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Abstract 

Background The concept of near open sets is a potent tool that empowers researchers to achieve a more encom-
passing approximation of rough sets, thereby enhancing the accuracy of measurements. The evolution of rough 
set theory into various generalized forms, based on topological structures, has emerged as a significant approach 
in the realm of knowledge discovery within databases.

Results This paper’s primary contribution lies in the introduction of a novel category of generalized near open sets, 
termed “inverse simply open sets,” within the context of the j-neighborhood space. The paper proposes diverse meth-
ods for extending the Pawlak’s rough approximations leading to the definition of new approximations in the j-neigh-
borhood space. By employing these newly introduced generalizations, we establish fresh connections between two 
pivotal theories, namely “general topology and rough set theory”. Through a comprehensive investigation, we con-
duct multiple comparisons between our methodology and classical approaches. Furthermore, we showcase practical 
applications of these techniques within real-life scenarios, demonstrating their utility in decision-making processes.

Conclusions We reduced the data’s ambiguity while increasing its accuracy measure. As a result, we may conclude 
that the proposed approximations were more precise than earlier techniques and contributed to the elimination 
of data ambiguity in real-world scenarios requiring accurate decisions.

Keywords Rough sets, Topological space, j-Near open set, j-Neighborhood spaces, bj∗-Open set, j-Inverse simply 
open sets, Lower and upper approximatons and accuracy measures

1 Introduction
Pawlak’s proposal of rough set theory [1, 2] emerged as 
a valuable tool for addressing the inherent vagueness 
and uncertainty present in large datasets. This theory is 
rooted in binary relations, particularly equivalence rela-
tions, which can pose challenges due to their inherent 
restrictions and limitations. Over time, rough set the-
ory has been expanded into various other approaches, 
some of which have been formulated using topological 

concepts [3–8]. The notion of topological rough sets, 
introduced by Wiweger in 1989 [9], stands as a signifi-
cant topological generalization of rough sets. Extending 
beyond Pawlak’s rough sets, Yao [10] created upper and 
lower approximations using arbitrary relations with-
out imposing additional conditions on the relations. In 
order to expand on traditional rough set theory, Abd 
El-Monsef et al. [11] proposed the concepts of “ j-neigh-
borhood space” (abbreviated as j-NS) in 2014. As an 
extension of open sets into topological spaces, the defi-
nition of near open sets was established. Subsequently, 
W. S. Amer et  al. [12] incorporated certain near open 
set concepts within j-NS frameworks. In 2018, Hosny 
[13] expanded these estimates to include δβ-open and 
∧β-open sets. El-Bably [14] employed the concept of 
“Simply open sets” to extend Pawlak’s approximations, 
employing three distinct methods. The present paper 
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builds upon these advancements, further generalizing 
these approximations within the context of topologi-
cal spaces [15–25]. Specifically, the definition of j-near 
open sets is extended through the introduction of a 
new category of open sets termed “Inverse simply open 
sets” within j-neighborhood space. Two distinct meth-
odologies are presented to generalize rough approxi-
mation spaces using these inverse simply open sets. 
The paper proceeds in six sections. In Sect. 2 provides 
a summary of fundamental concepts. Section  3 intro-
duces the notion of bj∗-open setsand employs them to 
build the approximations and the properties of these 
sets are thoroughly examined. Section 4 introduces the 
concept of j-inverse simply open sets and delves into its 
properties. In Sect.  5, two distinct methodologies are 
presented to generalize rough approximation spaces 
using inverse simply open sets within j-neighborhood 
space. Section 6 presents an applied example within the 
domain of plant morphology and Sect. 7 serves as the 
conclusion of the paper.

2  Preliminaries
This section discusses the fundamental ideas of defini-
tions and properties that will be used in the next sections.

Definition 2.1 [1, 2] For every equivalence relation E 
on the finite, nonempty set known as the universe U . For 
each subset S ⊆ U , we associate two subsets:

E(S) and E(S) are the upper and lower approxima-
tions of S, respectively and the pair (U, E) is known 
as an approximation space. The following specifica-
tions apply to the pawlak approximation’s accuracy and 
boundary:

Definition 2.2 [26] For any binary relation Q 
onU . The following are the definitions of the j

-neighborhood p ∈
⋃

(Nj(p))  for each j belongs to 
{

r, l, 〈r〉,
〈

l
〉

, 〈i〉, 〈u〉, 〈i〉, 〈u〉
}

:

 i. The r-neighborhood when, Nr (p) =
{

r ∈ U |p Q r
}

.
 ii. The l-neighborhood when, Nl(p) =

{

r ∈ U |r Q p
}

.

E(S) = ∪{T |T ⊆ S,T ∈ O(U)}

E(S) = ∩{T |S ⊆ T ,T ∈ C(U)}

BN (S) = E(S)− E(S)and (S) =
|E(S)|
∣

∣E(S)
∣

∣

where
∣

∣E(S)
∣

∣ �= 0.

 iii. The 〈r〉-neighborhood when, N�r�

(

p
)

=
⋂

p∈Nr (r)

Nr (r).

 iv. The 
〈

l
〉

-neighborhood when, N�l�
(

p
)

=
⋂

p∈Nl (r)

Nl (r).

 v. The i-neighborhood when, Ni(p) = Nr(p) ∩Nl(p).
 vi. The u-neighborhood when, Nu(p) = Nr(p) ∪Nl(p).
 vii. The 〈i〉-neighborhood when, N�i�(p) = N�r�(p)

∩N�l�(p).

 viii. The 〈u〉-neighborhood when, N�u�(p) = N�r�(p)

∪N�l�(p).

Definition 2.3 [26] Assume that (U, Q, ξ j) is a j-neigh-
borhood space with S ⊆ U . Subsequently, the j-upper 
and j-lower approximations (j-positive, j-negative and j
-boundary) regions and j-accuracy of S ⊆ U are defined, 
respectively, as.

• Qj(S) = H ∈ τj : S ⊆ H = j-closure of S.
• Qj(S) = ∪

{

G ∈ τj : G ⊆ S
}

= j-interior of S.
• POSj(S) = Qj(S).

• NEGj(S) = U − Qj(S).

• Bj(S) = Qj(S)− Qj(S).

• σ j(S) =

∣

∣

∣
Qj(S)

∣

∣

∣

∣

∣Qj(S)
∣

∣

, where
∣

∣Qj(S)
∣

∣ �= 0.

Definition 2.4 [12] Assume that (U, Q, ξ j) is a j-neigh-
borhood space with S ⊆ U is named.

 i. j-Regular open if S = intj
(

clj(S)
)

.
 ii. j-Pre-open (in brief named Pj-open) if S ⊆ intj

(

clj(S)
)

.
 iii. j-Semi-open (in brief named Sj-open) if S ⊆ clj

(

intj(S)
)

.
 iv. γj-open if S ⊆ intj

(

clj(S)
)

∪ clj
(

intj(S)
)

.
 v. αj-open if S ⊆ intj

[

clj
(

intj(S)
)]

.
 vi. βj-open (called semi pre open), if S ⊆ clj

[

intj
(

clj(S)
)]

.

Definition 2.5 [15] Assume that a topological space is 
(U, τ). The subset S of U is then defined as.

1. A b∗-Open set is defined as S ⊆ cl(int(cl(S)))

∪int (cl(S)).
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2. A b∗-cpen set is defined as S ⊇ int(cl(int(S)))

∩cl(int(S)).

