methods 
are often used to approximate their solutions. However, 
there are few effective numerical methods for solving 
nonlinear ODEs, especially those of higher order. The 
greatest popular methods are Runge–Kutta [1, 2] and 
predictor–corrector methods based on Adams–Bash-
forth and Adams–Moulton methods [3, 4], or their vari-
ations [5–8].

Runge–Kutta methods are a family of numerical meth-
ods that are commonly utilized to solve ODEs. They are 
known for their accuracy and efficiency, and they can be 
used to solve both linear and nonlinear ODEs.
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Predictor–corrector methods are another family of 
numerical methods that can be used to solve ODEs. 
They are based on using a predictor method to esti-
mate the solution at the next time step, and then using 
a corrector method to improve the estimate. Predic-
tor–corrector methods are often more accurate than 
Runge–Kutta methods, but they can also be more 
computationally expensive.

Adams–Bashforth and Adams–Moulton methods 
are two specific types of predictor–corrector methods. 
They are often used together, with Adams–Bashforth 
methods used for prediction and Adams–Moulton 
methods used for correction.

“Adams–Bashforth and Adams–Moulton” methods 
can be used to solve both linear and nonlinear ODEs. 
However, they are particularly well suited for solving 
nonlinear ODEs of order higher than one.

This paper proposes a new approach to solve higher-
order differential equations emergent from initial 
value problems (IVPs). The new method is efficient 
and accurate and can be used to solve any nth-order 
nonlinear ordinary differential equation emergent 
from IVPs. This is a momentous advance in the study 
of numerical methods and could be used in a variety of 
applications, such as physics, engineering, and finance 
due to its ease of application.

The new approach has been developed to solve the 
differential equations of the self-excited and nonlinear 
oscillators, which are two types of nonlinear differ-
ential equations that arise in a variety of physical and 
engineering applications. These equations are known 
to be difficult to solve, especially for higher orders. 
The new approach is able to solve these equations with 
greater accuracy and efficiency in a simple manner 
than previous methods.

The solution of the free response of self-excited 
equation considering different damping effects and 
with different initial conditions as well as the forced 
response with different values of exciting force ampli-
tude and frequency is obtained.

Results are compared with that obtained by the 
ODE15s algorithm for self-excitation Van der Pol oscil-
lator and they are in excellent agreement. The absolute 
error is of order  10−3 or less. Results for forced non-
linear oscillator are compared with ODE15s, ODE45 
in MATLAB, and Runge–Kutta fourth order. The 
comparison shows that the present technique and the 
Runge–Kutta fourth-order (RK4) method produce 
very similar results with minimum relative error com-
pared to the other techniques.

2  Methodology of the proposed technique
The initial value problem can be written in a general 
form as:

Subject to the initial conditions

In Eq.  (1), derivatives of the function f  can be 
denoted by either superscripts or dots. The function 
f  depends on the time variable t, the unknown func-
tion y, and its derivatives up to order n. The values of 
the first n− 1 derivatives of the function y at the initial 
value t0 (which is assumed to be 0 unless stated other-
wise) are given by the constants ai (where i = 1, 2, …, 
n− 1).

The new method for solving ODEs requires that the 
ODE must be rewritten so that the highest-order deriv-
ative term is alone on one side of the equation, and the 
lower-order derivative terms and all other terms are on 
the other side of the equation.

Since the  nth derivative at the initial condition an 
is unknown, it can be found by substituting the ini-
tial conditions (2) into Eq.  (3). Therefore, we will now 
describe a solution procedure to solve equations of the 
form (1), subject to initial conditions of the form (2).

The given text is a description of the new approach 
for solving ordinary differential equations (ODEs) 
using Taylor series expansion. The method begins by 
discretizing the domain of the variable t , i.e., divid-
ing it into a number of subintervals of the length of 
�t = (T − t0)/N  . Then, at each grid point tj , the func-
tion y and its derivatives up to order n− 1 are approxi-
mated using Taylor series expansion. Finally, the nth 
derivative is obtained using Eq. (3).

This process is repeated for j = 1 to N  , to obtain the 
approximate values of y and its derivatives at all grid 
points. The procedure of the numerical solution of 
ODEs using Taylor series expansion is as follows:

1. Find the nth derivative at the initial condition using 
Eq. (3).

2. Discretize the domain of the independent variable t.
3. At each grid point tj , approximate y and its deriva-

tives up to order n− 1 using Taylor series expansion 
using Eq. (4).

