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Abstract 

Background  The rapid expansion of modern smart applications, demanding faster data transfer and extensive 
bandwidth, has prompted the development of new-generation networks like 5G and 6G. These networks encom-
pass additional frequency bands such as sub-6 GHz, millimeter waves, and terahertz bands to meet the growing 
bandwidth requirements. However, despite the substantial bandwidth available in these bands, several challenges 
must be addressed to overcome unfavorable propagation characteristics. Moreover, numerous applications neces-
sitate wireless devices with antennas that exhibit high flexibility and exceptional radiation responses, particularly 
when subjected to bending effects. This requirement highlights the importance of polymers-based antennas that can 
adapt to changing conditions while maintaining optimal performance. The present comprehensive study delves 
into the performance evaluation of rectangular and circular microstrip antennas utilizing PMMA (polymethyl meth-
acrylate) polymer substrate with varying thicknesses.

Results  Notably, CNTs (Carbon Nanotubes) are employed as an alternative to traditional copper for the con-
ductive part and ground plane. Both PMMA-based antennas, integrated with CNTs, exhibit a compact footprint 
of 27.8 × 47.8 × 1.5 mm3 for the circular antenna and 22.8 × 39.5 × 1.5 mm3 for the rectangular antenna. Impressively, 
the realized gain of both antennas surpasses 5 dBi, demonstrating robust performance in both flat and bending sce-
narios across different substrate thicknesses.

Conclusions  The rectangular antenna achieves a bandwidth of approximately 200 MHz, while the circular microstrip 
antenna showcase annotable bandwidth of 500 MHz. These exceptional outcomes position the two microstrip anten-
nas as highly suitable for a diverse range of emerging applications within the sub-6 GHz band (the frequency range 
below 6 GHz in the radio spectrum). Thus, the combination of PMMA substrate, CNTs and the compact form factor 
of the antennas presents a compelling solution for meeting the demands of modern applications requiring efficient 
wireless communication with enhanced performance and bandwidth.
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1 � Background
The advent of 5G and the emerging era of 6G networks 
hold the promise of connecting billions of devices, each 
with its own unique set of constraints and behaviors 
[1–4]. This upsurge in demand can be attributed to the 
convergence of various aspects of our daily lives toward 
smart systems and wireless connected devices [5–9]. 
From our homes to our workplaces, from transportation 
to healthcare, we find ourselves relying on an intercon-
nected web of devices and systems that enhance our effi-
ciency, convenience, and overall quality of life [10–14]. 
The proliferation of smart home technologies [15, 16], 
wearable devices [17, 18], and the Internet of Things (IoT) 
has accelerated this transformation, creating a landscape 
where wireless connectivity has become an indispensable 
part of our existence [19–23]. Undoubtedly, the emer-
gence of wireless communications is closely linked to 
recent advancements in antenna design and manufactur-
ing, which have been revolutionized by innovative design 
procedures involving artificial intelligence and deep 
learning methods [24–29]. These antennas are designed 
to operate across a wide range of frequency bands, while 
ensuring compatibility with the diverse environmental 
conditions found in various installations [30, 31]. Not to 
mention the cost factor, which also plays a crucial role 
[32].In addition to the RF bands commonly used for vari-
ous traditional applications, the need for increased band-
width has compelled 5G and 6G consortiums to explore 
additional bands, including millimeter wave, sub-6G, and 
terahertz bands. This is driven by the significant growth 
in bandwidth requirements [33–35]. The design of anten-
nas operating in these frequency bands, while consider-
ing installation conditions, is directly linked to the choice 
of materials used for the antenna substrate and its patch, 
which represents a challenging research topic in this field 
[36–38]. Polymers, such as PMMA (polymethyl meth-
acrylate), are considered as potential candidates for the 
design of future antennas, since they offer several advan-
tages, including lightweight [38], flexibility [39, 40], and 
low-cost manufacturing capabilities [41]. PMMA poly-
mer is widely used for plastic optical fibers (POFs) that 
are suitable for various applications like data communi-
cation and sensing in environments where traditional 
glass fibers may not be practical [42–44]. Additionally, 
PMMA-based fiber Bragg sensors are gaining promi-
nence for their ability to measure strain, temperature, 
and other physical parameters with high sensitivity and 
reliability [45–48]. However, it is important to note that 
research and development in this field are still ongoing 
to optimize the properties of polymers and validate their 
use in specific antenna applications, especially within 
the aforesaid frequency bands [49–52]. Therefore, the 

