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Abstract

of an atom.

Background The variational method, a quantum mechanical approach, estimates effective charge distributions
and ground-state energy by minimizing the Hamiltonian's expectation value using trial wave functions with adjust-
able parameters. This method provides valuable insights into system behavior and is widely used in theoretical
chemistry and physics. This paper aims to investigate ground-state energies and isoelectronic sequences using

the variational method, introducing a novel approach for analyzing multi-electron systems. This technique allows
for determining effective charge values and ground-state energies for 2-5 electrons sequence up to Z < 20. Hydro-
genic wave functions are used as a trial wave function to calculate effective charge in 15,2 s, and 2p states. Two
varying parameters were used to calculate an approximate wave function for the system. These values are then
used in non-relativistic Hamiltonian with electron—electron interaction terms to calculate the ground-state energy

Result The results align with the reported experimental values, showing a marginal 1% error.

Conclusion A Python algorithm is established based on the variational principle. It was found that, based on a few
selected parameters in scripting the program, a very promising result was obtained. Furthermore, adding more vari-
ational parameters can minimize the difference between experimental and theoretical values, and this technique can

be extended to elements with higher atomic numbers.

Approximation method

Keywords Shielding effect, Electron—electron interaction, Trail wave function, Variational parameter, Quantum,

1 Background

Various theoretical methods [1-14] are used to solve
multi-electron systems. In 1959, Kinoshita et al. [15]
improved the ground-state energy of the Helium atom
by using a variational method. In 1966, Kotchoubey et al.
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[16] calculated the energy and wave function of the low-
est state of the Beryllium atom by developing and using
an algorithm on the IBM 7090/94 computer systems. In
1976, Bunge et al. [17] yielded the ground-state energy of
Beryllium by testing new configuration-interaction (CT)
ideas. In 1978, Sucher estimated any atom’s ground-state
energy using the atomic shell model [18]. 1981 Pearson
et al. [19] estimated the energies for several two- and
three-electron atoms in both ground and excited states
using a simple and semiclassical model. In 1982, Kregar
et al. [20] calculated the energies of atoms and ions up
to Neon by an elementary approach. In 1984, Crandall
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et al. [21] calculated classical electron trajectories and a
complete set of Eigenfunctions of the Hamiltonian for
the class of "Helium-like" atomic model. In the same
year, Kregar et al. [22] evaluated the effective charges for
individual electrons using a simple algorithm. In 1986,
Parker et al. [23] Calculated energies of inner electrons
in atoms by assuming a Coulombic potential experi-
enced by each electron. In 1989, Anno et al. discussed
the Relativistic effect on the total electronic energy of an
atom for obtaining the non-relativistic total energy [24].
In 1991, Davidson et al. [25] calculated the improved
non-relativistic stationary nucleus correlation energies
of the ground-state atomic ions from 3 to 10 electrons
and Z up to 20. In 1993, Chakravorty et al. [26] estimated
the non-relativistic correlation energies and relativis-
tic corrections to ionization potentials for atomic ions
with 11 to 18 electrons. In 2004, Rodrigues et al. [27]
obtained binding energies for the Lithium (3 electrons)
to the Dubnium (105 electrons) isoelectronic series using
Dirac—Fock approximation. In 2021, Khan et al. [28] cal-
culated ground-state energy and effective charges for
1 s and 2 s for the Beryllium atom using the variational
method. This paper studies ground-state energies and
isoelectronic sequences based on the variational method.
For this purpose, a method is proposed to investigate a
multi-electron system. This work explores the shape res-
onance behavior in two-electron atoms below the critical
nuclear charge (CNC). It follows the resonance trajec-
tory from critical nuclear charge (Zc) to very tiny nuclear
charges using complex-scaling and Hylleraas configu-
ration—interaction basis functions [29]. The Deep post
Hartree—Fock (DeePHF) method is a machine learning-
based approach for accurate and transferable ground-
state energy models in electronic structure problems,
with reduced computational cost and linear scaling [30].
The research presents PauliNet, a deep quantum Monte
Carlo (QMC) technique that computes electrical excited
states via deep neural networks. For molecules with up to
a few dozen electrons, it produces almost precise ground-
state solutions and solves the Schrodinger equation [31].
A new algorithm has been developed to reduce compu-
tational expenses by ensuring that the cost of estimating
ground-state energy increases linearly with the number
of accuracy bits, thus reducing the need for an exponen-
tially increasing number of gates for each circuit [32]. In
this method, an approximation is given to estimate ana-
lytically the effective charge in a multi-electron system
for which the Schrodinger equation could not be solved
exactly. For instance, using this approach, the boron atom
has been selected to calculate effective charges for 1 s
and 2 s orbit and ground-state energies. Hamiltonian has
been calculated for unperturbed and perturbed systems.
We assume the nuclear charge is not shielded by the
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electrons in an unperturbed system, neglecting the effect
of electron—electron interaction. In a perturbed system,
we assume a shielding effect of the nuclear charge by the
electrons to improve the acquired results for the unper-
turbed system.