The bO ∗ (U) represents the families of all b∗-open sets 
subsets of a (U, τ) , and bC ∗ (U) represents b∗-closed sets.

Definition 2.6 [13] Assume that (U, Q, ξ j) is a j-neigh-
borhood space withS ⊆ U.The definition of the subset 
∧βj (S) = ∩

{

G ⊆ U : S ⊆ G, G ∈ βjO(U)
}

 . A set S is 
referred to as a ∧βj-set if S . We refer to the ∨βj-set as its 
complement. The notations ∧βj (U) and ∨βj (U)  represent 
the families of all ∧βj-sets and ∨βj-sets.

Definition 2.7 [13] Assume that 
(

U , Q, ξ j
)

 is a j-neigh-
borhood space with S ⊆ U . Then, the ( ∧βj-upper and ∧βj

-lower) approximations, ( ∧βj-positive, ∧βj-negative, ∧βj

-boundary) regions and ∧βj-accuracy measure of S are 
defined, respectively as follows:

• Q
∧β

j (S) = ∩
{

H ∈ ∨βj (U) : S ⊆ H
}

.

• Q
∧β

j (S) = ∪
{

G ∈ ∧βj (U) : G ⊆ S
}

.

• POS
∧β

j (S) = Q
∧β

j (S).

• POS
∧β

j (S) = Q
∧β

j (S).

• B
∧β

j (S) = Q
∧β

j (S)− Q
∧β

j (S).

• σ

∧

β

j (S) =

∣

∣

∣

∣

Q

∧

β
j (S)

∣

∣

∣

∣

∣

∣

∣

∣

Q

∧

β
j (S)

∣

∣

∣

∣

,Where

∣

∣

∣

∣

Q

∧

β

j (S)

∣

∣

∣

∣

.

Definition 2.8 [14] Assume that (U, Q, ξ j) is a j-neigh-
borhood space with S ⊆ U . Subsequently, ∀ j belongs to 
{

r, l, 〈r〉,
〈

l
〉

, i, u, 〈i〉, 〈u〉
}

 if intj(clj(S)) ⊆ clj(intj(S), then 
the set S ⊆ U is a j-simply open set. A j-simply closed is 
the complement of a j-simply open sets of ∪

(

SMjO(U)
)

 
represent the famililes of all j-simply open sets and sets 
of ∪

(

SMjC(U)
)

 represent the families of all j-simply 
closed sets.

Definition 2.9 [14] Assume that (U, Q, ξ j) is a j-neigh-
borhood space withS ⊆ U . Subsequently, ∀ j belongs to 
{

r, l, 〈r〉,
〈

l
〉

, i, u, 〈i〉, 〈u〉
}

 , the ( j-simply upper and j-sim-
ply lower) approximations, ( j simply boundary, j-simply 

positive and j -simply negative) regions and j-simply 
accuracy measure of S ⊆ U are given, respectively as 
follows:

• Qsm
j
(S) = ∪

{

G ∈ SMjO(U) : G ⊆ S
}

.

• Q
sm
j (S) = ∩

{

H ∈ SMjO(U) : S ⊆ H
}

.

• Bsm
j (S) = Q

sm
j (S)− Qsm

j
(S).

• POSsmj (S) = Qsm
j
(S).

• NEGsm
j (S) = U − Qsm

j
(S).

• σ sm
j (S) =

∣

∣

∣
Qsm
j
(S)

∣

∣

∣

∣

∣

∣
Q
sm
j (S)

∣

∣

∣

,Where
∣

∣

∣
Q
sm
j (S)

∣

∣

∣
�= 0.

3  Generalized rough approximations via bj∗‑open 
sets

The main objective of this section is to provide a novel 
technique for defining the fundamental ideas of rough 
sets utilising the notion of bj∗-open sets.

Definition 3.1 Assume that (U, Q, ξ j) is a j-neighbor-
hood space withS ⊆ U . Subsequently, for each j belongs 
to 

{

r, l, 〈r〉,
〈

l
〉

, i, u, 〈i〉, 〈u〉
}

 , the set S of U is described 
as:

1. A bj∗-Open set if S ⊆ clj
(

intj
(

clj(S)
))

∪ intj
(

clj(S)
)

.
2. A bj∗-closed set if S ⊇ intj

(

clj
(

intj(S)
))

∩ clj
(

intj(S)
)

.

The families of all bj∗-Open sets are always represented 
by bj ∗ O(U) . The complements of bj∗-Open sets are 
referred to as “ bj∗-closed sets” and the families of all bj∗
-Closed sets are always represented by bj ∗ C(U).

Example 3.1 Let U = {x, y, v, w, z} and Q = {(x, x),

(x, z), (y, v ), (y, w), (y, z), (v, v), (v, w), (w, v), (w,w), (z z)} 
be a binary relation defined onU . So,xQ = {x, z}, 
yQ = {v, w, z},vQ = wQ = {v, w} andzQ = {z} . Con-
sequently, the topology connected to this relation is 
τr =

{

U, ∅, {z}, {x, z}, {v, w}, {v, w z}, {x, v, w, z},
{

y, v, w, z
}}

. 
We will compute the the classes of bj∗-Open sets for each 
j ∈ r as describe:

.

br ∗O(U) =

{

U ,∅, {v}, {w}, {z}, {x, z},
{

y, v
}

,
{

y,w
}

,
{

y, z
}

, {v,w}, {v, z}, {w, z},
{

x, y, z
}

, {x, v, z}, {x,w, z},
{

y, v,w
}

,
{

y, v, z
}

,
{

y ,w, z
}

,

{v,w, z},
{

x, y, v, z
}

,
{

x, y,w, z
}

, {x, v,w, z},
{

y, v,w, z
}

}
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Proposition 3.1 Assume that (U, Q, ξ j) is a j-neighbor-
hood space with S ⊆ U . Subsequently every j-pre open set 
is bj∗-open.

Proof The proof is clear when utilising the definition 
of bj∗-open set, j-closure characteristics and j-interior 
characteristics.

Remark 3.1 The previous statement’s converse isn’t 
always true as shown in Example 3.1 using topology 
τr =

{

U, ∅, {z}, {x, z}, {v, w}, {v, w, z}, {x, v, w, z},
{

y, v, w, z
}}

,
P rO(U) = {U, ∅, {x, z}, {v, w}} and.

It’s clear that A subset {v} of U is not j-pre open set, but 
it is br∗-Open set.

Lemma 3.1 Assume that a j-approximation is 
(U, Q, ξj). The following statements are True.

(1) The union of bj∗-Open sets is bj∗-Open.
(2) The intersection of bj∗-Closed sets is bj∗-Closed.

Proof (1) Assume that bj∗-Open sets be a family 
represented by { Ai, i ∈ I }. ThenAi ⊆ clj(intj(clj(Ai)))

∪intj(clj(Ai)) . Hence,∪iAi ⊆ ∪i(clj(intj(clj(Ai)))∪intj(clj

(Ai)) ⊆ clj(intj(clj(∪iAi))) ∪ intj(clj(∪iAi) for alli ∈ I . bj∗
-Open is hence∪iAi.

b r ∗ O(U) =

{

U ,∅, {v}, {w}, {z}, {x, z},
{

y, v
}

,
{

y, w
}

,
{

y, z
}

, {v, w}, {v, z}, {w, z},
{

x, y, z
}

, {x, v, z}, {x, w, z},
{

y, v, w
}

,
{

y, v, z
}

,
{

y , w, z
}

,

{v,w, z}, {x, y, v, z}, {x, y,w, z}, {x, v,w, z}, {y, v,w, z}}.

