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Abstract 

Background  Several members of the Lamiaceae family of plants produce large amounts of essential oil [EO] that find 
extensive applications in the food, cosmetics, personal hygiene, and alternative medicine industries. There is interest 
in enhancing EO metabolism in these plants.

Main body  Lavender produces a valuable EO that is highly enriched in monoterpenes, the C10 class of the isopre-
noids or terpenoids. In recent years, substantial effort has been made by researchers to study terpene metabolism 
and enhance lavender EO through plant biotechnology. This paper reviews recent advances related to the cloning 
of lavender monoterpene biosynthetic genes and metabolic engineering attempts aimed at improving the produc-
tion of lavender monoterpenes in plants and microbes.

Conclusion  Metabolic engineering has led to the improvement of EO quality and yield in several plants, includ-
ing lavender. Furthermore, several biologically active EO constituents have been produced in microorganisms.
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1 � Background
Lavender (genus Lavandula) belongs to the family Lami-
aceae and is known for producing large amounts of 
essential oil [EO]. The genus Lavandula encompasses 
over 30 known species, each characterized by a unique 
EO profile [1, 2]. The presence of specific monoterpenes 
in lavender EO contributes to its value, making it a sig-
nificant resource in the production of perfumes, medici-
nal products, food flavorings, and antiseptics [3, 4]. The 
most abundant monoterpenes in lavender EO are lin-
alool, linalyl acetate, borneol, camphor, and 1,8-cineole 
[5, 6]. Other notable monoterpenes include limonene, 
lavandulol, lavandulyl acetate, and α-terpineol [4, 7, 8]. 
In addition, lavender produces certain monoterpenes in 
response to environmental conditions [8, 9].

Among all lavender species, Lavandula angustifolia, 
Lavandula latifolia, and their natural hybrid, Lavandula 
x intermedia, hold significant commercial importance 
[10]. L. angustifolia is highly valued in the perfumery 
industry due to its high levels of linalool and linalyl ace-
tate. EO obtained from L. latifolia is important in the 
medical sector because of its high concentrations of lin-
alool, camphor, and 1,8-cineole. L. x intermedia EO con-
tains constituents found in both parents, and is widely 
used in personal care and hygiene products, [3].

This review highlights recent efforts aimed at biotech-
nological improvement of lavender EO in engineered 
plants. It also provides information on the production of 
lavender EO constituents in microorganisms.

2 � Main text
2.1 � Methodology
Published articles were sourced from various search 
engines and databases, including Web of Science, Google 
Scholar, ScienceDirect, Scopus, and SciFinder. Keywords 
used in the search included lavender, along with essential 
oil, glandular trichomes, gene cloning, transformation, 
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metabolism, engineering, terpene synthases, terpene 
biosynthesis, and genome editing. Additionally, separate 
searches were conducted for yeast, bacteria, and cyano-
bacteria in conjunction with key monoterpenes from lav-
ender EO such as linalool, 1,8-cineole, and borneol.

2.2 � Terpenes
The terpenoids (terpenes), also known as isoprenoids, 
represent the most abundant class of plant secondary 
metabolites. They serve crucial roles in plant growth, 
development, overall metabolism, and defense against 
predators, diseases, and competition [11]. Many terpe-
nes have applications in cosmetics, pharmaceuticals, 
insecticides, and potential biofuels. In plants, the bio-
synthesis of terpenes is divided into three stages. The 
first stage involves the production of the common pre-
cursors, isopentenyl diphosphate [IPP] and its isomer 
dimethylallyl diphosphate [DMAPP] via the 2-C-methyl-
D-erythritol 4-phosphate [MEP] pathway, also known 
as the 1-deoxy-D-xylulose-5-phosphate [DXP] pathway, 
and/or mevalonate [MVA] pathway. During the second 
stage, intermediates such as geranyl diphosphate [GPP], 
farnesyl diphosphate [FPP], and geranylgeranyl diphos-
phate [GGPP] are synthesized from IPP/DMAPP by 
isoprenyl diphosphate synthases [IDSs], also known as 
prenyltransferases. The final stage involves the produc-
tion of various terpenes, catalyzed by terpene synthases 
[TPSs] such as linalool synthase [LINS] and 1,8-cineole 
synthase [CINS], along with terpene-modifying enzymes. 
It has been shown that the enzymes involved in ter-
pene production have distinct subcellular localizations: 
all MEP pathway enzymes are located in plastids, while 
MVA pathway enzymes are found in the cytosol or per-
oxisomes [13, 14]. IDSs and TPSs exhibit more diverse 
localizations and are frequently associated with the sub-
cellular site of terpene biosynthesis [12].