(1)f y(n)(t), y(n−1)(t), . . . , ẏ(t), y(t), t = 0

(2)y(t0) = a0, y
′(t0) = a1, . . . , y

(n−1)(t0) = an−1

(3)y(n)(t) = g
(

y(n−1)(t), y(n−2)(t), . . . , ẏ(t), y(t), t
)
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4. Obtain the nth derivative using Eq. (3).
5. Repeat steps 3 and 4 for j = 1 to N.

This method is a powerful tool for solving ODEs 
numerically, but it is essential to remember that the accu-
racy of the solution is based on the number of subinter-
vals N and the order of the Taylor series expansion n.

The new method expresses the derivatives of a func-
tion in a simplified manner using the Taylor expansion 
directly. This means that instead of using complex math-
ematical formulas, the derivatives can be calculated using 
a few simple steps.

For example, when solving a second-order differential 
equation, the first derivative of the function can be cal-
culated using the central difference method. The central 
difference method can be used to approximate the first 
derivative of a function at a point, which can be useful for 
solving second-order differential equations. This method 
is based on the Taylor expansion of the function at two 
points, one slightly ahead of the point of interest and one 
slightly behind.

In the new method, the Taylor expansion for the first 
derivative is applied directly in simplified form. This 
means that the derivatives can be calculated more quickly 
and easily, and with less chance of error.

The Taylor expansion of the function y at time t + ∆t is:

The first derivative of y at time t + ∆t using the central 
difference method is:

Substituting the Taylor expansion of y(t + 2∆t) into the 
central difference equation, we get:

(4)

y
(

tj
)

= y
(

tj−1

)

+ ẏ
(

tj−1

)

�t + ÿ
(

tj−1

)�t2

2!
+ · · · +

y(n−1)
(

tj−1

)

�t(n−1)

(n− 1)!
+

y(n)
(

tj−1

)

�t(n)

(n)!

ẏ
(

tj
)

= ẏ
(

tj−1

)

+ ÿ
(

tj−1

)

�t +
...
y
(

tj−1

)�t2

2!
+ · · · +

y(n−1)
(

tj−1

)

�t(n−2)

(n− 2)!
+

y(n)
(

tj−1

)

�t(n−1)

(n− 1)!

·

·

·

y(n−2)
(

tj
)

= y(n−2)
(

tj−1

)

+ y(n−1)
(

tj−1

)

�t + y(n)
(

tj−1

)

�t2/2!

y(n−1)
(

tj
)

= y(n−1)
(

tj−1

)

+ y(n)
(

tj−1

)

�t

(5)y(t +�t) = y(t)+ ẏ(t)�t +
1

2
ÿ(t)�t2

(6)ẏ(t +�t) =
y(t + 2�t)− y(t)

2�t

ẏ(t +�t) =
y(t)+ 2ẏ(t)�t + 2ÿ(t)�t2 − y(t)

2�t

Simplifying, we get:

This is the expression for the first derivative of y at time 
t + ∆t using the new method. The two forms are equiva-
lent, but the second form is simpler and easier to under-
stand. It is also easier to implement in computer code. 

The simplified form of the central difference method is 
particularly useful for students and early-career profes-
sionals who are new to numerical methods.

3  The problem of Van der Pol oscillator
Van der Pol was a Dutch engineer who studied how 
things move. In 1927, he came up with a new equation 
to describe how electrical circuits oscillate. This equa-
tion is now used to study many different kinds of systems, 
including human hearts and the Earth’s climate. The 
Van der Pol oscillator is a special type of system that can 
oscillate on its own. This means that it does not need any 
external input to keep moving. Van der Pol oscillators 
are found in many different natural systems, and they are 
also used in many different technologies. It is a nonlin-
ear differential equation, which means that there is no 
easy solution, but it can be solved numerically. The self-
excited oscillator equation is a resourceful model that can 
be utilized to represent a broad range of oscillatory phe-
nomena in many different fields [9–12].

The self-excited oscillator equation generally takes the 
form

Equation  (8) is a nonlinear inhomogeneous ordinary 
differential equation (ODE) with order 2 that describes 
the dynamics of the self-excited oscillator. It requires two 
initial conditions to solve. The parameter µ represents 
the strength of the oscillator damping. The right-hand 
side of Eq. (8) stands for the forced manner of the oscil-
lator and is given as f(t) = Fcos(ωt), where F is the ampli-
tude of the exciting force and ω is the frequency of the 

(7)ẏ(t +�t) = ẏ(t)+ ÿ(t)�t

(8)ÿ− µ

(

1− y2
)

ẋ + y = f (t)
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oscillating force. If f(t) = 0, then Eq. (8) reduces to a non-
linear homogeneous second-order independent ODE, 
which is Eq. (9).