current study focuses on investigating the impact of using 
PMMA as a substrate for the design of rectangular and 
circular patch antennas intended for applications in the 
sub-6 GHz band. Several polymers have been utilized in 
literature to address the challenges posed by next-genera-
tion networks in terms of gain, bandwidth efficiency, and 
ease of environmental installation. In [53], authors have 
performed a review on the involvement of the metamate-
rials for designing reconfigurable antennas for 5G and 6G 
networks. Authors in [54] have implemented RT/duroid 
5880 laminates as a substrate for designing quad band 
antennas operating at mmwaves bands. The improve-
ment of the electrical and radiation properties is real-
ized by using a binary-coded genetic algorithm. In [55], 
authors have proposed a circularly polarized antenna for 
IoT energy constrained devices, measuring 15 × 35 mm2, 
serves as a versatile portable RF energy harvesting device, 
resonating from 2 to 10 GHz with band notches from 2.5 
to 3.5 GHz, while a voltage double rectifier (VDR) with a 
9.2 × 20 mm2 size converts RF to DC with a wideband of 
operation from 2 to 10 GHz, achieving a maximum DC 
output voltage of 0.94 V, 60% power conversion efficiency 
at -5 dBm input signal. Authors in [56] have studied the 
bending effect of polymer-based antennas intended for 
IoT devices, where numerous flexible materials were 
studied such as Polyimides (Pi), Liquid Crystal polymer 
(LCP), Polytetrafluoroethylene (PTFE), Polydimethylsi-
loxane (PDMS), Rogers RT/Duroid. Authors in [57] have 
demonstrated the use of chitosan polymer as substrate of 
ecofriendly antennas instead of plastic substrates. As chi-
tosan is classified as sustainable material, the proposed 
antenna with 1 dBi realized gain, is proposed for health-
care IoT devices. In [58], authors have designed a natural 
rubber substrate based antenna with 80  mm telemetry 
range. The proposed antenna is intended for on-body 
devices. In addition, CNTs have been widely involved 
in various smart applications because of their excellent 
elctrolmechanical smart applications, such as THZ wave 
absobers, strain and piezoelectric sensors, smart weara-
bles, and so on [59–62].

The present in-depth study investigates the perfor-
mance of rectangular and circular microstrip antennas 
utilizing PMMA substrate with varying thicknesses. In 
place of traditional copper, Carbon Nanotubes (CNTs) 
are employed for the conductive part and ground plane. 
Both PMMA-based antennas combined with CNTs 
demonstrate a compact size of 27.8 × 47.8 × 1.5  mm3 
for the circular antenna and 22.8 × 39.5 × 1.5  mm3for 
the rectangular antenna.Remarkably, the realized gain 
exceeds 5 dBi for both antennas, exhibiting strong per-
formance in both flat and bending scenarios across dif-
ferent substrate thicknesses.
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2 � Materials and methods
2.1 � Circular antenna design procedure
The outlined procedure for designing the proposed antenna 
is comprehensive and detailed in this section. Initially, the 
design focuses on creating a circular patch antenna, utilizing 
carbon nanotubes (CNT) as the conductive material for both 
the circular-shaped patch and the ground plane. These com-
ponents are printed on a polymethyl methacrylate (PMMA) 
dielectric substrate with a permittivity of of εr = 2.546 . The 
process commences with determining the antenna dimen-
sions using Eqs.  (1–4) [63] to achieve resonance at a fre-
quency of fr = 5.8 GHz . The CNT radiating element and 
ground plane possess an electrical conductivity of 3e5 S/m 
and a thermal conductivity of 1000 W/K/m . Additionally, 
they have a density of approximately 0.81 g/cm3 , and they 
have a thickness of 0.035 mm . A visual representation of the 
basic circular antenna is provided in Fig. 1.

where c is the speed of ligth, fr is the resonant frequency 
and εr is the relative permittivity of the substrate and d is 
its thickness where d ≪ � . The antenna is fed by a micro-
strip line of width (Wf) of 3.1 mm and a length of (Lf).