}

(2) Let be a family of bj∗-Closed represented by 
{ Ai, i ∈ I }. Hence, Ai ⊇ (intj(clj(intj

(

Ai

)

)) ∩ clj(intj(Ai))

, h e n c e∩iAi ⊇ ∩i(intj(clj(intj(Ai))) ∩ clj(intj(Ai)),

⊇ (intj(clj(intj(∩iAi))) ∩ clj(intj(∩iAi)) . Therefore 
bj ∗ Closed is hence ∩iAi.

Remark 3.2 Acorrding to Example 3.1, Any two bj∗
-Open sets that intersect do not form bj∗-Open sets. 
Let S = {x, y, z} and T = {y, v, w} are br∗-open sets but 
S ∩ T = {y} is not br∗-Open.

Remark 3.3 The families of bj∗-Open sets of U does not 
form a topology.

Remark 3.4 Assume that (U, Q, ξ j) be a j-neighbor-
hood space withS ⊆ U . Subsequently, for each j belongs 
to 

{

r, l, 〈r〉,
〈

l
〉

, i, u, 〈i〉, 〈u〉
}

 , the following statements 
listed below aren’t always true:

1. bu ∗O(U) ⊆ br ∗O(U) ⊆ biO ∗ (U).

2. bu ∗O(U) ⊆ bl ∗O(U) ⊆ biO ∗ (U).

3. b�u�*O(U) ⊆ b�r�*O(U) ⊆ b�i�O*(U).

4. b�u�*O(U) ⊆ b�l�*O(U) ⊆ b�i�O*(U).

5. The dual of bl ∗ O(U) is br ∗ O(U).
6. The dual of b�l� ∗O(U) is b�r� ∗O(U).

This indicates that the relationships between bj∗-open 
sets are not comparable as in Example 3.1 We will com-
pute the the classes of bj∗-Open sets for each j belongs 
to 

{

r, l, 〈r〉,
〈

l
〉

, u, 〈i〉, 〈u〉
}

 as listed below:

1. b r ∗ O(U) =

{

U , ∅, {v}, {w}, {z}, {x, z},
{

y, v
}

,
{

y, w
}

,
{

y, z
}

, {v, w}, {v, z}, {w, z},
{

x, y, z
}

, {x, v, z}, {x, w, z},
{

y, v, w
}

,
{

y, v, z
}

,
{

y , w, z
}

,

{v,w, z}, {x, y, v, z}, {x, y,w, z}, {x, v,w, z}, {y, v,w, z}}

}

2. b l ∗ O(U) =

{

U , ∅, {x},
{

y
}

,
{

x, y
}

, {x, z},
{

y, v
}

,
{

y, w
}

,
{

y, z
}

,
{

x, y, v
}

,
{

x, y, w
}

,
{

x, y, z
}

,
{

y, v, w
}

,
{

y, v, z
}

,
{

y, w, z
}

,
{

x, y, v, w
}

,
{

x, y, v, z
}

,
{

x, y, w, z
}

,
{

y, v, w, z
}

}
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3. b u ∗ O(U) = P(U)

4. b �r� ∗O(U) =

{

U ,ϕ,
{

y
}

, {v}, {w}, {z}, {x, z},
{

y, v
}

,
{

y, w
}

,
{

y, z
}

, {v, w}, {v, z}, {w, z},
{

x, y, z
}

, {x, v, z}, {x, w, z},
{

y , v, w
}

,
{

y , v, z
}

,
{

y , w, z
}

,

{v, w, z},
{

x, y , v, z
}

,
{

x, y , w, z
}

, {x, v, w, z},
{

y , v, w, z
}

}

5. b �l� ∗O(U) =

{

U ,ϕ, {x},
{

y
}

,
{

x, y
}

, {x, z},
{

y, v
}

,
{

y , w
}

,
{

y , z
}

,
{

x, y, v
}

,
{

x, y , w
}

,
{

x, y , z
}

,
{

y , v, w
}

,
{

y , v, z
}

,
{

y , w, z
}

,
{

x, y , v, w
}

,
{

x, y, v, z
}

,
{

x, y,w, z
}

,
{

y, v,w, z
}

}

6. b �i� ∗ O(U) =

{

U ,ϕ,
{

y
}

, {v}, {w}, {z}, {x, z},
{

y, v
}

,
{

y, w
}

,
{

y, z
}

, {v, w}, {v, z}, {w, z},
{

x, y, z
}

, {x, v, z}, {x, w, z},
{

y, v, w
}

,
{

y, v, z
}

,
{

y, w, z
}

,

{v,w, z},
{

x, y, v, z
}

,
{

x, y,w, z
}

, {x, v,w, z},
{

y, v,w, z
}

}

7. 
b �u� ∗O(U) =

{

U ,ϕ, {x},
{

y
}

, {z},
{

x, y
}

, {x, z},
{

y, v
}

,
{

y, w
}

,
{

y, z
}

,
{

x, y, v
}

,
{

x, y, w
}

,
{

x, y, z
}

,
{

y, v, w
}

,
{

y, v, z
}

,
{

y, w, z
}

,
{

x, y, v, w
}

,
{

x, y, v, z
}

,
{

x, y,w, z
}

,
{

y, v,w, z
}

}

It is clear that.

1. bu*O(U)� br*O(U)

2. bu*O(U)� bl*O(U)

3. b〈u〉*O(U)� b〈r〉*O(U)

4. b〈u〉O*(U)� b〈l〉*O(U)

5. b〈l〉O*(U)� b〈i〉*O(U)

6. The dual of bl ∗ O(U) is not br ∗ O(U).
7.  The dual of br ∗ O(U) is not b�r� ∗O(U).

Definition 3.2 Assume that (U, Q, ξ j) is a j-neighbor-
hood space withS ⊆ U . Subsequently for each j belongs 
to 
{

r, l, 〈r〉,
〈

l
〉

, i, u, 〈i〉, 〈u〉
}

 . Then.

1. The bj∗-lower approximations of S(called bj∗-interior 
of S ) are the union of all bj∗-Open sets of U contained 
in the set S , they are represented by the symbol bj∗-
int(S).

• 

2. The bj∗-upper approximations of S(called bj∗-clo-
sure of S ) is the intersection of all bj∗-closed sets of 

Rb∗

j (S) = ∪
{

G ∈ bjO* (U) : G ⊆ S
}

= bj ∗ int(S).

U included in S , it is represented by the symbol bj∗
-Cl(S).

• 

Furthermore, the approximations of S ’s ( bj∗-positive, 
bj∗-negative, bj∗-boundary) regions and bj∗-accuracy 
are defined, respectively:

• POSb
∗

j (S) = R
_

b∗

j
(S).

• NEGb∗

j (S) = U − R
_

b∗

j
(S).

• Bb∗

j (S) = R
b∗

j (S)− R
_

b∗

j
(S).

• σ b∗

j (S) =

∣

∣

∣
Rb∗

j (S)
∣

∣

∣

∣

∣

∣
R
b∗

j (S)
∣

∣

∣

,Where
∣

∣

∣
R
b∗

j (S)
∣

∣

∣
�= 0.

The following properties demonstrate the relation-
ships between bj∗-open set approximations and other 
approximation types.

Proposition 3.2 Assume that 
(

U, Q, ξ j
)

 is a j-neighbor-
hood space with S ⊆ U. Then.