The unforced self-excited oscillator equation is a non-
linear differential equation that is given by Eq. (9). Trun-
cated expansions can be utilized to find approximate 
solutions to this equation, although there are no known 
exact solutions [13].

Balthazar Van der Pol studied the case where a force is 
applied to his Eq. (8) with μ ≥ 1. He called this phenom-
enon “relaxation oscillations” [10, 14, 15].

Since then many people have tried to solve Eq.  (9) 
using both analytical and numerical methods to see if 
it has a limit cycle [16]. Equation  (9) has a well-devel-
oped theory of existence, uniqueness, and stability, as 
extensively discussed in [17]. Many authors have found 
the solution to Eq.  (9), including in [18] using the col-
location method and in [19] using MATLAB Ode15s 
and Ode45 built-in functions, and in [20] using the 
damped Fourier series method. Also, in [11] using 

(9)
{

ÿ− µ
(

1− y2
)

ẏ+ y = 0
Subjected to y(t0) = y0 and ẏ(t0) = ẏ0

predictor–corrector Adam–Bashforth–Moulton method, 
in [12] using restarted A domain decomposition method, 
and in [21] utilizing the segmenting recursion method.

The literature explores the Van der Pol oscillator 
through diverse methods, ranging from classical tech-
niques like harmonic balance and Krylov–Bogoliubov–
Mitropolsky to modern approaches like neural networks. 
Several studies tackle specific aspects: references [22] and 
[23] focus on different stiffness conditions, [24] intro-
duces a new variant method, [25] utilizes a two-point 
block method, [26] leverages the KBMM method, [27] 
employs hybrid functions, and [28, 29] applies a meshfree 
neural network algorithm to a more complex variant of 
the oscillator. This showcases the breadth and ongoing 
development of techniques used to analyze and under-
stand this important nonlinear system.

Advances in computational mathematics have made it 
possible to test the accuracy and performance of new or 
modified numerical methods for solving nonlinear dif-
ferential equations by applying them to well-developed 
physical models, such as the unforced self-excited equa-
tion. This model is a classic test problem that is utilized 
to assess the efficiency and reliability of new methods 
[11, 20].
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4  The problem of Van der Pol–Duffing oscillator
Van der Pol–Duffing forced oscillator equation is as 
follows:

The system is characterized by its linear and nonlinear 
damping coefficients (ε and μ), its linear and nonlinear 
stiffness coefficients (α and β), and the excitation ampli-
tude (F) and frequency (ω). The initial displacement and 
velocity of the system are y0 and ẏ0 , respectively.

When F = 0, (10) reduces into self-excited oscillator 
equation, when β = 0, and ε = −µ, (10) reduces into Van 
der Pol oscillator equation; When μ = 0, (10) reduces into 
Duffing oscillator equation.

5  Application of the proposed technique
In this technique, the differential Eq. (10) is rearranged as 
follows:

By direct substitution of the initial conditions given in 
(10), the acceleration at starting point can be written as:

The approximate displacement function at a time 
t +�t is obtained using the first of (4):

The approximate velocity function at a time t +�t is 
obtained using (4):

The approximate acceleration function at a time t +�t 
is obtained using Eq. (11) as:

So, the first iteration is obtained from Eqs. (13) through 
(15) as:

(10)
{

ÿ+
(

ε + µy2
)

ẏ+ αy+ βy3 = F cos (ωt)
Subjected to y(t0) = y0 and ẏ(t0) = ẏ0

(11)ÿ(t) = −

(

ε + µy2
)

ẏ− αy− βy3 + F cos (ωt)

(12)
ÿ(0) = −

(

ε + µy2(0)
)

ẏ(0)− αy(0)− βy3(0)+ F cos (ω × (0))

(13)y(t +�t) = y(t)+ ẏ(t)�t +
1

2
ÿ(t)�t2

(14)ẏ(t +�t) = ẏ(t)+ ÿ(t)�t

(15)
ÿ(t +�t) = −

(

ε + µy2(t +�t)
)

ẏ(t +�t)

− αy(t +�t)− βy3(t +�t)

+ F cos (ω × (t +�t))

(16)y(�t) = y(0)+ ẏ(0)�t +
1

2
ÿ(0)�t2

The recurrence formula can be written as:

The recurrence formula is simple, direct, and 
straightforward.

6  Results
Presented below are the results of this research.

7  Discussion
7.1  Free vibration
The recursive relations in Sect. 5 are developed to solve 
Van der Pol’s oscillator Eq. (9) with the non-exciting force 
for different values of the nonlinearity parameter µ . The 
initial conditions are y(0) = 2 and ẏ(0) = 0.