2 Methodology

Due to an increase in the number of electrons in many
electron systems, many additional terms are included
in Hamiltonian, such as electron—electron interaction,
spin—orbit interaction, and relativistic correction. One
can write a modified Hamiltonian for the N electron sys-
tem as:

H=H,+H,+H,+Hp+Hso (1)

where, H,., denotes electron—electron interaction, H,
denotes relativistic correction, Hp denotes Darwin’s
term, and Hso denotes spin—orbit interaction. These
terms may be considered a perturbation to a system’s
total energy. In atomic systems, the effects of spin—orbit
interaction and electron—electron repulsion are major
perturbations, with their relative significance fluctuating
according to the atomic number Z. For lighter elements
(low Z), the effect of electron—electron repulsion is the
main effect. In contrast, in heavier elements, the spin—
orbit interaction becomes more important. Due to these
interactions, it isn’t easy to calculate the exact theoreti-
cal solution in many electron systems. Different approx-
imation methods have been developed to obtain an
approximate solution of an atom. For a system in which
electrostatic repulsion between electrons is stronger
than other interactions, the Hamiltonian can be writ-
ten as a sum of core Hamiltonian and electron—electron
interaction:

N[ p*> kZé® ke?

H=H,+He=)_ [2”1 - ] +Zi#r7

(2)

The spatial solution of Eq. (2) is an eigenfunction of the
Hamiltonian with Eigenvalue E. Due to the second term
in the equation, the separation of variable technique is not
applicable to solving Eq. (2); therefore, an approximation
method is generally used to find the solution of Hamilto-
nian [33-38]. An improved variational method based on
variational parameters resolves these issues. These param-
eters are further used to analytically evaluate the effec-
tive charge of many states and the ground-state energy of
the system. The theory used in this work is the same as in
[28]. We reported effective charge and ground-state ener-
gies for two, three, four, and five electron sequences for
atomic numbers up to Z=20. However, we used boron as
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an example to show the calculation. The methodology used
is summarized in Fig. 1.

2.1 Calculation for Boron

To calculate the ground-state energy of an atom, the vari-
ation method is one the most common techniques used in
atomic physics; this method requires a trial wave function
and then calculating the expected energy of that trial wave
function as a function of the parameters that describe the
wave function. A good choice of trial wave function form
is essential for the success of the variational method. To
calculate the ground-state energy of Boron, the trail wave
functions of boron for different states, i.e., 1 s,2 s,2px is
given below:

3
Zeg1\2 1 _Ze1v
Wi = ( i ) e 4o (3)

Generate trial or guess wave function . In this
research, we have used the normalized wave
function of hydrogen atom as guess wave
function.

Estimate expectation energy of unperturbed
Hamiltonian, by neglecting all the perturbation
terms, using variational principle

To get the best energy Eigen value, parameterize
the original trail wave function for each state of
the perturbed system (1s,2s,2p.)

Write the Hamiltonian of the perturbed system
including Vanational parameter and find the
energy Eigen value by using new trial wave
function.

Find the optimal values for the parameters by
minimizing the value of < H > with respect to
each parameter and use it to find effective charge
of the state.

Compare E™ with E"*, If it agree within given
tolerance use it for total energy, otherwise repeat
step 3 to 5. Repeat steps 3-5 for every state of the
perturbed system.