2.3 � Glandular trichomes [GTs]
GTs are specialized plant structures dedicated to the syn-
thesis and accumulation of EO. Lavender possesses two 
types of GTs: peltate GTs and capitate GTs. Peltate GTs 
produce and store a significant amount of monoterpene-
rich EO in lavender [6, 15]. Each peltate GT comprises a 
basal cell, anchoring it to the epidermis, a stalk cell, up to 
eight secretory cells, and a storage cavity.[16]. A plasma 
membrane separates the storage cavity from the secre-
tory cells [17, 18]. Within the secretory cells, EO syn-
thesis occurs in two compartments: the cytosol and the 
leucoplast, where the MVA and MEP pathways operate, 
respectively [17, 19, 20]. EO constituents synthesized in 
the plastids via the MEP pathway are transported to the 
cytosol and subsequently secreted into the storage cavity, 
either directly or after processing [18].

Trichome formation, which is widely studied in Arabi-
dopsis, is regulated in part by transcription factors [TFs] 
that can have either positive or negative effects. Addi-
tionally, other TFs function upstream or downstream of 
these regulators [21]. Recently, Zhang et al. [22] studied 
GT formation in lavender using a genomics approach, 
identifying several TFs belonging to R2R3-MYB subfam-
ily associated with GT development.

2.4 � Monoterpene biosynthesis
Monoterpenes are synthesized within the plastids of 
photosynthetic organisms, utilizing primary metabo-
lites [12, 23]. In plants, chloroplasts serve as the major 
sites for monoterpene biosynthesis via the MEP pathway 
(Fig. 1) [24]. The pathway initiates with the condensation 
and decarboxylation of pyruvate [PYR] and glyceralde-
hyde 3-phosphate [G3P] by DXP synthase [DXS], yield-
ing DXP. Subsequently, DXP reductoisomerase [DXR] 
catalyzes the reduction of DXP to MEP via NADPH-
dependent isomerization [25]. MEP undergoes a series 
of enzymatic reactions involving MEP cytidyltransferase 
[MCT], 4-(cytidine 5ˈ-diphospho)- 2-C-methyl-D-eryth-
ritol-kinase [CMK], and 2-C-methyl-D-erythritol-2,4-cy-
clodiphosphate [MEcPP] synthase [MDS], leading to the 
formation of MEcPP [26, 27]. MEcPP is further reduced 
to 4-hydroxy-3-methylbut-2-enyl diphosphate [HMBPP] 
by HMBPP synthase [HDS]. IPP and DMAPP, the final 
products of MEP pathway, are generated in a ratio of 
approximately 5:1through the reduction of HMBPP by 
HMBPP reductase [HDR] [28–30]. Prenyltransferases, 
including geranyl diphosphate synthase [GPPS] and neryl 
diphosphate synthase [NPPS], catalyze the condensation 
of IPP and DMAPP to synthesize GPP and neryl diphos-
phate [NPP], which are precursors of monoterpenes [31]. 
In addition to monoterpenes, IPP/DMAPP derived from 
the MEP pathway is used to produce numerous other ter-
penes including photosynthetic pigments such as phytol 
and carotenoid precursors [32, 33].

2.5 � Monoterpene metabolism in lavender
In line with other plant species, TPSs are responsible 
for catalyzing the conversion of the GPP substrate into 
cyclic and acyclic monoterpenes within the secretory 
cells of lavender GTs [34, 35]. Numerous researchers 
have undertaken efforts to clone TPS genes and char-
acterize their functionality in  vitro, aiming to elucidate 
their roles in EO production (Table  1). For instance, 
Landmann et  al. [1] employed a homology-based PCR 
approach to clone two monoterpene synthases [monoT-
PSs]: limonene synthase [LaLIMS] and LINS [LaLINS], 
and one sesquiterpene synthase [sesquiTPSs]: bergamo-
tene synthase [LaBERS] from L. angustifolia leaves and 
flowers. Subsequently, the cloned cDNAs were expressed 
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in Escherichia coli. LaLIMS produced limonene, terpi-
nolene, camphene, α-pinene, β-myrcene, and traces of 
β-phellandrene, while LaLINS solely produced (R)-(−)-
linalool, and LaBERS converted FPP into bergamotene. 