The solution obtained using the present technique 
is compared with the solutions obtained using Euler’s 
method and the ODE15s solver in MATLAB. Figure  1 
shows the comparison for µ = 20.

Figures 2, 3, 4, 5, 6 and 7 show the solutions for µ = 0.1, 
1, 10, 20, 50, and 100, respectively. The present solution 
is compared with the solution obtained using the multi-
step reverse numerical integration algorithm ODE15s in 
MATLAB.

Tables 1, 2, 3, 4, 5 and 6 show the absolute error in the 
present solution compared to the ODE15s solution at a 
different time to t = 50 s for µ = 0.1, 1, 10, 20, 50, and 100, 
respectively. The error is of order  10−3 or less.

This shows that the present technique is a powerful and 
easy way to solve “Van der Pol’s” oscillator problem.

7.2  Forced vibration
The responses of the forced Van der Pol–Duffing oscil-
lators are obtained using the proposed technique. Two 
examples of Van der Pol–Duffing forced oscillator 
Eq. (10) are presented.

(17)ẏ(�t) = ẏ(0)+ ÿ(0)�t

(18)
ÿ(�t) = −

(

ε + µy2(0)
)

ẏ(0)− αy(0)− βy3(0)+ F cos (0)

(19)yn = yn−1 + yn−1�t +
1

2
ÿn−1�t2

(20)ẏn = ẏn−1 + ÿn−1�t

(21)
ÿn = −

(

ε + µy2
)

ẏn − αyn − βy3n + F cos (ω × ((n− 1)�t))
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Example 1 is with the following data 
ε = −µ = 2,α = −1,β = 1, F = 1 and ω = 0.7 . The initial 
conditions are y(t0) = 0.1 and ẏ(t0) = −0.2

The results are compared with that obtained using 
ODE15s and presented in Fig. 8. The results are in excel-
lent agreement with that obtained by ODE15s.

Example 2 is with the following data 
ε = −µ = 0.2, F = 0.53 and ω = 1 with the same initial 
conditions as example 1. The results are presented in Fig. 9a. 
It was found that the results have a big difference from that 
obtained using ODE15s in the period from t = 30 to t = 35. 
This prompted me to compare the results of the present 
solution with the results of other solutions. The results of 
the present solution were compared with the results of 
ODE15s, RK4, and ODE45. It has been observed that all 
techniques are identical in the period from t = 0 to t = 8, as 
shown in Fig. 9b. The results in the periods from t = 10: 25, 
t = 25:35, and t = 35: 50 are shown in Fig. 9c–e, respectively. 
The big difference is in the period t = 25:35. Table 7 presents 
a comparison of Van der Pol–Duffing oscillator response 

obtained by different techniques and their relative errors 
compared to RK4. It is clear that the results of the present 
technique are in good agreement with RK4 over the whole 
range.

8  Conclusions
This paper presents a new technique to solve ordi-
nary differential equations (ODEs) which is based on 
Taylor expansion. The technique is developed to solve 
nonlinear Van der Pol and Van der Pol–Duffing oscil-
lators with damping effects under different initial 
conditions. The results are compared to three other 
well-known ODE solvers: ODE15s, ODE45, and fourth-
order Runge–Kutta (RK4). The comparison shows that 
the new technique is just as accurate as the other three 
solvers, but it is simpler to understand and implement 
in computer code. The new technique is proved to be 
equivalent to the central difference method, but the 
authors argue that their simplified form of the cen-
tral difference method is easier to use, especially for 

Table 3 Comparison of the Van der Pol oscillator response for 
the present solution and the ode15s solution with μ = 10

t x(t) present x(t) ode15s Absolute error

5 1.6022 1.6017 5.00E−04

10 − 1.9713 − 1.9715 2.00E−04

15 − 1.5541 − 1.5531 1.00E−03

20 1.9396 1.9392 4.00E−04

25 1.5022 1.5004 1.80E−03

30 − 1.907 − 1.9064 6.00E−04

35 − 1.4456 − 1.4429 2.70E−03

40 1.8734 1.8741 7.00E−04

45 1.3824 1.383 6.00E−04

50 − 1.8386 − 1.8395 9.00E−04

Table 4 Comparison of the Van der Pol oscillator response for 
the present solution and the ode15s solution with μ = 20