(1)a =
F

1+ 2d
πεrF

ln πF
2d

+ 1.7726
1/2

(2)F =
8.791 × 109

fr ·
√
εr

(3)WS = a+ 6d

(4)LS = Lf + 2a+ 6d

2.1.1 � Return loss and L‑shape impedance matching
The parameter S11, often referred to as the reflection coef-
ficient or return loss, represents the amount of power 
reflected from the antenna. It is calculated using the Eq. (5):

Ŵ : refers to the reflection coefficient, Vref : the amount 
of the reflected voltage, Vinc : the amount of the incident 
voltage.

The overall anetnna dimensions according to the above 
equations are 42.8 × 62.8 mm2 (0.82 �r × 1.21 �r).

The normalized S11 value, often expressed as a per-
centage or in dB, provides a clearer indication of the level 
of impedance matching. A lower normalized S11 value 
indicates better impedance matching and reduced reflec-
tion, ultimately leading to more efficient power transfer 
from the transmitter to the antenna. When S11 = 0 dB, it 
signifies that all the power is reflected from the antenna, 
indicating poor impedance matching. Conversely, lower 
magnitudes of S11 indicate better impedance matching 
and reduced reflection [63].

The antenna return loss is depicted in Fig. 2, revealing 
challenges in achieving satisfactory impedance matching 
at the desired frequency due to the presence of multiple 
other frequencies. To address this issue, the design imple-
ments the use of slots which are inserted on the radiat-
ing element in a second step. This intervention aims to 
enhance antenna impedance matching and simultane-
ously minimize antenna size.

The optimal locations for slot insertion are designated 
by analyzing the antenna’s current density at its resonant 
frequency, as illustrated in Fig. 3. Elevated current density 

(5)S11(dB) = −20 log10 |Ŵ| = −20log10
Vref

Vinc

x

Fig. 1  Circular antenna basic geometry Fig. 2  Basic circular antenna return loss
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is observed around both the feed line and the edges of 
the circular structure. Consequently, slots are strategi-
cally inserted at these regions of high current density to 
induce a corresponding change in the antenna’s response, 
optimizing its performance accordingly.

The design procedure for the proposed antenna is illus-
trated in Fig.  4. Initially, we introduce a horizontal slot, 
followed by the addition of a second vertical slot to opti-
mize the antenna’s performance. Through several para-
metric studies to determine the dimensions of the slots, 

we achieve the desired results depicted in Fig.  5, show-
casing an impressive return loss of − 19.91  dB at the 
resonant frequency with a bandwidth of 264  MHz. Con-
sequently, the final design of the proposed antenna with 
the inverted L-slot configuration attains dimensions of 
27.8 × 47.8− mm2, corresponding to 0.54λr *0.92λr.

The final antenna parameters values are summarized in 
Table 1.

2.1.2 � Realized gain and far field pattern for the circular 
antenna

The simulated antenna’s realized gain and far-field radia-
tion pattern (for both E and H planes) at 5.8  GHz are 
presented in Fig.  6. As depicted, the radiation exhibits a 
predominantly omnidirectional pattern, which is suitable 
for receiving information signals from all directions. The 
antenna’s gain at 5.8 GHz is approximately 4.76 dBi.

2.2 � Rectangular antenna design
The proposed microstrip antenna is based on a rectangu-
lar shape, as depicted in Fig.  7. The antenna is designed 
on a PMMA substrate with a dielectric permittivity of 
εr = 2.546 , a thickness of d = 0.8 mm , and dimensions 
of 12 × 18 mm2 . Both the CNT ground plane and the 
radiating element have a thickness of t = 0.035 mm . The 
antenna dimensions are evaluated using Eqs. (6–10) [64].

(6)W0 =
c

2 · f ·
√

εr+1
2

(7)L0 = Leff − 2 ·�L

Fig. 3  Antenna current density at 5.8 GHz

Fig. 4  The circular antenna design procedure
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(8)�L = 0.412d ·
(εreff + 0.3) ·

(

w0
d

+ 0.246
)

(εreff − 0.258) ·
(

w0
d

+ 0.8
)

where c is the speed of ligth, f is the resonant frequency 
(5.8 GHz) and εeff is the effective relative permittivity.