In addition, Demissie et  al. [36] reported the cloning 
and functional characterization of β-phellandrene syn-
thase [LaβPHLS] in E. coli. Their results showed that 
the recombinant LabPHLS converted GPP and NPP 
into β-phellandrene. In 2012, Demissie et  al. [4] identi-
fied the CINS [LiCINS] gene from L. x intermedia and 
cloned it into E. coli. The resulting bacterially gener-
ated recombinant protein, approximately 63 kDa in size, 
converted GPP mainly into 1,8-cineole. As reported 
again by Demissie et  al. [37], L. x intermedia lavandu-
lyl diphosphate synthase [LiLPPS] was cloned using a 
homology-based cloning method and expressed in E. coli. 
The resulting protein, with a molecular weight of about 
34.5  kDa, catalyzed the  fusion of two DMAPP units to 
form lavandulyl diphosphate [LPP] in vitro. The works of 
Demissie et al. [4, 36, 37] were continued by the research 
of Sarker et al. [2, 7, 38], who cloned and expressed bor-
neol dehydrogenase [LiBDH], caryophyllene synthase 
[LiCPS], and two alcohol acetyltransferases [LiAAT-3 and 
LiAAT-4] genes in E. coli. The recombinant LiBDH pro-
tein converted borneol into camphor, the recombinant 
LiCPS protein converted FPP into 9-epicaryophyllene, 
and both recombinant LiAAT​-3 and LiAAT​-4 proteins 
converted lavandulol to lavandulyl acetate. In 2015, Ben-
abdelkader et al. [9] cloned two monoTPSs and one ses-
quiTPS from L. pedunculata and functionally identified 
them as fenchol synthase [LpFENS], α-pinene synthase 
[LpPINS], and germacrene A synthase [LpGEAS]. Inter-
estingly, while the expression patterns of FENS and PINS 
genes aligned with the enzyme product accumulation 
profile, this correlation was not observed for GEAS. Next, 
Adal et  al. [8] identified and characterized a monoTPS 
gene, 3-carene synthase [Li3CARS], from L. x intermedia. 
The results showed that the recombinant Li3CARS trans-
formed GPP into 3-carene as the major product (Fig. 2). 
In 2019, the same researcher reported the cloning of 
S-LINS [LiS-LINS] gene from L. x intermedia in bacte-
ria. The cloned LiS-LINS catalyzed the conversion of GPP 
into S-linalool as the sole product [39]. In 2023, Adal 
et al. [40] cloned lavender (+)- bornyl diphosphate syn-
thase [LiBPPS] in bacteria, and the recombinant LiBPPS 
promoted the conversion of GPP to (+)- bornyl diphos-
phate [BPP] as the main product, accompanied by the 
formation of several minor monoterpene compounds. In 
a recent study, Ling et al. [41] identified terpene synthase 
7 [LaTPS7] and terpene synthase 8 [LaTPS8] genes from 
L. angustifolia during the budding phases. Subsequently, 
they cloned these TPSs into E. coli and Nicotiana bentha-
miana. The recombinant LaTPS7 generated nine differ-
ent products in vitro, including camphene, myrcene, and 
limonene, while LaTPS8 produced eight volatiles using 
GPP and NPP as substrate. Moreover, the overexpression 
of LaTPS7 in N. benthamiana resulted in the synthesis 

Fig. 1  Biosynthesis of isopentenyl diphosphate 
[IPP] and dimethylallyl diphosphate [DMAPP] 
through 2-C-methyl-D-erythritol 4-phosphate [MEP] pathway. PYR 
[pyruvate], G3P [glyceraldehyde 3–phosphate], DXP [1-deoxy-D-xyl
ulose-5-phosphate], CPP-ME [cytidyl diphosphate-methyl-D-erythri
tol], CPP-MEP [cytidyl diphosphate-methyl-D-erythritol 4-phosphate], 
MEcPP [2-C-methyl-D-erythritol -2,4-cyclodiphosphate], HMBPP 
[1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate], GPP [geranyl 
diphosphate], NPP [neryl diphosphate], and GGPP [geranylgeranyl 
diphosphate]
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Table 1  Cloning and metabolic engineering of lavender genes

