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Abstract 

Background Wound healing represents a complex clinical challenge, necessitating the selection of appropriate 
wound dressings to facilitate an efficient healing process. This study aims to explore an effective approach to enhance 
wound healing by investigating the therapeutic potential of a nanocellulose‑based anthraquinone derived 
from marine fungi.

Forty male Wistar rats were divided into five groups, including a control group and various four treatment groups. The 
wound healing process was assessed by measuring the wound area at different time points.

Results The results showed promising outcomes in terms of wound healing progression. The group treated 
with anthraquinone and nanocellulose demonstrated the most favorable results, with normal epidermal architecture, 
marked hyperkeratosis, and minimal dermal edema. This study provides comprehensive evidence supporting the effi‑
cacy of this novel alternative therapy through histopathological and immunohistochemical analyses conducted 
on a rat model.

Conclusion By addressing the limitations associated with conventional wound dressings, our research contributes 
to the development of innovative strategies for optimizing wound healing outcomes. The findings presented herein 
underscore the potential of nanocellulose‑based anthraquinone as a promising therapeutic option for promoting skin 
wound healing. Further investigations are warranted to elucidate the underlying mechanisms and establish the clini‑
cal viability of this alternative therapy.
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1  Background
Wound healing involves a sophisticated physiological 
process that encompasses a series of intricate cellular 
and molecular mechanisms aimed at restoring dam-
aged tissue integrity [1, 2]. The dynamic process of 
wound healing involves complex interactions among 
cells, components of the extracellular matrix, and bio-
chemical signaling pathways [3, 4].

Throughout the years, the progression of wound 
dressing technology has markedly advanced from the 
introduction of the first contemporary dressing in the 
mid-1980s. These dressings were designed to keep a 
moist environment, help absorb fluids, minimize infec-
tion, and promote wound healing and management [5]. 
Modern wound dressings are now identified as interac-
tive and bioactive remedies, merging the physical bar-
rier offered by conventional dressings with the addition 
of specific bioactive molecules. These molecules pro-
mote cell renewal through the proliferation and migra-
tion of fibroblasts and keratinocytes, boost collagen 
production, fight against bacterial infections, and aid 
in drug delivery, all of which contribute to an effective 
healing process. A perfect wound dressing ought to 
preserve a high level of humidity at the wound location, 
absorb excess exudate, display non-toxic and hypoal-
lergenic characteristics, permit oxygen transfer, guard 
against microbial intrusion, and be both comfortable 
and economical. Modern dressings take various forms, 
such as hydrogels, foams, sponges, films, and recently, 
nanofibrous mats [6–8].

There is a growing demand for sustainable, eco-friendly 
nanoscale materials. Biomass-derived polymers like cel-
lulose are gaining attention due to their abundance, easy 
extraction, biocompatibility, non-toxicity, and biodeg-
radability. Cellulose, in particular, is being considered 
for wound dressings, either as an additive or a primary 
material. Data indicate promising outcomes, especially in 
terms of cell proliferation and attachment [9, 10].

Employing nanomaterials in wound therapy can 
address the shortcomings of conventional wound care 
and enhance the healing process [11]. Consequently, 
there is a rising need for new treatment approaches to 
tackle these problems and speed up wound healing. In 
recent years, nanotechnology has made significant pro-
gress and holds great potential for numerous medical 
applications, including wound healing. [12, 13]. Nano-
materials offer specific advantages that could transform 
wound treatment because of their unique physicochemi-
cal properties and nanoscale dimensions [14]. These 
materials can modulate biological processes at both the 
cellular and molecular levels due to their tailored sur-
face properties, high surface-to-volume ratios, and other 
characteristics. As a result, nanomaterials have garnered 

significant attention as versatile tools for creating innova-
tive wound healing therapies [15, 16].

Fungi sourced from marine environments have a 
diverse biosynthetic machinery that allows them to pro-
duce a wide range of secondary metabolites from dif-
ferent chemical classes, such as alkaloids, polyketides, 
terpenoids, meroterpenoids, peptides, and steroids 
[17–20].