Not Good

Fig. 1 Simplified algorithmic flowchart of the used methodology
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3
Z, 21 Zefol _Zegar .
Wr1-1 = ( eﬁ2> i ( &2 )Sin@e 2, ¢~
Ao (647m)2 Ao
(5)

2.2 Expected Unperturbed energy calculation for all
electrons

The following equation calculates the unperturbed

Hamiltonian:

_ h2 Ze?
Hy=——Y'v2_5 2
° 2m Zt: ¢ zt: 4T €4 1} (6)
]/-[\0 = 2ﬁ1 + Zﬁz + ﬁg (7)
o =2E1 +2E> +E3 (8)
Here,
E = <‘P1oo‘1:11“1’100> )

Combine all results to find total ground-state
energy of the system
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h2 Z fﬂez
E; = ( Wipo|——V? - 2w
1 < 100 =5 =Vi = ot 100> (10)
0.5Ze1 2h%  0.79577Z g >€?
E1 = 3 - (11)
a,°m A, €,
Ey = <‘P200‘1:[2"1’200> (12)
hz Z ffzez
Ep = ( Wygo|——— Vi — —2= |y
2 < 200/ =5 —Va T g et 2oo> (13)
0.125Zc?h%  0.01989Z g %e?
E2 _ 2eﬂ? _ eff2 (14)
a,°m 3, €,
E3 = <‘~11211’H3|‘I’211> (15)
2 2
Z f2€
E3 = { Wypy|——— V2 — 227 1y
3 < 201 —5 2 Vs T co s 211> (16)
0.104167Zcrh%  0.0199Z,2e>
3= 3 - (17)
a,°m 3, €,
Put values of E1, E9, E3 in Eq. (8):
E_Zeﬂf}z2 1.59154Z o1 %€
T ag’m a, €,
232 2.2 (18)
0.354167Zegrr2h?  0.05968Z 02
ao2m a, S,

2.3 Ground-state energy estimation for perturbed system
For the Perturbed System, to improve our results,
we replaced Z, with Z -1 —o and Zg by
Z —ap — /7.5 in trail wave function where a; = 0 for
1s? and ay = 2 for 2s%. The Hamiltonian of the perturbed
system is given by Eq. (19):

Ground Perturbed Energy for 152 :
E = 2E1 + V(l"lz) (20)

Ground Perturbed Energy for 25 :
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E =2E>+ V(r3y)+V(ri3) + V(ry) 1)
+ V(ra) + V(ra)
Since, V(r13) = V(r14)=V (ro3) = V(rq4). So,
E =2E; +V(r3y) +4V(ri3) (22)
Ground Perturbed Energy for 2px:
E=E3+ V(rss)+ V(rs) (23)
Here, V (r35) = V (r45). So,
E =E3+2V(rss) (24)
So, the total Hamiltonian:
H =2H, + 2H,
A e2
+H3+ ———
47 €o 12
P
A €4 13y (25)
4e?
%5 4 €o I'13
2e>
4 €4 135
And total Energy:
E=2E) +2E,+E3+ V(ryy) 26)
+ V(rzs) +4V(ri3) + 2V (rss)
E = <‘l’100’1:11“11100> (27)
(28)

=< ) —fd@fstd@
7
0

r 2 2 ar
e_a( ) _h — V- Y e war
2m 4 €,

E =2E| +2E> +E3+ V(r12)

+ V(rsa) + 4V (r13) + 2V (r35) 29)

E; = <‘1’§koo’ﬁ12“1’200> (30)

B 6 1 21 br 2
E) = (—) 2/ d@/ sinfdo / " dao (2— —)r
2a, (32m) 2a,
2“0)

_Fﬁv2_ pe? e
2m 2 8w o

(31)
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0.03125B82k%  0.0049748%¢>
Ey = 5 PR _ P (32)
ap“m ay €,
<‘I’211‘H3"V211> (33)
B 1
b Y an
2(10 (64'7'[)
T
S sin 20 fe 4ao ('Br>r2
0 2a,
o2 (34)
2
[ 8w eo}
e 430 < pr >sm9drd9
2a,
0.0268%h%  0.004973682¢%
By = 22PN P 35)
ay“m ay €,