Study type Gene studied Source of gene Species Performance References

Gene cloning Limonene synthase [LaLIMS] L. angustifolia E. coli LaLIMS catalyzed the formation 
of (R)-(+)-limonene, terpi-
nolene, (1R,5S)-(+)-camphene, 
(1R,5R)-(+)-α-pinene, β-myrcene 
and traces of α-phellandrene

[1]

Gene cloning Linalool synthase [LaLINS] L. angustifolia E. coli LaLINS produced exclusively 
(R)-(−)-linalool

[1]

Gene cloning Bergamotene synthase [LaBERS] L. angustifolia E. coli LaBERS transformed farnesyl 
diphosphate to bergamotene

[1]

Gene cloning β-phellandrene synthase 
[LaβPHLS]

L. angustifolia E. coli The recombinant LaβPHLS 
did not utilize farnesyl 
diphosphate as a substrate, 
it converted geranyl diphos-
phate and neryl diphosphate 
into β-phellandrene as the major 
product

[36]

Gene cloning 1,8-Cineole synthases [LiCINS] L. × intermedia E. coli The bacterially produced protein 
converted geranyl diphosphate 
to 1,8-cineole

[4]

Gene cloning Lavandulyl diphosphate syn-
thase [LiLPPS]

L. × intermedia E. coli The bacterially produced protein 
specifically catalyzed the head-
to-middle condensation of two 
dimethylallyl diphosphate units 
to lavandulyl diphosphate

[37]

Gene cloning Borneol dehydrogenase [LiBDH] L. × intermedia E. coli The bacterially produced 
enzyme converted borneol 
to camphor

[2]

Gene cloning 9-epicaryophyllene synthase 
[LiCPS]

L. × intermedia E. coli The recombinant protein 
converted farnesyl diphosphate 
to 9-epicaryophyllene. Also, few 
monoterpenes were produced 
when assayed with geranyl 
diphosphate

[7]

Gene cloning Acetyltransferases [LiAAT​] L. × intermedia E. coli LiAAT-4 has a better catalytic effi-
ciency than LiAAT-3, with lavan-
dulol serving as the preferred 
substrate for both enzymes

[38]

Gene cloning Fenchol synthase [LpFENS] L. pedunculata L. pedunculata Expression of LpFENS gene 
matched the accumulation pro-
file of the enzyme products

[9]

Gene cloning α-pinene synthase [LpPINS] L. pedunculata L. pedunculata Expression profiles of LpPINS 
gene matched the accumulation 
profile of the enzyme products

[9]

Gene cloning Germacrene A synthase 
[LpGEAS]

L. pedunculata L. pedunculata Expression profiles of LpGEAS 
gene does not match the accu-
mulation profile of the enzyme 
products

[9]

Gene cloning S-linalool synthase [LiS-LINS] L. × intermedia E. coli Recombinant LiS-LINS catalyzed 
the conversion of the universal 
monoterpene precursor geranyl 
diphosphate to S-linalool 
as the sole product

[39]

Gene cloning 3-Carene synthase [Li3CARS] L. × intermedia E. coli The recombinant Li3CARS 
converted geranyl diphosphate 
into 3-carene as the major 
product

[8]
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of limonene, whereas LaTPS8 yielded α-pinene and 
sylvestrene.

2.6 � Cloning other lavender genes
As shown in Table  1, other aspects of lavender have 
also been studied. For instance, Guitton et  al. [42] con-
ducted a study on the concentration of volatile organic 
compound [VOC] in L. angustifolia throughout inflores-
cence growth. They found that calyces were the primary 
sources of VOC accumulation, with three major VOC 

groups dominating the global fragrance bouquet of inflo-
rescences. The transition of VOCs occurred between the 
opening of the inflorescence’s first flower and the begin-
ning of seed set. There is a need to develop more knowl-
edge on the molecular features of bloom initiation and 
development in lavender. Wells et  al. [43] studied the 
short vegetative phase [LaSVP] gene of L. angustifolia 
and transformed it into A. thaliana. Their results showed 
that expression of LaSVP in A. thaliana delayed flower-
ing, resulted in the production of sepals instead of petals, 

Table 1  (continued)

Study type Gene studied Source of gene Species Performance References

Gene cloning & Metabolic 
engineering

(+)‑Bornyl diphosphate synthase 
[(+)-LiBPPS]

L. × intermedia E. coli The recombinant (+)-LiBPPS 
catalyzed the conversion 
of geranyl diphosphate to bornyl 
diphosphate as a major product, 
and a few other minor products 
of monoterpenes