R
b∗

j (S) = ∩{ H ∈ bjC ∗ (U) : S ⊆ H } = bj ∗ cl(S).

Q
j
(S) ⊆ R

_

b∗

j
(S).
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Corollary 3.1 Assume that (U, Q, ξ j) is a j-neighbor-
hood space with S ⊆ U. Then.

The proposal proposition investigates the main char-
acteristics of the bj∗ approximations.

Proposition 3.3 Assume that (U,Q, ξ j) be a j-neighbor-
hood space andS, T ⊆ U . Therefore for each j belongs to 
{

r, l, 〈r〉,
〈

l
〉

, i, u, 〈i〉, 〈u〉
}

 , the following characteristics 
hold:

(L1)R
_

b∗

j
(S) ⊆ S.

(L2)R
_

b∗

j
(∅) = ∅.

(L3)R
_

b∗

j
(U) = U .

(L4) Rb∗

j (S ∩ T) ⊆ Rb∗

j (S) ∩ Rb∗

j (T).

(U4) Rb∗

j (S ∪ T) ⊇ R
b∗

j (S) ∪ R
b∗

j (T).

(L5) If S ⊆ T , then R
_

b∗

j
(S) ⊆ R

_

b∗

j
(T).

(L6) R
_

b∗

j
(S) ∪ R

_

b∗

j
(T) ⊆ R

_

b∗

j
(S ∪ T).

(L7) R
_

b∗

j

(

R
_

b∗

j
(S)

)

= R
_

b∗

j
(S).

(L8)R
_

b∗

j
(S) = (R

b∗

j (Sc))
c
.

(L9) R
_

b∗

j
(R
_

b∗

j
(S)) ⊆ R

b∗

j (R
_

b∗

j
(S)).

(L10)x ∈ R
_

b∗

j
(S) ↔ ∃ G ∈ bj ∗O(U), x ∈ G, G ⊆ S.

(U1) S ⊆ R
b∗

j (S)

R
b∗

j (S) ⊆ Qj(S).

Bb∗

j (S) ⊆ Bj(S).

σj(S) ≤ σ b∗

j (S).

(U2) Rb∗

j (∅) = ∅.

(U3) Rb∗

j (U) = U .

(U5) If S ⊆ T , then Rb∗

j (S) ⊆ R
b∗

j (T).

(U6) Rb∗

j (S) ∩ R
b∗

j (T) ⊇ R
b∗

j (S ∩ T).

(U7) Rb∗

j

(

R
b∗

j (S)
)

= R
b∗

j (S).

(U8) Rb∗

j (S) = (R
_

b∗

j
(Sc))

c
.

(U9) Rb∗

j

(

R
b∗

j (S)
)

⊇ R
_

b∗

j

(

R
b∗

j (S)
)

.

(U10) x ∈ R
b∗

j (S) ↔ G ∩ S �= ∅,∀G ∈ bj ∗O(U), x ∈ G.

Proof The proof is clear when utilizing the characteris-
tics of bj∗-interior and bj∗-closure.

Definition 3.3 Assume that (U,Q, ξ j) be a j-neigh-
borhood space with S ⊆ U and for each j belongs to 
{

r, l, 〈r〉,
〈

l
〉

, i, u, 〈i〉, 〈u〉
}

 . The set S is named:

 i. bj∗-definable (bj∗-Exact) if Rb∗

j (S) = R
b∗

j (S) or 
Bb∗

j (S) = ∅.
 ii. bj∗-rough if Rb∗

j (S) �= R
b∗

j (S) or Bb∗

j (S) �= ∅.

Remark 3.5 Assume that (U,Q, ξ j) be a j-neighbor-
hood space andS, T ⊆ U . Any two bj∗-exact sets do not 
always have to intersect to be bj∗-exact sets. Acorrding 
to Example 3.1, let S = {x, y, z } and T = {y, v, w} are br∗
-exact sets but S ∩ T = {y} is not br∗-exact sets.

Corollary 3.2 Assume that (U, Q, ξ j) is a j-neighbor-
hood space withS ⊆ U . Subsequently for each j belongs to 
{

r, l, 〈r〉,
〈

l
〉

, i, u, 〈i〉, 〈u〉
}

 . If S is a j-exact set implies to S 
is bj∗-exact sets.

Remark 3.6 The converse of Corollary 3.2 does not 
always hold. According to Example 3.1, S = {x, w} is a 
br∗-exact sets, but it is rough.
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4  J‑inverse simply open sets
Now we will study the definition of inverse simply open 
sets defined in the j-Neighborhood Space, review the 
basic properties and some important theorems.

Definition 4.1 Assume that (U, Q, ξ j) be a j-neigh-
borhood space. Subsequently for each j belongs to 
{

r, l, 〈r 〉,
〈

l
〉

, i, u, 〈i〉, 〈u〉
}

 . The set S ⊆ U is named j

-inverse simply open set if clj(intj(S)) ⊆ intj(clj(S)).

Remark 4.1 

1. ISMjO(U) is the family of j-inverse simply open sets 
of U.

2. The “ j-inverse simply closed” is the complement of a 
j-inverse simply open and ISMjC(U) represents the 
family of j-inverse simply closed sets of U.

Theorem  4.1 Assume that (U,Q, ξ j) be a j-neigh-
borhood space. Subsequently, for each j belongs to 
{

r, l, 〈r〉,
〈

l
〉

, i, u, 〈i〉, 〈u〉
}

 , the collections of ISMjO(U) are 
a topology on the universalU.

Proof i. ∅ and U are j-inverse simply open set.

 ii. Let{Si|i ∈ I} ∈ ISMjO(U).Then, clj(intj(Si)) ⊆ intj

(clj(Si))∀i ∈ I and ∪iclj(intj(Si)) ⊆ ∪iintj(clj(Si)) 
this implies to ∪iclj(intj(Si)) = cl

j
(intj(∪iSi))  

and ∪iintj(clj(Si)) = intj(clj(∪iSi)) therefore 
clj(intj(∪iSi)) ⊆ intj(clj(∪iSi)) and thus ∪iSi is a j
-inverse simply open.

 iii. LetS1, S2 ∈ ISMjO(U) , then clj(intj(S1)) ⊆ intj

(clj(S1)) and clj(intj(S2)) ⊆ intj(clj(S2)). Then 
intj(clj(S1 ∩ S2)) ⊆ clj(intjS1 ∩ S2). Thus S1 ∩ S2  
is a j-inverse simply open.

From (i), (ii) and (iii) ISMjO(U) is a topology on U.

Theorem  4.2 Assume that (U,Q, ξ j) be a j-neighbor-
hood space. Every j-inverse simply open set is correspond-
ingly a j-inverse simply closed set and vice versa.

Proof Assume that S be a j-inverse simply open set. So, 
clj(intj(S)) ⊆ intj(clj(S)). By taking the complement of 
the both sides, we obtain: [clj(intj(S))]c ⊇ [intj(clj(S))]

c 
and this implies to intj[intj(S))c] ⊇ clj[clj(S))

c].There-
fore  clj(intj(Sc)) ⊆ intj(clj(S

c))  and Sc is j-inverse simply 
open.

Corollary 4.1 Assume that (U,Q, ξ j) be a j-NS and 
for each j belongs to 

{

r, l, 〈r〉,
〈

l
〉

, i, u, 〈i〉, 〈u〉
}

 . Then, 
ISMjO(U) = ISMjC(U)  and each of these topologies are 
quasi-discrete.