2.2.1 � Return loss and quarter‑wavelength transformer 
for impedance matching

The rectangular-shaped patch is fed by a microstrip line 
with a characteristic impedance of 50Ω. In order to adapt 
the antenna to its feed, the width of this line is evaluated 
based on Eq. (10)

where wf the feed line width and d represents the sub-
strate thickness.

The antenna response in terms of return loss is pre-
sented in Fig.  8, revealing suboptimal impedance match-
ing below − 10 dB at the desired frequency. To rectify this 
issue and enhance the antenna’s impedance matching, a 
quarter-wavelength transformer has been integrated, as 
depicted in Fig. 9. The final antenna geometry, showcased 
in Fig.  9, demonstrates improved impedance matching. 
Furthermore, Fig.  10 illustrates the antenna return loss, 
highlighting its enhanced matching performance. Detailed 
parameter dimensions for the final antenna design are pro-
vided in Table 2, measuring 22.8 × 39.5 mm², correspond-
ing to 0.44 λrx by 0.76 λr.

(9)Leff =
c

2 · f · √εeff

(10)εeff =
εr + 1

2
+

εr − 1

2
·
(

1+ 12 ·
d

w0

)−1/2

(11)

Zc =
120π

√
εeff

[wf
d
+ 1.393+ 0.667 ln

(wf
d
+ 1.444

)]

Fig. 5  Return loss vs frequencies for the different circular antennas 
in the design procedure

Table 1  Circular antenna dimensions

Parameters Dimensions 
(mm)

Substrate width Ws 27.8

Substratelength:LS 47.8

Circular patch radius:a 11.5

Feed line width:Wf 3.1

Slot 1 width:W1 14

Slot 1 length:L1 2

Slot 2 width:W2 13

Slot 2 length:L2 2

Fig. 6  Circular antenna radiation pattern a E-plane and H-plane and b 3D realized gain at 5.8 GHz
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2.2.2 � Realized gain and far field pattern for the rectangular 
antenna

The simulated antenna realized gain and far-field radiation 
pattern (for both E and H planes) at 5.8 GHz are presented 
in Fig. 11. As shown, the antenna exhibits a quasi-omnidi-
rectional far field with a realized gain of 3.1 dBi at 5.8 GHz.

3 � Results and discussion
3.1 � Impact of the thickness ‘d’ for the return loss 

and the realized gain
Figures  12 and 13 depict the return losses of the circu-
lar and rectangular antennas, respectively, across vari-
ous substrate thicknesses. This investigation endeavors 

Fig. 7  Rectangular antenna basic geometry

Fig. 8  Basic rectangular antenna return loss

Fig. 9  Final rectangular antenna geometry

Fig. 10  Return loss of the final rectangular antenna

Table 2  Rectangular antenna parameters dimensions

Parameters Dimensions 
(mm)

Subtrate width:Ws 22.8

Substrate length:LS 39.5

Rectangular patch width:W 18

Rectangular patch length:L 14.7

Feed line width:Wf 3.5

Feed line length:Lf 7

Quarter-wave line transformer width:Wf 2 1

Quarter-wave line transformer length:Lf 2 13
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to elucidate the impact of substrate thickness on antenna 
performance, encompassing factors such as impedance 
matching, gain, and radiation efficiency.

For the circular antenna, we observe that lower thick-
nesses result in a wider bandwidth compared to higher 
values. Conversely, we note an improvement in gain 
(Fig. 14) and efficiency values with increasing thickness. 
To strike a balance between impedance matching and 
gain, optimizing the dimensions of the slots is neces-
sary to achieve a reasonable return loss. In our study of 
the circular antenna, we observe that slot 2 has a signifi-
cant effect on enhancing antenna return loss around the 
5.8 GHz band (see Fig.  5), indicating the importance of 
studying the impact of its dimensions. It is evident from 
Fig.  15 that the antenna impedance matching is visibly 
enhanced, particularly for L2 = 40 mm and W2 = 3 mm

.For the rectangular antenna, we observe a slight shift 
in the resonance frequency as the substrate becomes 

thicker. As expected, the antenna gain improves with 
increasing substrate thickness, as illustrated in Fig.  16. 
Table 3 summarizes all the studied thicknesses.