[40]

Metabolic engineering Terpene synthases [LaTPS7] L. angustifolia E. coli The in vitro studies revealed 
that LaTPS7 generated nine 
distinct compounds, includ-
ing camphene, myrcene, 
and limonene

[41]

Metabolic engineering Terpene synthases [LaTPS8] L. angustifolia E. coli LaTPS8 enzymatically generated 
eight volatiles by utilizing gera-
nyl diphosphate and nerolidyl 
diphosphate as substrates

[41]

Development Engineering Short vegetative phase [LaSVP] L. angustifolia A. thaliana The expression of the LaSVP 
in A. thaliana delayed flowering 
and affected flower organs. Also, 
two of the highest expressing 
lines produced sepals instead 
of petals and failed to develop 
proper seed pods as they were 
sterile

[43]

Development Engineering LaAGAMOUS-like [LaAG-like] L. angustifolia A. thaliana The results revealed that all 
transgenic plants bloomed ear-
lier than wild-type controls

[44]

Development Engineering LaSEPALLATA3-like [LaSEP3-like] L. angustifolia A. thaliana The results revealed that all 
transgenic plants bloomed ear-
lier than wild-type controls

[44]

Metabolic engineering Stress-responsive transcription 
factor [LaMYC4]

L. angustifolia A. thaliana / 
N. benthami-
ana

LaMYC4 overexpression 
increased the levels of sesquit-
erpenoids, including caryophyl-
lene

[45]

Metabolic engineering 1-Deoxy-D-xylulose-5-phos-
phate synthase [DXS]

A. thaliana L. latifolia Transgenic plants accumulated 
significantly more essential oils

[46]

Metabolic engineering Agrobacterium rhizogenes genes A. rhizogenes L. × intermedia Plants were transformed 
with wild-type A. rhizogenes. 
Most regenerated plants 
showed dwarfism. Only nine 
of the 45 regenerated plants 
formed flower buds. Many trans-
genics showed a significantly 
lower productivity of essential 
oil. The relative percentage 
of linalool and linalyl acetate 
decreased in most of the regen-
erated plants

[47]



Page 6 of 13Oseni et al. Beni-Suef Univ J Basic Appl Sci           (2024) 13:67 

Fig. 2  Metabolism of acyclic a and cyclic b monoterpenes in lavender. LIMS [limonene synthase], (−)-α-TS [(−)-α-terpineol synthase], 1,8 CS 
[1,8-cineole synthase], BPPS [bornyl diphosphate synthase], BDH [borneol dehydrogenase], LINS [linalool synthase], AT [acetyltransferase], and LPPS 
[lavandulyl diphosphate synthase]
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and prevented the formation of seed pods. Addition-
ally, Adal et  al. [44] used RNA-Seq and transcript pro-
filing to identify several TFs potentially regulating floral 
development in lavender. Their study focused on the 
roles of two TFs, LaAGAMOUS-like [LaAG-like] and 
LaSEPALLATA3-like [LaSEP3-like], in flower develop-
ment. LaAG-like and LaSEP3-like cDNAs were over-
expressed in Arabidopsis plants. The results revealed 
that all transgenic plants exhibited earlier flowering 
compared to wild-type controls. Furthermore, mildly 
overexpressed plants  grew normally, but those that 
excessively expressed the transgene had curling leaves. 
Another researcher, Dong et al. [45] focused on a bHLH 
TF, LaMYC4, an important regulator for plant terpenoid 
biosynthesis. This gene was isolated from L. angustifolia 
following methyl jasmonate [MeJA] treatment and over-
expressed in Arabidopsis and tobacco. Results showed 
that overexpression of LaMYC4 enhanced sesquiterpe-
noids, including caryophyllene.