Among the fungal secondary metabolites, anthraqui-
nones, especially 1,8-dihydroxy-anthraquinones, are 
among the most researched compounds due to their 
recognized pharmacological properties [21]. Anthraqui-
nones (AQs) belong to a group of phenolic substances 
distinguished by a 9,10-anthracenedione (also referred to 
as 9,10-dioxoanthracene) core structure, featuring three 
fused benzene rings with two ketone groups on the cen-
tral ring [19, 22]. Remarkably, anthraquinones and their 
derivatives are gaining more interest due to their diverse 
biological activities, which include acting as laxatives 
[23], antifungals [24], antibacterials [25], antimalarials 
[26], anti-inflammatories [27, 28], antiarthritics [28], diu-
retics [27], antiplatelets [29, 30], neuroprotectives [31], 
and having anticancer properties [22, 32–35].

In light of wound healing demands for effective thera-
pies to accelerate tissue regeneration, active biomolecules 
with healing abilities have been incorporated into nano-
structured polymeric dressings. The synergistic effects of 
these combinations need to be investigated. This study 
aims to introduce a novel wound healing approach by 
exploring the therapeutic potential of nanocellulose-
based anthraquinone derived from marine fungi, posi-
tioning it as a sustainable and effective alternative therapy 
for skin wound healing in a rat model through compre-
hensive histopathological and immunohistochemical 
analyses.

2  Methods
2.1  Experimental animals
Forty 10-week-aged male Wistar rats, weighing 
110 ± 10  g, were purchased from a confined Animal 
House Colony. The rats were kept individually in plastic 
cages to prevent interferences such as biting and poten-
tial wound scratching from other animals. They were 
provided with a standard diet (Al Wadi Co., Giza, Egypt) 
[9] and had water ad libitum. The animals were kept in 
a laboratory maintained at a temperature of 25 ± 2  °C. 
A 1-week acclimatization period was observed before 
the commencement of the study to allow the animals to 
adapt to their new environment.

2.2  Ethical approval
Follow the normal operating procedures approved by the 
Institutional Animal Care and Animal Ethics Committee, 
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Faculty Aquatic and Fisheries Sciences, Kafrelsheikh Uni-
versity, Egypt (IAACUC-KSU-005-2021).

2.3  Experimental design
Following the acclimatization period, excisional skin 
wounds of 1.5 × 1.5  cm in diameter were performed on 
the dorsal region of each rat (Fig.  1A, B). The experi-
mental animals (n = 40) were then divided randomly into 
five experimental groups, with eight rats per group, as 
follows:

I. Control group (G1): untreated skin wound group.
II. Hydrogel treated group (G2): skin wound group 

treated with hydrogel only.
III. Anthraquinone treated group (G3): skin wound 

group treated with anthraquinone.
IV. Anthraquinone and nanocellulose treated group 

(G4): skin wound group treated with both anthraquinone 
and nanocellulose.

V. Nanocellulose alone treated group (G5): skin wound 
group treated with nanocellulose.

The amount used from hydrogel, anthraquinone, nano-
cellulose to cover the whole wound area.

2.4  Establishment of full thickness dermal excisional 
wound

To carry out the excisional wounds, the rats were anes-
thetized with a combination of ketamine and xylazine 
administered via intraperitoneal injection (ketamine 
70  mg/kg and xylazine 7  mg/kg). The back hair of the 
rats was then shaved, and the area was disinfected using 
70% ethanol. Full-thickness skin excisional wounds meas-
uring 1.5 × 1.5  cm were created on the dorsal region of 
each animal, following the protocol described by Atiba 
et al. [36]. The wound areas were measured then photo-
graphed using special size analysis software, NIH Image 
J software (available at http:// www. rsb. info. nih. gov/ ij), 
at various time points: 0, 3, 6, 9, 12, 15, 17, and 19 days 
post-wounding (Fig. 2). The alteration in wound dimen-
sions was measured in terms of a percentage in compari-
son with the initial wound size (day 0), and the results are 

Fig. 1 A FTIR spectra of extracted anthraquinone. B H NMR data of anthraquinone compound in CDCL3 (400 MHz) obtained from marine fungi. C 
FTIR analysis for nanocellulose

http://www.rsb.info.nih.gov/ij
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presented in Fig. 2. The medical dressings were changed 
for the excisional wound groups on the specified days, 
with careful inspection of the wound healing progress.

2.5  Isolation of bioactive compounds from marine fungi
All chemicals, solvents and reagents used were of analyti-
cal grade. The chemicals used from  Sigma® and Alpha for 
chemicals and were of the purest grade available.