t x(t) present x(t) ode15s Absolute error

5 1.8204 1.8199 5.00E−04

10 1.5981 1.5971 1.00E−03

15 1.2545 1.2517 2.80E−03

20 − 1.9086 − 1.9075 1.10E−03

25 − 1.7097 − 1.7075 2.20E−03

30 − 1.445 − 1.4409 4.10E−03

35 1.9901 1.9884 1.70E−03

40 1.8081 1.8055 2.60E−03

45 1.582 1.5784 3.60E−03

50 1.2195 1.2104 9.10E−03

Table 2 Comparison of the Van der Pol oscillator response for 
the present solution and the ode15s solution with μ = 1

t x(t) present x(t) ode15s Absolute error

5 − 0.837 − 0.8366 4.00E−04

10 − 2.009 − 2.0083 7.00E−04

15 0.8315 0.8304 1.10E−03

20 2.0088 2.0082 6.00E−04

25 − 0.8259 − 0.8241 1.80E−03

30 − 2.0086 − 2.008 6.00E−04

35 0.8204 0.8179 2.50E−03

40 2.0084 2.0077 7.00E−04

45 − 0.8148 − 0.8116 3.20E−03

50 − 2.0081 − 2.0074 7.00E−04

Table 1 Comparison of the Van der Pol oscillator response for 
the present solution and the ode15s solution with μ = 0.1

t x(t) present x(t) ode15s Absolute error

5 0.4717 0.4678 3.90E−03

10 − 1.702 − 1.7065 4.50E−03

15 − 1.4805 − 1.4742 6.30E−03

20 0.9124 0.9212 8.80E−03

25 1.9825 1.9818 7.00E−04

30 0.1739 0.1601 1.38E−02

35 − 1.8363 − 1.8398 3.50E−03

40 − 1.2532 − 1.2413 1.19E−02

45 1.1564 1.1659 9.50E−03

50 1.915 1.9105 4.50E−03
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students and early-career professionals who are new to 
numerical methods. Finally, the authors conclude that 
their new technique is an accurate and efficient tool for 
solving nonlinear differential equations. They also note 

that their technique does not require transforming the 
higher-order differential equations to state space or 
predicting the future value of y at t + 2Δt to calculate y′ 
at t + Δt.
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Fig. 6 Response of Van der Pol oscillator with µ = 50

Table 5 Comparison of the Van der Pol oscillator response for 
the present solution and the ode15s solution with μ = 50

t x(t) present x(t) ode15s Absolute error

5 1.9315 1.9314 1.00E−04

10 1.8583 1.8582 1.00E−04

15 1.7795 1.7793 2.00E−04

20 1.6934 1.6929 5.00E−04

25 1.597 1.5963 7.00E−04

30 1.4849 1.4839 1.00E−03

35 1.3435 1.342 1.50E−03

40 1.0932 1.0875 5.70E−03

45 − 1.9493 − 1.9488 5.00E−04

50 − 1.8774 − 1.8768 6.00E−04

Table 6 Comparison of the Van der Pol oscillator response for 
the present solution and the ode15s solution with μ = 100

t x(t) present x(t) ode15s Absolute error

5 1.9662 1.9662 0.00E+00

10 1.9314 1.9313 1.00E−04

15 1.8954 1.8953 1.00E−04

20 1.8582 1.8581 1.00E−04

25 1.8196 1.8195 1.00E−04

30 1.7794 1.7793 1.00E−04

35 1.7374 1.7373 1.00E−04

40 1.6932 1.6931 1.00E−04

45 1.6466 1.6464 2.00E−04

50 1.5968 1.5966 2.00E−04
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Fig. 7 Response of Van der Pol oscillator with µ = 100
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Fig. 8 Response of forced Van der Pol–Duffing oscillator with ε = − µ = 2, F = 1 , ω = 0.7 , x(t0) = 0.1 and ẋ(t0) = −0.2
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Fig. 9 a Response of forced Van der Pol–Duffing oscillator with ε = −µ = 0.2, F = 0.53 , ω = 1 , x(t0) = 0.1 and ẋ(t0) = −0.2 . b Response of forced 
Van der Pol–Duffing oscillator with ε = −µ = 0.2, F = 0.53 , ω = 1 , x(t0) = 0.1 and ẋ(t0) = −0.2 . c Response of forced Van der Pol–Duffing oscillator 
with ε = −µ = 0.2, F = 0.53 , ω = 1 , x(t0) = 0.1 and ẋ(t0) = −0.2 . d Response of forced Van der Pol–Duffing oscillator with ε = −µ = 0.2, F = 0.53 , 
ω = 1 , x(t0) = 0.1 and ẋ(t0) = −0.2 . e Response of forced Van der Pol–Duffing oscillator with ε = −µ = 0.2, F = 0.53 , ω = 1 , x(t0) = 0.1 
and ẋ(t0) = −0.2
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