3.2 � Bending effect
The bending study primarily aims to investigate the 
response of flexible antennas in various scenarios and 
assess their ability to maintain good performance when 
implemented in practical applications. To evaluate the 
behavior of our antennas in such situations, we consider a 
vacuum cylinder to bend the antennas for different radii, 
thereby altering the degree of curvature. The dimensions 
of the antennas remain fixed as they are in a flat situation. 
Figures 17 and 18 depict the return losses of the circular 
and rectangular antennas, respectively.

The circular antenna is initially bent in the E plane 
and then in the H plane. We observe that the antenna’s 
impedance matching exhibits a slight shift to lower 

Fig. 11  Rectangular antenna radiation pattern a E-plane and H-plane and b 3D realized gain at 5.8 GHz

Fig. 12  Circular antenna return losses for different substrate 
thicknesses

Fig. 13  Rectangular antenna return losses for different substrate 
thicknesses
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frequencies in the E plane. This shift is primarily caused 
by changes in the antenna’s effective length during the 
bending process, as well as alterations in the current 
distribution in this plane [64, 65]. However, the antenna 
maintains its good performance even with very small 
radii (R = 7 mm: severely bent) due to its large bandwidth, 

despite the frequency shift. Along the H plane, the 
antenna shows no resonant frequency offset, as the cur-
rent path remains unaffected compared to the E plane. 
This is evident from Fig.  17b, where it maintains good 
matching until R = 10 mm.

In the E-plane bending for the rectangular antenna, 
the bending does not significantly affect the antenna 
response, while in the H-plane bending, it strongly 
impacts the antenna performance. Even with large radii 
(R = 19  mm), as specified in Fig.  18b, the antenna’s per-
formance is notably affected. It is evident that the mag-
nitude of the return loss increases when the antenna is 
bent, although the rectangular antenna experiences a 
significant increment even when slightly bent, compared 
to the circular antenna, which maintained the return loss 
under − 10 dB.

Tables 4 and 5 present the gain and efficiencies of the 
bent antennas, respectively, for a similar bending radius 
(R = 20  mm). We observe that both antennas’ gains are 
more affected in the E plane bending compared to the 
H plane bending. This can be explained by the fact that 
the current density is accumulated at the center of the 
antenna in the H plane, which increases the magnetic 

Fig. 14  Circular antenna simulated gain for different thicknesses a d = 0.4 mm, b d = 1 mm and c d = 1.5 mm

Fig. 15  Final circular antenna return loss

Fig. 16  Rectangular antenna simulated gain for different thicknesses a d = 0.4 mm, b d = 1 mm and c d = 1.5 mm
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Table 3  Antennas simulated gain and efficiencies for different 
substrate thicknesses

Thickness 
(mm)

Realized gain (dBi) Effeciency

Circular Rectangular Circular Rectangular

0.4 1.07 − 0.581 0.23 0.21

0.5 2.5 0.875 0.32 0.3

0.6 3.47 1.82 0.4 0.37

0.7 4.38 3.03 0.48 0.46

0.8 4.76 3.11 0.51 0.49

0.9 5.18 4.02 0.56 0.57

1.0 5.47 4.31 0.6 0.61

1.1 5.76 4.81 0.64 0.68

1.2 5.93 5.04 0.67 0.72

1.3 6.06 5.41 0.7 0.79

1.4 6.13 5.51 0.72 0.82

1.5 6.42 5.62 0.74 0.85

Fig. 17  Bending effect on circular antenna return loss a E-plane b H 
plane

Fig. 18  Bending effect on rectangular antenna return loss a E-plane 
b H plane

Table 4  Gain and efficiency performances of circular antenna at 
bending radius of R = 20 mm

Parameter Flat antenna E plane 
bending

H plane 
bending

Gain (dBi) 6.42 5.51 5.73

Efficiency 0.74 0.6 0.81

Table 5  Gain and efficiency performance of rectangularantenna 
in bent situations

Parameter Flat antenna E plane 
bending

H plane 
bending

Gain (dBi) 5.62 4.85 6.68

Efficiency 0.85 0.59 0.91
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field, whereas in the E plane, the current is gathered at 
the antenna’s side, leading to a decrease in its gain [66].