2.4 Electron-electron interactions

e? a\%1
V(rp) = <> —

4 €4 \a, ) w2

/Ooe_Za (‘%) 7'12
0
ey 0

ind,d6
/ Stv2 2 drzdrl
\/r1 + r2 2riracosb-
b4 2 2
/ Sil’l91d91/ dd, do (37)
0 0 0

Using the following integral, simplify the equation:

Tw w _uvx
x"e dx =— —x"e v
uv

- Z:’zl {szl(n 41— l)] (38)

wNitl .
(7) i
uv
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[ e () (T o1 -0] oo

[H;(” +1- ’)} (40)

o0 uvx w uvr
x"e” wdx =—r"e"w
r uv

+3 {szl(n 1 1)} (41)

w i+1 o uwr
(7) =
uv

62 o 3 ro0
Viry) = <> /
T €p \ o 0
e—Za(%)rlz
5 1
Otrl a
—0.079577¢ a0 <)
4o (42)
2ar
0.079577  0.079577¢ a0
+ - dr1
ra r
T 27T
/ sinB1do, dad
0 0
0.0497359x¢2
V(rw) = Q< (43)
0 [

Similarly, using the same integral.

2

WoooW 44
pp— 200 200> (44)

V(rsy) = <‘1’200‘1/200
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0 o _bn (B 0.079577
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—0.0049736r1€ 20 (—)
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) 0.159155¢ %o
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—0.02984¢ 0 | ) 4 5 mn
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0.0795775¢ %5 7 2 " o
_'e‘| drl/ sinf1d61 do, / sin61d0; do
r1 0 0 0 0
50
47) (50)
) 0.0058548¢*
12.5664 0.0023758 V(rss) = —————— (51)
V(Vlg) = — 3 Ao €y
o (0.04388 + 1)°a,
0.0001042 0.000009112283
- - 2.5 Optimal values
0.04388 + 1)* 0.04388 + 1)°
( prbia, ( pt1ra, To calculate the optimal values, put values.
0.0361434 _ 0'03614342 :| Ey,Ey, E3, V12, V3a, V35, Vi3 in Eq. (26) and find the min-
ao (0.04388 + 1)“a, ima concerning & and 8.
(48)
) OE  20®  0.049735¢>  0.3183cce’
€ —_— = —
<‘1’211‘11200 Treom ‘1/211‘1’200> 4 e m 4, <, 4o <, (52)
V(rss) = (49) h
(W211W200|W211 Wa00 >
a = 0.29246217 (53)
Zygp1 =Z —a1 —« (54)
Zog1 = 470753783 (55)
OE 3 a’h? B 0.1591540%¢? N 0.0885p82 12 B 0.014921682%¢> N 0.0497359x¢®>  0.0176928¢>
B~ 9B\ aim ay €, azm ay €, ay €, a, €, (56)
+50.2656e2 [_ 0.0023758 00001048  0.00000911228°  0.0361434  0.0361434 D
€ (0.04388 + 1)%a,  (0.04388 + 1)*a,  (0.04388 + 1)°a, a, (0.04388 + 1)%a,
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Table 1 The values of the best parameters of the trial wave
function for Boron

Atomic no. Element Zoff1 Zoff> Ground-state

symbol energy (au)

5 Bl 4.70753783  2.55658043 —24.64356486
B = 3.325646775 (57)
Zefr =2 —aty — LA (58)

7.5
Zegn = 2.55658043 (59)

By putting the value of Z 4, and Z.4, in Eq. (18), we
have calculated the ground-state energy value:

E = —670.9809eV = —24.64356486au (60)

Parameters that produced the good energy eigenvalues
of boron (Br I) are reported in Table 1.

Figure 2 shows a 3D projection of ground-state energy
in the z-axis within parameters Zeffl and Zeff2 in the x—y
plane; in this figure intensity of the color gradient from
yellow to dark blue shows variation in ground energy
from minimum to maximum, respectively, the gradi-
ent shows by increasing values of Zeffl and Zeff2 we get
approximate ground-state energy.

-12 't
-14 ~

=16~

sa.yeH/ABiau3l

450
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For confirmation, we compared the results of the ana-
lytical method suggested in this study with previously
published experimental and theoretical data [39-42].