Remark 4.2 Assume that (U, Q, ξ j) is a j-neigh-
borhood space with S ⊆ U and for each j belongs to 
{

r, l, 〈r〉,
〈

l
〉

, i, u, 〈i〉, 〈u〉
}

 . Then, In general, the following 
statements are untrue:

1. ISMuO(U) ⊆ ISMrO(U) ⊆ ISMiO(U).

2. ISMuO(U) ⊆ ISMlO(U) ⊆ ISMiO(U).

3. ISM�u�O(U) ⊆ ISM�r�O(U) ⊆ ISM�i�O(U).

4. ISM�u�O(U) ⊆ ISM�l �O(U) ⊆ ISM�i�O(U).

5. The dual of ISMlO(U) is ISMrO(U).
6. The dual of  ISM〈r〉O(U) is ISM〈l〉O(U).

The example that follows demonstrates Remark 4.2

Example 4.1 According to Examle 3.1 We will compute 
the topology associated with this relation and the families 
of al of j-inverse simply closed setsand j-inverse simply 
open sets for each j belongs to 

{

r, l, 〈r〉,
〈

l
〉

, i, u, 〈i〉, 〈u〉
}

 
as described:

1. ISMrO(U) =

{

U ,∅, {x},
{

y
}

, {v}, {w},
{

x, y
}

, {x, v},
{

y, v
}

, {x, w},
{

y, w
}

, {v, z}, {w, z},
{

x, y, v
}

,
{

x, y, w
}

, {x, v, z},
{

y, v, z
}

, {x, w, z},
{

y, w, z
}

, {v,w, z}, {x, y, v, z}, {x, y,w, z}, {x, v,w, z}, {y, v,w, z}

}

2. ISMlO(U) =

{

U ,∅, {v}, {w}, {z},
{

x, y
}

, {v, w}, {v, z}, {w, z},
{

x, y, v
}

,
{

x, y, w
}

,
{

x, y, z
}

, {v, w, z},
{

x, y , v, w
}

,
{

x, y , v, z
}

,
{

x, y , w, z
}

,

{y, v,w, z}

}
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3. ISMiO(U) = P(U).
4. ISMuO(U) = P(U).
5. ISM�r�O(U) = P(U).

6. ISM�l�O(U) =
{

U,∅, {v}, {w}, {z},
{

x, y
}

, {v, w}, {v, z},

{w, z},
{

x, y, v
}

,
{

x, y, w
}

,
{

x, y, z
}

, {v, w, z},
{

x, y, v, w
}

,
{

x, y, v, z
}

,
{

x, y, w, z
}}

7. ISM�i�O(U) = P(U).

8. ISM�u�O(U) = P(U).

The previous results show that:

• ISMuO(U) � ISMrO(U)

• ISMuO(U)� ISMlO(U).

• ISM〈u〉O(U) � ISM〈l〉O(U).

• ISMrO(U) is not the dual of ISMlO(U).
• ISM〈r〉O(U) is not the dual of ISM〈l〉O(U).

Example 4.1 shows that the linkages between ISMj-
open setsfor various kinds of τj are independent.

5  Generalizions of  j‑inverse simply open sets
In the following section, we present two distinct strate-
gies for generalizing Pawlak rough set approximations 
in terms of topological spaces. The offered strategies 
are extremely beneficial in real-world applications and 
play a vital role in decision-making.

Definition 5.1 Assume that (U, Q, ξ j) is a j-neigh-
borhood spacewith S ⊆ U . Then, for each j belongs to 
{

r, l, 〈r〉,
〈

l
〉

, i, u, 〈i〉, 〈u〉
}

 . The ISMj–lower approxima-
tions,ISMj-upperapproximations,ISMj-boundary,ISMj

-positive –regions, ISMj–negative regions and the 
 ISMj-accuracy of S are described as follows:

• RIsm
j (S) =

⋃
{

G ∈ ISMjO(U)) : G ⊆ S
}

called ISMj

-interior of S.
• R

Ism
j (S) =

⋂
{

H ∈ ISMjC(U) : S ⊆ H
}

called ISMj

-closure of S.
• BIsm

j (S) = R
Ism
j (S)− R

_

Ism

j
(S).

• POSIsmj (S) = R
_

Ism

j
(S).

• NEGIsm
j (S) = U− R

Ism
j (S).

• σIsmj (S) =

∣

∣

∣

∣

R
_

Ism

j
(S)

∣

∣

∣

∣

∣

∣

∣
R
Ism
j (S)

∣

∣

∣

,Where
∣

∣

∣
R
Ism
j (S)

∣

∣

∣
�= 0.

Definition 5.2 Assume that (U, Q, ξ j) is a j-neigh-
borhood spacewithS ⊆ U . For each j belongs to 
{

r, l, 〈r〉,
〈

l
〉

, i, u, 〈i〉, 〈u〉
}

 . A set S is named:

 i. ISMj − exact if R
_

Ism

j
(S) = R

Ism
j

(S) or BIsm
j (S) = ∅ and σIsmj (S) = 1.

 ii. ISMj − rough if R
_

Ism

j
(S) �= R

Ism
j (S) or BIsm

j (S) �= ∅.

The proposition proposal investigates the key char-
acteristics of the current ISMj − upper , and ISMj-lower 
approximations.

Proposition 5.1 Assume that (U, Q, ξ j) is a j-neigh-
borhood spacewithS, T ⊆ U . For each j belongs to 
{

r, l, 〈r〉,
〈

l
〉

, i, u, 〈i〉, 〈u〉
}

 . The properties holds:

(L1) R
_

Ism

j
(S) ⊆ S.

(L2) R
_

Ism

j
(∅) = ∅.

(L3) R
_

Ism

j
(U) = U .

(L4) RIsm
j (S ∩ T) = RIsm

j (S) ∩ RIsm
j (T).

(L5) IfS ⊆ T , then R
_

Ism

j
(S) ⊆ R

_

Ism

j
(T).

(L6) R
_

Ism

j
(S) ∪ R

_

Ism

j
(T) ⊆ R

_

Ism

j
(S ∪ T).

(L7) R
_

Ism

j
(Sc) = (R

Ism
j (S))

c
.

(L8) R
_

Ism

j

(

R
_

Ism

j
(S)

)

= R
_

Ism

j
(S).

(L9) R
_

Ism

j
((R

_

Ism

j
(S))

c
) = (R

_

Ism

j
(S))

c
.

(L10) R
_

Ism

j
(S) = R

Ism
j

(

R
_

Ism

j
(S)

)

.
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(L11) ∀ x ∈ ISMjO(U) → R
_

Ism

j
(X) = X .

(U1) S ⊆ R
Ism
j (S).

(U2) RIsm
j (∅) = ∅.

(U3) RIsm
j (U) = U .

(U4) RIsm
j (S ∪ T) = R

Ism
j (S) ∪ R

Ism
j (T).

(U5) IfS ⊆ T , then R
Ism
j (S) ⊆ R

Ism
j (T).

(U6) RIsm
j (S) ∩ R

Ism
j (S) ⊇ R

Ism
j (S ∩ T).

(U7) RIsm
j (Sc) = (R

_

Ism

j
(S))

c
.

(U8) RIsm
j

(

R
Ism
j (S)

)

= R
Ism
j (S).

(U9) RIsm
j ((R

Ism
j (S))

c
) = R

Ism
j (S))

c
.