2.7 � Metabolic engineering to produce lavender 
monoterpenes

2.7.1 � Engineering lavender plants
The initial lavender metabolic engineering endeavor to 
improve the plastidial MEP pathway for the synthesis 
of the precursors IPP and DMAPP, was conducted by 
Munoz-Bertomeu et al. [46]. In their study, Munoz-Ber-
tomeu et al. up-regulated DXS, an enzyme catalyzing the 
initial step in the MEP pathway. They expressed a cDNA 
encoding the A. thaliana DXS into spike lavender. Gas 
chromatography/mass spectrometry [GC–MS] analyses 
indicated that transgenic plants produced significantly 
higher EOs compared to control plants, with the accu-
mulated EOs maintained in the T1 generation. In another 
effort, Tsuro and Ikedo [47] infected calli derived from 
lavandin (L. × intermedia) leaves with Agrobacterium 
rhizogenes, and regenerated plants. However, the regen-
erated plantlets displayed dwarfism due to short inter-
nodes, and low EO content. Moreover, Adal et  al. [40] 
expressed the (+)-LiBPPS gene in both sense and anti-
sense orientation. They observed that when (+)-LiBPPS 
was orientated in the antisense orientation, there was a 
reduction in the synthesis of (+)-borneol and camphor, 
while plant growth and development remained unaf-
fected. Conversely, plants with the sense-orientated 
(+)-LiBPPS produced higher levels of borneol and cam-
phor, but their growth and development were adversely 
affected.

2.7.2 � Engineering microbes to produce lavender EO 
constituents

Researchers are also considering engineering micro-
organisms (Table  2) for the (eventual) large-scale 

production of lavender EO monoterpene constituents. 
The following are prominent examples of such studies:

2.7.2.1  Production of  lavender monoterpenes 
in  yeast  Deng et  al. [48] produced linalool in Sac-
charomyces cerevisiae by introducing a fusion protein 
composed of LINS from Actinidia arguta and farnesyl 
diphosphate synthase [ERG20] from S. cerevisiae. The 
fusion protein, connected by a proper polypeptide 
linker between enzymes, exhibited a 69.7% increase in 
efficiency in linalool production compared to the appli-
cation of individual free enzymes. Furthermore, Zhang 
et  al. [49] demonstrated an enhancement in linalool 
production in S. cerevisiae through a series of experi-
ments: They initially integrated the Isopentenol Utiliza-
tion Pathway [IUP] into S. cerevisiae by incorporating 
choline kinase and isopentenyl phosphate kinase. Sub-
sequently, LINS from Actinidia arguta was truncated 
from the N-terminal and introduced into S. cerevisiae. 
A double mutation was applied to ERG20 to enhance 
its efficiency, followed by its introduction into S. cerevi-
siae. linalool production was further enhanced by opti-
mizing isoprenol, prenol, carbon source, and including 
Mg2+ in the medium. Moreover, Zhou et al. [50] applied 
a combinatorial strategy to enhance linalool content in 
S. cerevisiae. This strategy involved the overexpression 
of the entire MVA pathway, as well as a LINS from Men-
tha citrata, resulting in a significant increase in linalool 
concentration. Later, they further enhanced linalool 
production by employing a double mutation in LINS 
and ERG20. Zhang et al. [51] conducted dual metabolic 
engineering of the MVA pathway to upgrade linalool 
content in both the mitochondria and cytoplasm of S. 
cerevisiae. This was achieved by introducing MVA genes 
into both cellular compartments, with mitochondrial 
localization signal [MLS] fused to the genes for trans-
fer into mitochondria. Thus, they constructed a strain 
of S. cerevisiae in which the expression of LINS from 
Cinnamomum osmophloeum and ERG20F96W−N127W 
occurred in the cytoplasm and mitochondria. This 
recombinant S. cerevisiae exhibited increased linalool 
production (7.61 mg L−1). Moreover, they cultured the 
recombinant S. cerevisiae in media containing vary-
ing amounts of PYR and mevalonolactone as carbon 
sources. Notably, the medium supplemented with 70 mg 
L−1 mevalonolactone yielded the highest linalool con-
centration. Park et  al. [52] enhanced linalool produc-
tion by integrating an inducible sensor array into the 
genomic DNA of S. cerevisiae. This sensor array was 
comprised of sequences encoding repressor proteins 
controlled by constitutive promoters and strong termi-
nators, allowing for individual or simultaneous expres-
sion upon exposure to sensor molecules in the medium. 
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The sensor molecules employed included xylose, anhy-
drotetracycline, vanillic acid, and IPTG which induced 
the expression of LINS from M. citrata.