2.5.1  Sample collection and preparation
2.5.1.1 Fungal material A diverse array of marine fungi 
and other microorganisms collected from marine water 
from Alexandria beach at a depth of 3 m. The collected 
sample (from five different locations) was carefully placed 
into a clean plastic bag and immediately transported to 
the laboratory. Upon arrival, the sample was stored at 
−20 °C to preserve its integrity and ensure its suitability 
for further analysis. To facilitate fungal growth, a cul-

ture medium was prepared using potato agar following a 
standardized protocol [37].

2.5.1.2 Extraction of  fungal anthraquinone using etha-
nol The extraction of anthraquinone from the fungal 
culture was performed using an ethanol-based extraction 
method [38]. The resulting extract, as well as its fractions 
and sub-fractions, were subjected to monitoring through 
high-performance liquid chromatography (HPLC) to 
assess their composition and purity. Additionally, Fou-
rier transform infrared (FTIR) analysis was performed in 
order to provide further insights into the chemical char-
acteristics and structural properties of the extracted com-
pounds.

The final extract contained 76.2% anthraquinone.

2.5.1.3 Fermentation Culture of fungal strains on slants 
with PDA at 28  °C for 7  days. Inoculation under static 
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Fig. 2 A Wound area measurement. B Healing speed measurement
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conditions at room temperature in conical flask contains 
300-ml Wickerham’s medium for fermentation for one 
month. To stop the fermentation process, 300-ml EtOAc 
was added to the contents of the flask and centrifuge. 
Then, the content was filtered using Buchner funnel, and 
the filtrate was then transferred to separating funnel. Sep-
arate the aqueous phase and the EtOAc phase, the aque-
ous phase is then extracted several times with EtOAc till 
exhaustion. The combined EtOAc extracts was then evap-
orated under vacuum to obtain a solid or oily residue. The 
residue was then suspended in 90%MeOH fractionated 
with n-hexane, and water was added to render the MeOH 
60% and then fractionated with ethyl acetate and butanol. 
Then, the extract was characterized by FTIR and nuclear 
magnetic resonance (NMR) spectroscopy [39].

2.6  Chemical test for anthraquinones detection
2.6.1  Detection of anthraquinone using Borntrager’s test
To confirm the presence of anthraquinone in the extract, 
Borntrager’s test, as described by Harborne et  al. [40], 
was used. By preparing 1  g of anthraquinone, 10  ml of 
dilute HCl was boiled on water bath for 10 min and then 
filtered. The filtrate was extracted using benzene, and an 
equal volume of ammonia solution was added to the fil-
trate, followed by shaking. The emergence of a pink color 
in the ammoniacal layer indicates the presence of the 
anthraquinone moiety.

2.7  FTIR (Fourier transform infrared)
The FTIR analysis method  uses infrared light to scan 
test samples and observe chemical properties (Riaz et al. 
[41]). The major parameters’ settings for FTIR were 
the 4   cm −1 resolution and scan number of 64 times; 
the transmission spectrum within 450–4000   cm −1 was 
recorded.

2.8  Nanocellulose preparation
Nanocellulose was prepared using acid hydrolysis 
and mechanical process according to Peng et  al. [42]. 
Numerous methods have been established for extract-
ing nanocellulose from cellulosic substances. These var-
ied extraction techniques lead to differences in the types 
and characteristics of the nanocellulose produced. In 
this section, the primary methods of extraction are cat-
egorized into two types: acid hydrolysis and mechanical 
processing.

Cellulose underwent hydrolysis using 60% sulfuric acid 
at a ratio of 1:25 cellulose to sulfuric acid. This hydrolysis 
was performed under various concentrations of sulfuric 
acid, temperatures, and times. The process was halted by 
introducing a tenfold excess of distilled water (250  ml) 
into the mix. The resulting colloidal suspension was then 
centrifuged at 6500  rpm for 30  min. Following this, it 

underwent dialysis for 5 days to neutralize to a pH range 
of 6–7 and remove sulfate ions. The neutral colloidal sus-
pension was subsequently sonicated for 10 min to ensure 
the uniformity of the produced nanocellulose [43].

2.9  Application of anthraquinone, hydrogel, 
and nanocellulose

Anthraquinone, hydrogel, and nanocellulose formula-
tions (1:1) were topically applied to the injured wound 
area on the backs of the rats at specific time points: days 
0, 3, 6, 9, 12, 15, 17, and 19 post-wounding. The applica-
tion of these treatments aimed to assess their effects on 
wound healing progress. Additionally, the wound area 
was measured during each application to monitor any 
changes.