Furthermore, it is evident from Tables 4 and 5 that the 
rectangular antenna exhibits significant changes in its 
gain (in both E and H planes) compared to the flat situa-
tion. This behavior can be attributed to the edgy shape of 
the rectangular antenna.

This analysis shows the effectiveness of circular anten-
nas which is less edgy and more stable comparing to rec-
tangular antennas.

3.3 � Comparative study between circular and rectangular 
design (PMMA‑CNT)

We observe differences in the electrical and radiation 
performances between the circular and rectangular 
antenna structures, despite utilizing the same substrate 
and conductive materials characteristics. Notably, the 
circular antenna maintains a stable resonance frequency 
of approximately 5.8  GHz across varying substrate 
thicknesses, while also offering a wider bandwidth 
(5.51–6  GHz) compared to the rectangular antenna 
(5.47–5.68 GHz). Additionally, the circular antenna dem-
onstrates superior gain performance, with nearly a 1 dBi 
difference compared to the rectangular antenna.

In the existing literature, there is a lack of exam-
ples combining PMMA substrate with CNT conduc-
tive materials. Therefore, we conducted a comparative 
analysis with antennas from recent related works, which 
were designed using different substrate and conductive 

materials. This comparison, detailed in Table 6, empha-
sizes factors such as compactness (antenna size), perfor-
mance, and dielectric properties. Our findings indicate 
that while some reported antennas achieve good gains, 
they often do so at the expense of larger dimensions or 
lower efficiency. In contrast, our designs strike a suitable 
compromise between size, gain, and efficiency, highlight-
ing their practical viability in real-world applications.

4 � Conclusions
The present in-depth study investigates the performance 
of rectangular and circular microstrip antennas utiliz-
ing PMMA substrate polymer with varying thicknesses. 
In place of traditional copper, Carbon Nanotubes (CNTs) 
are employed for the conductive part and ground plane. 
Both PMMA-based antennas combined with CNTs dem-
onstrate a compact size of 27.8 × 47.8 × 1.5 mm3 for the cir-
cular antenna and 22.8 × 39.5 × 1.5  mm3 for the rectangular 
antenna. Remarkably, the realized gain exceeds 5 dBi for both 
antennas, exhibiting strong performance in both flat and 
bending scenarios across different substrate thicknesses. The 
rectangular antenna achieves a bandwidth of approximately 
200 MHz, while the circular microstrip antenna reaches an 
impressive 500  MHz bandwidth. These exceptional out-
comes make the two microstrip antennas highly suitable for 
a wide range of emerging applications within the sub-6 GHz 
band, including but not limited to wireless communication 
systems and Internet of Things (IoT) devices.

Table 6  Comparative study of different design antennas

Ref. Substrate Conductive material Dielectric 
permittivity

Substrate 
thikness 
(mm)

Size (mm2) Gain (dBi) Effeciency Operating 
bands 
(GHz)

[67] FR-4 Patch: CNT
GND:Copper

4.3 1.62 80 × 80 8.86 0.95 6.63,
7.22,
7.29

[50] Quartz glass Graphene film – – 20 × 20 0.3
5.5

0.52 8.5,
11.5

[68] PET Free-standing CNT 3.5 – Patch:
10 × 20

3.25 0.63 1.95

[69] Textile (felt) Carbon black ink 1.2 3 Patch:
35 × 35

6.1 0.39 3.3

[70] PMMA and air Metal Mesh Film 
(MMF)

3.7 8.5 110 × 157 6 – 2.46–2.75

[71] FR-4 CNT 4.4 – 30 × 20 6.07 0.81 10

[72] E-glass fiber Flexible Polymer 
Matrix composite 
(FPMC)

1.17 1.3 50 × 55 7.9 0.71 5.8

[73] Polyimide (PI)
Liquid Cristal (LCP)

CNT 3.5
2.9

0.3 18 × 27
19.5 × 29.5

2.61
3

0.97
0.99

2.34–2.56
4.45–5.78

Present work (circular) PMMA CNT 2.546 1.5 27.8 × 47.8 6.42 0.74 5.8

Present work (rectan-
gular)

PMMA CNT 2.546 1.5 22.8 × 39.5 5.62 0.85 5.6
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