Kirby et  al. [53] significantly enhanced 1,8-cineole 
production in Rhodotorula toruloides by employing an 
N-terminal truncated GPPS from Abies grandis and a 
CINS from Hypoxilon sp. These synthases were intro-
duced into R. toruloides under the control of promoters 
sourced from the R. toruloides genome. Subsequently, 
the titer increased further through medium optimiza-
tion. Ma et al. [54] overexpressed (+)-bornyl diphosphate 
synthase [BPPS] from Cinnamomum burmanni along 
with all genes involved in the MVA pathway in S. cerevi-
siae to produce (+)-borneol. (+)-Borneol production was 
further significantly increased by N-terminal truncation 
of BPPS and incorporating a Kozak sequence. In another 
study by the same researcher, Ma et  al. [55], (−)-BPPS 
from Blumea balsamifera was identified and function-
ally characterized and then introduced into S. cerevisiae. 
Similar to the previous experiment, N-terminal trunca-
tion of BPPS and the addition of a Kozak sequence were 
utilized to enhance (−)-borneol production. Finally, the 
fusion of (−)-BPPS with ERG20F96W−N127W resulted in a 
further increase in the production of (−)-borneol.

2.7.2.2  Production of  lavender monoterpenes in  bacte-
ria  Wu et  al. [56] employed a scaffolding strategy to 
produce linalool in E. coli. They constructed scaffolds 
consisting of three domains for IPPS, GPPS and LINS 
enzymes, with different domain repeats for GPPS and 
LINS. Ligands were attached to the enzymes via linkers. 
The scaffold featuring one domain for IPPS, one for GPPS, 
and four for LINS exhibited the highest linalool produc-
tion. Additionally, they optimized the concentrations of 
IPTG (0.5 mM), L-arabinose (0.3%), and glycerol (4%) in 
the medium, with an identified optimal temperature of 
20º C for linalool production. Kong et al. [57] produced 
linalool in E. coli by designing and introducing a heter-
ologous MVA pathway, which included genes involved 
in IPP and DMAPP accumulation, GPP formation, and 
linalool production. They showed that GPPS2 from A. 
grandis had a more significant effect on linalool produc-
tion compared to ERG20. The lower efficiency of ERG20 
in linalool production was attributed to its bifunctional 
activity, resulting in the production of both GPP and FPP. 
The recombinant E. coli strain harboring the new MVA 
pathway produced 15 ± 1.4  mg L−1 linalool. The linalool 
concentration further increased to 63 ± 5.6  mg L−1 with 
the overexpression of isopentenyl diphosphate isomer-
ases. In a study by Wang et al. [58], linalool production in 
E. coli was enhanced through LINS modification. Initially, 
the most efficient LINS (4.8 mg L−1) was obtained from 
Streptomyces clavuligerus [bLIS]. Then, bLIS variants with 

different ribosomal binding sites [RBS] and translation 
initiation rate [TIR] were constructed. The results dem-
onstrated a positive correlation between bLIS expression 
and TIR. Additionally, a fusion tag was added to increase 
bLIS solubility, resulting in enhanced linalool production 
to 33.4  mg  L−1. Further optimization strategy included 
the addition of GPSS from A. grandis to ensure sufficient 
GPP availability, leading to linalool production reaching 
100.1 mg L−1. Finally, culturing the recombinant E. coli in 
a bioreactor with fed-batch fermentation achieved a sig-
nificant increase in linalool production to 1027.3 mg L−1.

Mendez-Perez et al. [59] achieved significant 1,8-cin-
eole production (228  mg  L−1) in E. coli by construct-
ing and introducing a plasmid harboring genes related 
to the MVA pathway along with the CINS gene from 
Streptomyces clavuligerus. To further enhance 1,8-cin-
eole production, they inserted an additional plasmid 
containing another copy of CINS into E. coli. This 
two-plasmid system led to a 33% increase in 1,8-cin-
eole production, reaching up to 305 mg L−1. The higher 
level of 1,8-cineole (505  mg  L−1) was achieved when 
CINS and GPPS were harbored in one plasmid and 
other genes were placed in another plasmid. Karuppiah 
et  al. [60] inserted LINS and CINS genes from Strep-
tomyces clavuligerus into an engineered E. coli strain, 
where the MVA pathway was regulated by an IPTG-
inducible promoter, and an N-terminal truncated GPPS 
was controlled by a tetracycline-inducible promoter. 
This approach resulted in the production of a remark-
able amount of linalool and 1,8-cineole, with the lat-
ter exhibiting a higher purity (96%) compared to those 
obtained from Salvia fruticose, Arabidopsis thaliana 
and Citrus unshiu which had purities of 67%, 42% and 
63%, respectively.