2.10  Collection of tissue specimens
At the conclusion of the study, specifically 19 days post-
wounding, all rats were euthanized in a humane manner 
through decapitation while under anesthesia, which was 
administered via an intraperitoneal injection of pentobar-
bital (500 mg/kg). The entire wound, along with a margin 
of approximately 5  mm of the surrounding healthy tis-
sue, was excised. These tissue samples were then fixed in 
a 10% buffered formalin solution (pH 7.4) for a duration 
of 48 h. Following fixation, the samples were embedded 
in paraffin and prepared for subsequent histopathological 
and immunohistochemical (IHC) analyses.

After sample collection and termination of the study, all 
sacrificed rats, along with any remaining tissue samples 
as well as all bedding materials, were handled in accord-
ance with strict hygienic protocols and properly disposed 
of in a controlled burial pit to ensure proper biosecurity 
measures.

2.11  Histopathological examination
The skin wound tissues were fixed in 10% formalin buff-
ered solution (pH 7.4) for a period of 48 h. Subsequently, 
the fixed tissues were embedded in paraffin, sectioned, 
and stained with hematoxylin and eosin (H&E). The his-
topathological assessment encompassed the evaluation of 
various parameters, including the extent of granulation 
tissue formation, necrosis, degree of epithelialization, 
connective tissue remodeling, and infiltration of inflam-
matory cells, as previously described by Tuan et al. [44].

2.12  Immunohistochemical analysis of TGF‑β1 and VEGF
Immunohistochemical staining for TGF-β1 and VEGF 
was carried out on all tissue specimens, utilizing sec-
tions that were 4  μm thick and embedded in paraffin, 
following the protocol described by Saber et  al. [45]. 
The sections underwent deparaffinization in xylene and 
were rehydrated through a series of ethanol dilutions. 
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To retrieve antigens, the sections were submerged in a 
0.05 M citrate buffer solution at a pH of 6.8. Endogenous 
peroxidase activity was blocked by incubation in a 0.3% 
 H2O2 in methanol solution for 20 min at room tempera-
ture (RT). To prevent non-specific binding, the sections 
were treated with Protein Block Serum Free for 30  min 
at RT. Immunolabeling of TGF-β1 was performed on all 
samples using an anti-TGF-β1 rabbit polyclonal antibody 
(BIOCYC GmbH & Co. KG, Im Biotechnologiepark TGZ 
I, 14,943 Luckenwalde, Germany) at a dilution of 1:50. 
The sections were incubated overnight in a humidified 
chamber at 4 °C. Similarly, immunolabeling of VEGF was 
performed using an anti-VEGF rabbit polyclonal anti-
body (49,026; BioGenix, Netherlands) at a dilution of 
1:100. The sections were incubated overnight in a humid-
ified chamber at 4  °C. Following this, all sections were 
washed with phosphate-buffered saline (PBS) and then 
incubated with a goat anti-rabbit secondary antibody 
(catalog number K4003, EnVision + ™ System Horserad-
ish Peroxidase Labeled Polymer; Dako) for 30  min at 
room temperature. After washing with PBS, the sections 
were visualized using liquid DAB (3,3’-diaminobenzi-
dine) and then washed in distilled water. Counterstain-
ing was performed using Mayer’s hematoxylin. Following 
counterstaining, the sections were dehydrated using an 
alcohol gradient, cleared with xylene, and mounted for 
examination under a light microscope.

2.13  Statistical analysis
Statistical differences between the various groups tested 
were evaluated using multiple t tests (unpaired two-tailed 
t test), employing the Holm-Sidak method to adjust for 
multiple comparisons. For statistical analysis, GraphPad 
Prism software version 8.00 (GraphPad Software, San 
Diego, California, USA) was employed.

3  Results
3.1  Mortalities
Throughout the entire duration of the study, there were 
no recorded mortalities among the animals.

3.2  Characterization of anthraquinones
Figure 1 shows the FTIR analysis of both anthraquinone 
and nanocellulose where the bands or peaks were much 
closed and sharp spike which had the same characteris-
tics bands. The shift vibration of C=O was detected at 
1586   cm-1 and 1677   cm-1. The small peaks shouldered 
just between 3449 and 3754  cm-1.