(U10) RIsm
j (S) = R

_

Ism

j

(

R
Ism
j (S)

)

.

(U11) ∀x ∈ ISMjO(U) → R
Ism
j (X) = X .

Proof The characteristics from (U1–U11) and (L1–L11) 
are thus satisfied by applying the properties of of ISMj

-interior and ISMj-closure of S.

Definition 5.3 Assume that 
(

U, Q, ξ j
)

 is a j-neigh-
borhood space withS ⊆ U . Then, for each j belongs to 
{

r, l, 〈r〉,
〈

l
〉

, i, u, 〈i〉, 〈u〉
}

 . The Mj-upper approxima-
tion,Mj-lower approximations,Mj-boundary regions,Mj

-positive regions, Mj-negative regions and  Mj-accuracy of 
S are given, respectively, by:

• Mj(S) = R
Ism
j (S) ∩ R

b∗

r (S).

• M
_ j
(S) = R

_

Ism

j
(S) ∪ R

_

b∗

r
(S).

• BM
j (S) = Mj(S)−M

_ j
(S).

• POSMj (S) = M
_ j
(S).

• NEGM
j (S) = U −Mj(S).

• σMj (S) =

∣

∣

∣

∣

M
_ j
(S)

∣

∣

∣

∣

∣

∣Mj(S)
∣

∣

,Where
∣

∣Mj(S)
∣

∣ �= 0.

Definition 5.4 Assume that 
(

U, Q, ξ j
)

 is a j-neigh-
borhood space withS ⊆ U . For each j belongs to 
{

r, l, 〈r〉,
〈

l
〉

, i, u, 〈i〉, 〈u〉
}

 . A set S is named:

1. Exact if M
_ j
(S) = Mj(S) or BM

j (S) = ∅ and σMj (S) = 1.

2. R ough if M
_ j
(S)  = Mj(S)  or BM

j (S)  = ∅.

The relationships between Mj-approximations and 
some of the other approximation types are illustrated 
by the following properties.

Proposition 5.2 Assume that (U,Q, ξ j) be a j-neighbor-
hood space with S ⊆ U . Then.

Proof:is obvious.

Corollary 5.1 Assume that (U, R, ξ j) be a j-neighbor-
hood space with S ⊆ U . Then.

Proof: is obvious.

Corollary 5.2 Assume that (U,Q, ξ j) is a j-neigh-
borhood space with S ⊆ U . Then, if S is j-exact → S is 
j-inverse simply exact → S is Mj-exact.

Remark 5.1 The reverse of the corollary 5.2 is not right 
in overall as shown in Example 5.1

Example 5.1 The class of all ∧βr-open sets and ∨βr

-closed sets are displayed in Example 3.1, respectively:

Rj(S) ⊆ Mj(S).Mj(S) ⊆ Rj(S).

RIsm
j (S) ⊆ Mj(S).Mj(S) ⊆ R

Ism
j (S).

BM
j (S) ⊆ Bj(S).σj(S) ≤ σM

j (S).

BM
j (S) ⊆ BIsm

j (S).σ Ism
j (S) ≤ σM

j (S).

∧βrO(U) =

{

U , ∅,
{

y
}

, {v}, {w}, {z}, {x, z},
{

y, v
}

,
{

y, w
}

,
{

y, z
}

, {v, w}, {v, z}, {w, z},
{

x, y, z
}

, {x, v, z}, {x, w, z},
{

y, v, w
}

,
{

y , v, z
}

,
{

y , w, z
}

,

{v,w, z},
{

x, y, v, z
}

,
{

x, y,w, z
}

, {x, v,w, z},
{

y, v,w, z
}

}

∨βrO(U) =

{

U , ∅, {x},
{

y
}

, {v}, {w},
{

x, y
}

, {x, v}, {x, w}, {x, z},
{

y, v
}

,
{

y, w
}

, {v, w},
{

x, y, v
}

,
{

x, y, w
}

,
{

x, y, z
}

, {x, v, w}, {x, v, z}, {x, w, z},
{

y, v,w
}

,
{

x, y, v,w
}

,
{

x, y, v, z
}

,
{

x, y,w, z
}

, {x, v,w, z}

}
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As shown in Table  1, we use M. E. Abd El-Monsef in 
Definition 2.3, M. Hosny in Definition 2.7, M.K. El-
Bably in Definition 2.9, Definition 5.1, and Definitions 
5.3 to calculate the boundary region and approximation 
accuracy.

Comparison between M. E. Abd El-Monsef in Defi-
nition 2.3, M. Hosny in Definition 2.7, M.K. El-Bably 
in Definition 2.9, Definition 5.1, and Definitions 5.3 
respectively.

From the above comparison, we can see that the cur-
rent methods are more accurate than prior ways and 
minimise the boundary region, which is highly important 
in the rough set context of reducing ambiguity.

6  Plant morphology application
The main goal of this section is to provide real-world 
examples that highlight the importance of using the pro-
posed approaches in the context of rough sets.

6.1  Description
Morphology serves as the foundation for categorizing 
plants into distinct types. The section introduces a method-
ology for quantifying the similarity between various aspects 
of plant morphology, specifically focusing on three key 
attributes: (1) plant topological structure which describe 
the structural relationship between various organs, (2) 
the peripheral outlines of a plant and the contour of each 

Table 1 Comparison between the boundary regions and accuracy approximations for j ∈ r

P(U) M. E. Abd El-Monsef M. Hosny M.K. El-Bably Ism-generalization M-generalization

Br(S) σr(S) B
∧β

r (S) σ

∧β

r (S) B
sm
r (S) σ

sm
r (S) B

Ism
r (S) σ

Ism
r (S) B

M
r (S) σ

M
r (S)