Lei et  al. [61] engineered the de novo production of 
borneol in E. coli. They co-expressed a mutant BPPS 
enzyme from Lippia dulcis, where a single-point 
mutation enhanced enzymatic activity, along with an 
endogenous phosphatase from E. coli to facilitate the 
dephosphorylation of precursors to borneol. This strat-
egy led to a notable enhancement in borneol content 
under optimized fermentation condition.

2.7.2.3  Production of  lavender monoterpenes in  Cyano-
bacteria  Matsudaira et al. [62] engineered a cyanobacte-
rium strain capable of producing S-linalool. In this strain, 
the LINS coding sequence from Actinidia arguta was 
codon-optimized for the cyanobacterium and expressed 
under the control of tac promoter. This strain produced 
11.4 mg L−1 of S-linalool in shake flask culture. The S-lin-
alool concentration further increased to 11.6 mg L−1 with 
the expression of a mutated farnesyl diphosphate synthase 
derived from E. coli.
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Sakamaki et  al. [63] reported the photosynthetic pro-
duction of 1,8-cineole in cyanobacteria. They designed 
and constructed a codon-optimized CINS gene from 
Streptomyces clavuligerus for producing 1,8-cineole in 
Synechococcus elongatus. They placed this CINS under 
the control of an IPTG-dependent promoter since it 
could produce 1,8-cineole directly from GPP, unlike other 
CINS that convert terpineol into 1,8-cineole. Although 
the amount of 1,8-cineole produced in their attempt was 
not remarkable and further attempts are needed, their 
study showed the feasibility of producing 1,8-cineole 
without the need for carbon sources like sucrose.

3 � Conclusion
By now, most terpene synthase genes responsible for 
the production of lavender EO monoterpenes have been 
cloned and functionally characterized. Further, many of 
these genes have been used to produce the corresponding 
monoterpenes in bacteria, yeast, and model plants such 
as Arabidopsis and tobacco. Additionally, the metabolic 
engineering of lavender has been investigated. In the 
latter case, success has been limited as the constitutive 
overexpression of terpene synthase genes is often detri-
mental to the host plant, as (presumably) non-GT cells 
cannot tolerate large amounts of the monoterpenes they 
produce. This problem may be resolved if GT-specific 
promoters that can direct the expression of transgenes 
specifically in GTs are used. In this context, ongoing 
studies currently focus on the cloning of GT-specific pro-
moters. Such promoters could not only help enhance EO 
quality and yield in lavender, but also assist researchers 
in using this plant as a bioreactor for the large-scale pro-
duction of valuable phytochemicals.
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LaSEP3-like	� LaSEPALLATA3- like (from L. angustifolia)
LaSVP	� Short vegetative phase gene (from l. angustifolia)
LaTPS7	� Terpene synthase 7 (from L. angustifolia)
LaTPS8	� Terpene synthase 7 (from L. angustifolia)
Li3CARS	� 3-Carene synthase (from L. x intermedia)
LiAAT​	� Alcohol acetyltransferase (from L. x intermedia)
LiBDH	� Borneol dehydrogenase (from L. x intermedia)
LiBPPS	� Bornyl diphosphate synthase (from L. x intermedia)
LiCINS	� CINS (from L. x intermedia)
LiCPS	� Caryophyllene synthase (from L. x intermedia)
LiLPPS	� Lavandulyl diphosphate synthase (from L. x intermedia)
LIMS	� Limonene synthase
LINS	� Linalool synthase
LiS-LINS	� S-linalool synthase (from L. x intermedia)
LpFENS	� Fenchol synthase (from L. pedunculata)
LpGEAS	� Germacrene A synthase (from L. pedunculata)
LpPINS	� α-Pinene synthase (from L. pedunculata)
LPP	� Lavandulyl diphosphate
LPPS	� Lavandulyl diphosphate synthase
MCT	� MEP cytidyltransferase
MDS	� MEcPP synthase
MEcPP	� 2-C-methyl-D-erythritol -2,4-cyclodiphosphate
MeJA	� Methyl jasmonate
MEP	� 2-C-Methyl-D-erythritol 4-phosphate
MLS	� Mitochondrial localization signal
monoTPSs	� Monoterpene synthases
MVA	� Mevalonate
NPP	� Neryl diphosphate
NPPS	� Neryl diphosphate synthase
PYR	� Pyruvate
RBS	� Ribosomal binding site
SesquiTPSs	� Sesquiterpene synthases
TFs	� Transcription factors
TIR	� Translation initiation rates
TPS	� Terpene synthase
VOC	� Volatile organic compound
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