3.3  Histopathological examination
The histological examination of the control group (G1) 
at day 19 post-wounding revealed distinct features 
indicative of impaired wound healing. Reactive mildly 

hypertrophied endothelial blood vessels were observed, 
extending into the markedly hyperplastic epidermis. The 
epidermis exhibited a clump of basal cells, hyperkeratotic 
features and frequently observed spongiosis. Within the 
epidermis, the keratinocytes appeared shrunken with 
pyknotic nuclei (necrotic) or swollen and rounded with 
vacuolated cytoplasm (Fig. 3A, B).

Group (G2), treated with hydrogel, exhibited sub-
epidermal edema, and collagen fiber swelling associated 
with mild epidermal spongiosis. Additionally, inflamma-
tory cell infiltration was evident, along with mild conges-
tion of endothelial blood vessels (Fig. 3C, D).

In contrast, Group (G3), treated with anthraquinone, 
showed a different histopathological profile. The epi-
dermis exhibited diffuse, severe irregularly hyperplastic 
features, accompanied by some epidermal spongiosis. 
Dermal edema was present, along with a few to minimal 
inflammatory cells infiltration. Notably, marked hyper-
keratosis was observed, while the endothelial blood ves-
sels appeared normal (Fig. 3E, F).

Group (G4), treated with anthraquinone and nano-
cellulose, exhibited a distinct histological pattern. The 
epidermal architecture appeared normal, with marked 
orthokeratotic hyperkeratosis. Minimal dermal edema 
and few perivascular inflammatory cell aggregations were 
observed (Fig. 3G, H).

Group (G5), treated with nanocellulose alone, exhib-
ited specific histopathological features. The epider-
mis showed moderately psoriasiform hyperplastic 
characteristics, with prominent rete ridges and intercel-
lular edema. Occasional epidermal necrotic cells were 
observed. Within the dermis, numerous inflammatory 
cells were present along with mild epidermal spongiosis 
(Fig. 3I, J).

3.4  Immunohistochemistry (IHC)
Immunohistochemical analysis was performed to evalu-
ate the expression of both transforming growth factor β 
(TGF-β) and vascular endothelial growth factor (VEGF) 
in the skin tissues of different treated groups.

Figure  4 shows representative IHC images of TGF-β 
expression. In the control (G1), intense staining of TGF-β 
was observed in proliferating dermal extracellular matrix 
(ECM), extending between subcutaneous fat (Fig. 4A). In 
contrast, G2 exhibited few immunostained cells in both 
the epidermis and dermis (Fig.  4B). Notably, positive 
immunostaining was observed in dermal macrophages 
and fibroblasts (Fig. 4C). In G3, the skin layers showed no 
immunostaining for TGF-β (Fig.  4D). However, numer-
ous dermal fibroblasts exhibited positive immunostain-
ing in Fig.  4E. In G4, there was no epidermal staining 
observed, but dermal immunostaining was evident. 
Additionally, diffuse staining was observed in dermal 
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fibroblasts (Fig.  4F, G). G5 showed minimal epidermal 
staining, while many dermal fibroblasts exhibited posi-
tive immunostaining [Fig. 4H, I).

On the other hand, Fig.  5 illustrates IHC analysis of 
vascular endothelial growth factor (VEGF) expression. 
In G1, intense staining of VEGF was observed in the der-
mal layer, extending toward the subcutaneous muscle 
(Fig. 5A). In G2, no epidermal staining was observed, but 
mild dermal staining for VEGF was detected (Fig.  5B). 
Notably, G2 exhibited intense immunostained der-
mal vessels, fibroblasts, and macrophages (Fig.  5C). G3 
showed few immunostained areas around the hair shaft 
and dermis (Fig. 5D). In G4, both epidermal and dermal 

immunostaining for VEGF was faint (Fig. 5E). G5 exhib-
ited faint immunostaining in the proliferated epidermis 
and hair follicles (Fig. 5F).

4  Discussion
Wound healing encompasses a multitude of cellular and 
molecular mechanisms, making it a complicated process 
aimed to restore the integrity of damaged tissues [46]. 
This research explored the capabilities of a nanocellulose-
based anthraquinone derived from marine fungi as an 
alternative therapy for skin wound healing in a rat model. 
The results demonstrated the histopathological and 