{x} {x} 0 {x} 0 ∅ 1 {x} 1 ∅ 1

{y} {y } 0 ∅ 1 ∅ 1 {y } 1 ∅ 1

{v} {y, v, w} 0 ∅ 1 {v, w} 0 ∅ 1 ∅ 1

{w} {y, v, w} 0 ∅ 1 {v, w} 0 ∅ 1 ∅ 1

{z} {x, y} 1/3 {x} ½ ∅ 1 {x} 0 ∅ 1

{x, y} {x, y} 0 {x} 1/2 ∅ 1 {x, y } 1 ∅ 1

{x, v} {x, y, v, w} 0 {x} 1/2 {v, w} 1/3 {x} 1 ∅ 1

{x, w} {x, y , v, w} 0 {x} 1/2 {v, w} 1/3 {x} 1 ∅ 1

{x, z} {y } 2/3 ∅ 1 ∅ 1 ∅ ½ ∅ 1

{y , v} {y , v, w} 0 ∅ 1 {v, w} 1/3 ∅ 1 ∅ 1

{y , w} {y , v, w} 0 ∅ 1 {v, w} 1/3 ∅ 1 ∅ 1

{y , z} {x, y } 1/3 {x} 2/3 ∅ 1 {x} ½ ∅ 1

{v, w} {y } 2/3 ∅ 1 ∅ 1 ∅ 2/3 ∅ 1

{v, z} {x, y , v, w} 1/5 {x} 2/3 {v, w} 1/3 {x} 1 ∅ 1

{w, z} {x, y , v, w} 1/5 {x} 2/3 {v, w} 1/3 {x} 1 ∅ 1

{x, y, v} {x, y , v, w} 0 {x} 2/3 {v, w} ½ {x} 1 ∅ 1

{x, y, w} {x, y, v, w} 0 {x} 2/3 {v, w} ½ {x} 1 ∅ 1

{x, , z} {y} 2/3 ∅ 1 ∅ 1 ∅ ¾ ∅ 1

{x, v, w} {x, y} 1/2 {x} ¾ ∅ 1 {x} 2/3 ∅ 1

{x, v, z} {y , v, w} 2/5 ∅ 1 {v, w} ½ ∅ 1 ∅ 1

{x, w, z} {y , v, w} 2/5 ∅ 1 {v, w} ½ ∅ 1 ∅ 1

{y, v, w} {x, y } 1/2 ∅ 1 ∅ 1 ∅ ¾ ∅ 1

{y, v, z} {x, y , v, w} 1/5 {x} 3/4 {v, w} ½ {x} 1 ∅ 1

{y, w, z} {x, y , v, w} 1/5 {x} ¾ {v, w} ½ {x} 1 ∅ 1

{v, w, z} {x, y } 3/5 {x} ¾ ∅ 1 {x, y } 1 ∅ 1

{x, y , v, w} {x,y} 1/2 {x} ¾ ∅ 1 {x} 4/5 ∅ 1

{x, y, v, z} {y , v, w} 2/5 {x} ¾ {v, w} 3/5 ∅ 1 ∅ 1

{x, y, w, z} {y , v, w} 2/5 {x} ¾ {v, w} 3/5 ∅ 1 ∅ 1

{x, v, w, z} {y } 4/5 ∅ 1 ∅ 1 {y } 1 ∅ 1

{y, v, w, z} {x} 4/5 ∅ 1 ∅ 1 {x} 1 ∅ 1

U ∅ 1 ∅ 1 ∅ 1 ∅ 1 ∅ 1
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branch and (3) the inner features which describe the geo-
metric characteristics such as branching angles and diam-
eters of the different organs. The topological structures are 
described using tree graphs and their similarity between 
each pair of trees can be calculated based on the cost of 
transformation between two graphs using the edit distance 
of these graphs and branch degradation. For the two tree 
graphs, let one tree be the source tree Ts and the other be 
the target tree Td . After the branch degradation on both 
Td and Ts , we perform certain insertions and deletions to 
transform Ts to Td . The total cost Dt(Ts,Td) of the transfor-
mation is defined recursively as follows

where all of the root node’s axial successor nodes exclud-
ing branching nodes are represented by the symbol p(T). 
All of the root node’s branching nodes are represented 
by b(T). The ith node in this set is represented by b(T, i) . 
After computing the cost recursively using Eq.  (1), we 
may obtain the topological structure similarity value 
(which ranges from 0 to 1) with 1 denoting the maximum 
similarity by employing linear transformations to clamp 
the cost computation result within the range between 0 
and 1.The transformation equation is defined as follows:

Note that: The presented application is constructed 
using practical issues found in [27]. The data were ana-
lyzed, and the results were used to determine the tree 
topologies.

6.2  Assumption
Let U = {T1,T2, T3, T4, T5} be a different 5 theoretical 
plants. Every theoretical plant is composed of elementary 
entities. Their entities connections are not organised the 
same way. The similarities between each pair are calcu-
lated by using Eq.  (2) and the results of our calculation 
of the similarities between each pair of trees are shown 
in Table 2. The values range from 0 to 1 with 1 indicating 
exactly the same between two tree structures.

We consider the relation on U which represent high 
similarity defined as follow:R =

{(

TI, Tj

)

: St
(

TI, Tj

)

≥

0.70, i , j = 1,2, 3,4, 5
}

,Then TIRT j = {(T1, T1), (T1, T5),

(T2, T2), (T2, T3), (T2, T4), (T2, T5), (T3, T3), (T3, T4),

(T4, T3), (T4, T4), (T5, T1), (T5, T5)}.

The following are the right neighborhoods for each ele-
ment of U in reference to relation R:

(1)Dt(Ts,Td) = Dt(T [p(Ts)], (T [p(Td)])+

max {|b(Ts)|,|b(Td)|}
∑

i=1

Dt(T [b(Ts, i)],T [b(Td , i)])

(2)St(Ts, Td) = 1−
D(Ts, Td)+ ||Ts | − |Td||

2 MAX (|Ts |, |Td|)

T1R = {T1,T5} , T2R = {T2, T3T4, T5} , T3R = {T3, T4} , 
T4R = {T3,T4} and T5R = {T1,T5}.

Consequently, the topology that these neighborhoods 
produce is.
τr = {U,∅, (T5), (T3, T4), (T1, T5), (T3, T4, T5),

(T1, T3, T4, T5), (T2, T3, T4, T5)}.
The family of r-inverse simply open sets of U is 

ISMrO(U) = P(U).

7  Methods
We apply our strategies to this data in Table 3. Our aim 
is to classify the sets and measure their exactness and 

roughness. we defined different approximations based on 
topological structures. This leaves us to get to the mecha-
nism for decreasing the boundary regions and making it 
small as possible which is highly important in the rough 
set context of reducing ambiguity in data and achieving a 
higher accuracy measure.

8  Results
We present a comparative analysis of the proposed meth-
ods with the earlier methods. The methods of M. E. Abd 
El-Monsef et al. in Definition 2.3, W. S. Amer et al. in Def-
inition 2.4, the current approach in Definitions 3.1, M.K. 
El-Bably in Definition 2.9, Definition 5.1, and Definition 
5.3 are used to calculate the boundary region and accu-
racy. From Table 3, it is clear that the best of these meth-
ods given by using our techniques. In this instance, the 
boundary areas are canceled. The outcomes are crucial in 
removing the imprecision associated with rough sets.

9  Discussion
Therefore, based on the measure values obtained, the 
boundary regions and the accuracy measure for exam-
ple the set { T3,T5 } using the proposed approaches and 

Table 2 Simulated tree structure pairwise similarity

T1 T2 T3 T4 T5

T1 1 0.33 0.27 0.54 0.83

T2 0.30 1 0.76 0.75 0.71

T3 0.22 0.35 1 0.76 0.44

T4 0.31 0.42 0.71 1 0.20

T5 0.75 0.33 0.54 0.40 1



Page 12 of 14Salama et al. Beni-Suef Univ J Basic Appl Sci           (2024) 13:64 

the previous approaches such as M. E. Abd El-Monsef in 
Definition 2.3, Amer WS in Definition 2.4, M.K. El-Bably 
approach in Definition 2.9, the Currrent approach (bj∗-
open sets) in Definition 3.1, the first method in the Defi-
nition 5.1.2 and the second method in Definition 5.2.2 
respectively.

• M. E. Abd El-Monsef:

The boundary region and the accuracy for the set 
{ T3, T5}.
Br({T3,T5}) = {T1,T2,T3,T4} , σr({T3,T5}) = 0.20 and 

accordingly { T3,T5 } is rough set.

• Amer WS:

The boundary region and the accuracy for the set 
{ T3, T5}.
Br({T3, T5}) = {T1, T2, T4} , σr({T3, T5}) = 0.40 and 

accordingly { T3, T5 } is rough set.

• M.K. El-Bably:

The boundary region and the accuracy for the set 
{ T3, T5}.
Bsm
r ({T3, T5}) = {T3, T4} , σsmr ({T3, T5}) = 0.33 and 

accordingly { T3, T5 } is rough set.