Fig. 3 Photomicrographs of skin surface: A, B control group (G1) showing expanding the dermis with edema (E) admixed with numerous 
eosinophils, macrophages and lymphocytes (thin arrow) around a reactive mildly hypertrophied endothelial blood vessels (V)and extending 
into the markedly hyperplastic (H), clump of basal cell (*) and hyperkeratotic epidermis (K), keratinocytes are shrunken and hypereosinophilic 
with pyknotic nuclei (necrotic) (arrow head), or are swollen and rounded with vacuolated cytoplasm (intracellular edema) (#) with H&E, (A) 100X 
and (B) 400X. C, D Group (G2) treated with hydrogel showing of the signs of the skin problems like epidermal liquefaction, sub‑epidermal edema 
(E), collagen fiber swelling (C), inflammatory cell infiltration (Arrow) and mild congested endothelial blood vessels (V) with H&E, (C) 100X and (D) 
400X. E, F Group (G3) treated by anthraquinone showing diffuse, severe irregularly hyperplastic epidermis (H) and diffuse epidermal spongiosis (S) 
with dermal edema (E) and few to minimal lymphocytic aggregations (thin arrow), marked hyperkeratosis (k) with normal endothelial blood vessels 
(V), with H&E, (E) 100X and (F) 400X. G, H Group (G4) treated by anthraquinone and nanocellulose showing Normally epidermal architecture (#) 
with marked orthokeratotic hyperkeratosis (k) and minimal dermal edema (E) and few perivascular lymphocytic aggregations (thin arrow), with H&E, 
(G) 100X and (H) 400X. I, J Group (G5) treated by nanocellulose showing moderately psoriasiform hyperplastic epidermis (H) with prominent rete 
ridges, intercellular edema (E) and occasional epidermal necrotic cells (arrow), minimal orthokeratotic hyperkeratosis (k) and within the dermis there 
are numerous lymphocytes, plasma cells, and eosinophil (arrow head), H&E, 100x, dermal eosinophils (thin arrow) with mild epidermal spongiosis(S) 
with H&E, (I) 100X and (J) 400X
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Fig. 4 Representative immunohistochemistry (IHC) of transforming growth factor β (TGF‑β) expression in rat skin from different treated groups. A 
Control group (G1) intense staining in proliferating dermal ECM and extended in between subcutaneous fat. B G2 showing few immunostained 
epidermal and dermal cells (arrows). C G2 positive immunostained dermal macrophages and fibroblast. D G3 group showing skin layers 
without immunostaining. E G3 group showing numerous positive immunostained dermal fibroblast (arrow). F, G G4 group without epidermal 
staining in (F) and dermal immunostaining in (G), Inset, diffuse staining in dermal fibroblast, ECM. H, I G5 group showing few epidermal staining 
with many dermal positive immunostained fibroblast. IHC, A –I, 100X, inset box at 400x. J The percent of TGF‑β positive cells. ***, P < 0.001; *, P < 0.05; 
ns = not significant on Student’s t test

Fig. 5 Representative immunohistochemistry (IHC) of vascular endothelial growth factor (VEGF) expression in rat skin from different treated groups. 
A Control group (G1) intense staining in dermal layer that extended to subcutaneous muscle. B G2 showing no epidermal staining with mild 
dermal staining. C G2 showing intense immunostained dermal vessels, fibroblast and macrophages. D G3 group showing few immunostaining 
in around hair shaft and dermis. E G4 group showing faint epidermal and dermal immunostaining. F G5 group showing faint immunostaining 
in proliferated epidermis and in hair follicles. IHC, all pictures at 100 × except figure E and the inset box at 400 × G) The percentage of VEGF positive 
cells. ***, P < 0.001; ns = not significant on Student’s t test
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immunohistochemical evidences supporting the effec-
tiveness of this novel approach.

The choice of an appropriate wound dressing is cru-
cial for successful wound healing. Traditional dressings 
have evolved over time to become interactive and bio-
active solutions that promote cell regeneration, collagen 
synthesis, and fight against infections [47]. However, the 
demand for sustainable and eco-friendly materials pro-
cessable at the nanoscale is on the rise. Polymers derived 
from biomass, like cellulose and its derivatives, have 
attracted considerable interest because of their inherent 
characteristics [48].

In this study, a nanocellulose-based wound dressing 
loaded with anthraquinone derived from marine fungi 
was utilized. The experimental animals were divided into 
five groups, including a control group and various treat-
ment groups. The wound healing process was assessed by 
measuring the wound area at different time points. The 
results showed promising outcomes in terms of wound 
healing progression. The group treated with anthraqui-
none and nanocellulose demonstrated the most favora-
ble results, with normal epidermal architecture, marked 
hyperkeratosis, and minimal dermal edema.

Histopathological examination of the wound tissues 
supported the effectiveness of the anthraquinone and 
nanocellulose treatment. The control group exhibited 
mildly hypertrophied endothelial blood vessels, hyper-
plastic epidermis, and shrunken or swollen keratinocytes, 
which are indicative of prolonged wound healing [49]. In 
contrast, the group treated with anthraquinone showed a 
significant improvement in wound healing, characterized 
by a severe irregularly hyperplastic epidermis and diffuse 
epidermal spongiosis. These findings suggest that anth-
raquinone treatment promotes enhanced tissue remod-
eling and regeneration [50].

Remarkably, the combination treatment of anthraqui-
none and nanocellulose resulted in the restoration of nor-
mal epidermal architecture with minimal dermal edema. 
This histological pattern suggests that the combination 
therapy enhances tissue regeneration and remodeling, 
which is consistent with previous studies demonstrating 
the beneficial effects of nanocellulose in wound healing 
[51]. The presence of minimal dermal edema indicates 
improved vascularization and efficient drainage of the 
wound site.

To evaluate the expression of key growth factors 
involved in wound healing, IHC analysis was performed, 
focusing on transforming growth factor β (TGF-β) and 
vascular endothelial growth factor (VEGF). TGF-β and 
VEGF play vital roles in wound healing process, espe-
cially during the early stages of healing process. TGF-β 
is a crucial regulator of cellular processes such as cell 
proliferation, extracellular matrix deposition, and tissue 

remodeling [52]. It promotes the differentiation of fibro-
blasts into myofibroblasts, which are responsible for 
wound contraction and collagen synthesis [53]. Addition-
ally, TGF-β stimulates angiogenesis through induction of 
endothelial cells migration and proliferation [54]. VEGF, 
on the other hand, plays a pivotal role in angiogenesis 
and neovascularization, essential for providing nutri-
ents and oxygen to the healing tissue [55]. The expres-
sion of TGF-β gradually declines during the later stages 
of wound healing as tissue remodeling and maturation 
occur, while VEGF level gradually decreases, reflecting 
the resolution of angiogenesis and the transition to the 
remodeling phase [56].

IHC staining revealed distinct patterns of TGF-β and 
VEGF expression among the treatment groups. In the 
control group, intense staining of TGF-β was observed 
in the proliferating dermal, suggesting its involvement 
in the prolonged wound healing process. In contrast, the 
group treated with anthraquinone showed no staining 
of TGF-β in epidermis, indicating a potential inhibitory 
effect on its expression, which is attributed to approxi-
mate epidermal growth. Importantly, the combination 
treatment group exhibited diffuse staining of TGF-β in 
dermal fibroblasts. Since TGF-β plays a crucial role in 
stimulating collagen synthesis and deposition by fibro-
blasts, promoting the formation of mature scar tissue, 
the combination therapy is suggested to contribute to 
improving wound healing outcomes [57].

Similarly, VEGF expression varied among the treat-
ment groups. The control group showed intense stain-
ing of VEGF in the dermal layer, indicative of persistent 
ongoing angiogenesis during the healing process. In con-
trast, the group treated with anthraquinone exhibited 
no epidermal staining and only mild dermal staining of 
VEGF, suggesting a potential downregulation of VEGF 
expression. The combination treatment group showed 
faint epidermal and dermal staining of VEGF, indicating a 
potential modulation of VEGF expression and angiogenic 
processes in the wound bed.

Overall, histopathological and immunohistochemical 
findings provide valuable insights into the effects of anth-
raquinone and nanocellulose treatment on wound heal-
ing. The significant improvement in histopathological 
features, such as epidermal hyperplasia and spongiosis, 
as well as the modulation of TGF-β and VEGF expres-
sion, suggest the potential of this combination therapy in 
promoting tissue regeneration and angiogenesis. Further 
research is needed to clarify and explain the underlying 
mechanisms and optimize the dosage and application 
strategies for this promising therapeutic approach.

In conclusion, this research emphasizes the capabili-
ties of a nanocellulose-based anthraquinone derived from 
marine fungi as a promising approach for enhancing skin 
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wound healing. The observed histopathological improve-
ments and modulation of TGF-β and VEGF expression 
support the efficacy of this novel therapy. Future studies 
should aim at improving the formulation and investigat-
ing its therapeutic efficacy in larger animal models, ulti-
mately progressing to clinical trials.
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