Table 3 Application results between the boundary regions and accuracy measures for j ∈ r

A M. E. Abd El-Monsef Amer WS The current 
method

M.K. El-Bably Ism-generalization M-generalization

Br σr Br σr Bb
∗

r σ
b
∗

r
B
sm
r σ

sm
r BIsmr σ

Ism
r BMj σ

M
j

{T 1} {T1} 0 {T1} 0 {T1} 0 ∅ 1 ∅ 1 ∅ 1

{T 2} {T 2} 0 {T 2} 0 {T 2} 0 ∅ 1 ∅ 1 ∅ 1

{T 3} {T2, T3, T4} 0 {T 3} 0 ∅ 1 {T3, T4} 0 ∅ 1 ∅ 1

{T 4} {T2, T3, T4} 0 {T 4} 0 ∅ 1 {T3, T4} 0 ∅ 1 ∅ 1

{T 5} {T1, T2} 0.33 {T1} 0.50 {T1} 0.50 ∅ 1 {T 5} 0 ∅ 1

{T1, T2} {T1, T2} 0 {T1, T2} 0 {T1, T2} 0 ∅ 1 ∅ 1 ∅ 1

{T1, T3} {T1, T2, T3, T4} 0 {T1, T3} 0 {T1} 0.50 {T3, T4} 0.33 ∅ 1 ∅ 1

{T2, T3} {T2, T3, T4} 0 {T2, T3} 0 ∅ 1 {T3, T4} 0.33 ∅ 1 ∅ 1

{T1, T4} {T1, T2, T3, T4} 0 {T1, T4} 0 {T1} 0.50 {T3, T4} 0.33 ∅ 1 ∅ 1

{T2, T4} {T2, T3, T4} 0 {T2, T4} 0 ∅ 1 {T3, T4} 0.33 ∅ 1 ∅ 1

{T3, T4} {T 2} 0.67 ∅ 1 ∅ 1 ∅ 1 {T 5} 0.67 ∅ 1

{T1, T5} {T 2} 0.67 ∅ 1 ∅ 1 ∅ 1 {T 5} 0.50 ∅ 1

{T2, T5} {T1, T2} 0.33 {T1} 0.67 {T1} 0.67 ∅ 1 {T 5} 0.50 ∅ 1

{T3, T5} {T1, T2, T3, T4} 0.20 {T1, T2, T4} 0.40 {T1} 0.67 {T3, T4} 0.33 ∅ 1 ∅ 1

{T4, T5} {T1, T2, T3, T4} 0.20 {T1, T2, T3} 0.40 {T1} 0.67 {T3, T4} 0.33 ∅ 1 ∅ 1

{T1, T2, T3} {T1, T2, T3, T4} 0 {T1, T2, T3} 0 {T1} 0.67 {T3, T4} 0.50 ∅ 1 ∅ 1

{T1, T2, T4} {T1, T2, T3, T4} 0 {T1, T2, T4} 0 {T1} 0.67 {T3, T4} 0.50 ∅ 1 ∅ 1

{T1, T3, T4} {T1, T2} 0.50 {T1} 0.67 {T1} 0.67 ∅ 1 {T 5} 0.75 ∅ 1

{T2, T3, T4} T2} 0.67 ∅ 1 ∅ 1 ∅ 1 {T 5} 0.75 ∅ 1

{T1, T2, T5} {T2} 0.67 ∅ 1 ∅ 1 ∅ 1 {T 5} 0.67 ∅ 1

{T1, T3, T5} {T2, T3, T4} 0.40 {T2, T4} 0.60 ∅ 1 {T3, T4} 0.50 ∅ 1 ∅ 1

{T2, T3, T5} {T1, T2, T3, T4} 0.20 {T1, T4} 0.60 {T1} 0.75 {T3, T4} 0.50 ∅ 1 ∅ 1

{T1, T4, T5} {T2, T3, T4} 0.40 {T2, T3} 0.60 ∅ 1 {T3, T4} 0.50 ∅ 1 ∅ 1

{T2, T4, T5} {T1, T2, T3, T4} 0.20 {T1, T3} 0.60 {T1} 0.75 {T3, T4} 0.50 ∅ 1 ∅ 1

{T3, T4, T5} {T1, T2} 0.60 {T1, T2} 0.60 {T1, T2} 0.60 ∅ 1 ∅ 1 ∅ 1

{T1, T2, T3, T4} {T1, T2} 0.50 {T1} 0.75 {T1} 0.75 ∅ 1 {T 5} 0.80 ∅ 1

{T1, T2, T3, T5} {T2, T3, T4} 0.40 {T4} 0.80 ∅ 1 {T3, T4} 0.60 ∅ 1 ∅ 1

{T1, T2, T4, T5} {T2, T3, T4} 0.40 {T3} 0.80 ∅ 1 {T3, T4} 0.60 ∅ 1 ∅ 1

{T1, T3, T4, T5} {T2} 0.80 {T2} 0.80 {T2} 0.80 ∅ 1 ∅ 1 ∅ 1

{T2, T3, T4, T5} {T1} 0.80 {T1} 0.80 {T1} 0.80 ∅ 1 ∅ 1 ∅ 1

U ∅ 1 ∅ 1 ∅ 1 ∅ 1 ∅ 1 ∅ 1
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• The Currrent approach using bj ∗ −open sets:

The boundary region and the accuracy for the set 
{ T3, T5}.
Bb∗

r ({T3, T5}) = {T1} , σb
∗

r ({T3, T5}) = 0.67 and accord-
ingly { T3, T5 } is rough set.

• Ism-Generalization method using 
j− inverse simply open sets:

The boundary region and the accuracy for the set 
{ T3, T5}.
BIsm
r ({T3, T5}) = ∅ , σIsmr ({T3, T5}) = 1 and accordingly 

{ T3, T5}is exact set.

• M-Generalization method using j-inverse simply 
open sets:

The boundary region and the accuracy for the set 
{ T3, T5}.
BM
j ({T3,T5}) = ∅ , σMj ({T3,T5}) = 1 and accordingly 

{ T3,T5}is exact set.
We can conclude that the proposed approximations 

were more precise than earlier techniques and helped 
eliminate uncertainty in real-world scenarios that 
required precise decisions.

10  Conclusions and future works
The exploration of near open sets holds substantial sig-
nificance in the broader context of generalized rough 
set theory. This concept, referred to as near open sets, 
furnishes researchers with a powerful tool to expand 
the boundaries of rough sets and enhance the precision 
of measurements. The original rough set theory faced 
limitations due to its reliance on equivalence relations, 
on straining its applicability. To overcome this obstacle, 
diverse variations of near open sets were introduced, ena-
bling the treatment of imperfect or uncertain knowledge. 
A central focal point in rough set theory revolves around 
the reduction of boundary regions, with the ultimate aim 
of augmenting the precision of decision-making pro-
cesses. This paper introduces innovative methodologies 
for extending the scope of rough set theory. Specifically, it 
introduces a novel concept termed “ j-inverse simply open 
sets” within the context of the j-neighborhood space. 
These methods facilitate a more robust approximation of 
sets while alleviating the inherent imprecision found in 
rough sets. The paper rigorously examines the properties 
inherent to these methods, which are constructed from 
a binary relation that in turn gives rise to essential topo-
logical structures crucial for the proposed approximation 
spaces. Surprisingly, the proposed approximation spaces 

preserve all of the properties of Pawlak’s rough sets with-
out the need for extra requirements. This represents a 
convergence of broad topology and rough set theory. In 
the future, we hope to investigate more applications of 
topological notions in rough set.
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