3 Result

From Fig. 3, it is observed that Z,7 greatly affects the
atomic size of an atom, as the Z,7 decreases, the nuclear
radius will grow because there is more screening of the
electrons from the nucleus, as a result, the bonding
energy between the nucleus and the electron decreases.
Furthermore, it is also observed the screening effect is
affected by the state of the atom, the value of Z.g; less
than Z.z; The electron close to the nucleus experiences
the maximum charge of the nucleus which counterintui-
tively outer electrons cannot due to the shielding effect of
the inner electron. The color gradient in the graph shows
binding energy increases due to radius reduction.

4 Discussion

Trial wave functions (4), (5), and (6) are used to calculate
ground-state energy eigenvalues for different sequence
variational methods. These trial wave functions contain
two variational parameters, namely. Z,71 and Zggs. Our
program helps us to vary the parameters successively in
loops until the experimental eigenvalue reported in NIST
[35] is obtained. Calculated variational parameters for

125 300

375

Zeffl

K
425 o

Fig. 2 The variation of the ground-state energy of the boron atom with respect to the variational parameters Zog1and Ze
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2 electrons sequence
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3 electrons sequence
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Fig. 3 Energy plotting of two, three, four, and five electron sequences with respect to variational parameters
Table 2 Comparison of the calculated results of ground-state energy of boron and beryllium atoms of sequence V and IV with
reported experimental and theoretical values
Element Parameter Calculated values Previously reported values Percentage
of error
BI Calculated ground-state energy  —24.64356486 —24.65807839 (35) 0.06
using effective charge — 245290 (38) 046
Bel Calculated ground-state energy  —14.69746365 —14.66721 (36) 0.2
using effective charge —14.488 (37) 14
—14.3423 (28) 24

boron are reported in Table 1, followed by Fig. 2, which
shows the variation of ground-state energy of boron
atoms concerning these parameters. Table 2 compares
the calculated results of B I and Be I atoms of sequences
V and IV with experimental and previously reported val-
ues. In Tables 3, 4, 5, and 6, various parameters for 2 elec-
trons sequence up to 2<7Z<20,3 electrons sequence up
to 3<Z<20, 4 electrons sequence up to 4<Z<20, and
5 electrons sequence up to 5<Z <20 respectively were
obtained using the suggested methods and compares

them to values that were obtained experimentally [39].
For 2 electron sequences, only one parameter is involved
because of single state (1 s) involvement, whereas other
states are also involved in other sequences. In Fig. 3, the
energy of different electron sequences concerning the
variational parameters Z,7; and Zy, is plotted, and it
is observed that energy is affected by the shielding effect
and atomic radius of the nucleus. Therefore, the differ-
ent cations of the same element have different expected
energy.
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Table 3 Various parameters for 2 electrons sequence up to 2<7<20

Atomic no. Element symbol Zetrr Ground-state energy (au) Nist data (au) [35] Percentage
of error

2 Hel 1.70753783 —2.903307585 —2.903384126 0.003

3 Lill 2.70753783 —7.299640081 —7.279832599 03

4 Be lll 3.70753783 —13.68748205 —13.65658337 0.2

5 BIV 4.70753783 —22.06683349 —22.03478841 0.1

6 (@Y 570753783 —324376944 —32.41595947 0.07

7 N VI 6.70753783 —44.80006478 —44.80156628 0.003

8 owvil 770753783 —59.15394463 —59.19344731 0.07

9 FVII 870753783 —7549933395 —75.59388265 0.1

10 Ne IX 9.70753783 —93.83623275 —94.00496995 0.2

1 Na X 10.70753783 —114.164641 —114.4313222 0.2

12 Mg XI 11.70753783 —136.4845587 —136.8716202 0.3

13 AlXII 1270753783 —160.795986 —161.3337406 03

14 SiXill 13.70753783 —187.0989226 —187.8196495 04

15 P XIV 14.70753783 —215.3933688 —216.333976 04

16 SXV 15.70753783 —245.6793244 —246.8806655 0.5

17 CIxvi 16.70753783 —277.9567895 —279.4650351 05

18 Ar XVl 1770753783 —312.2257641 —314.0922173 0.6

19 KXV 18.70753783 —348.4862481 —350.7691275 0.6

20 Ca XIX 19.70753783 —386.7382416 —389.4955923 0.7

Table 4 Various parameters for 3 electrons sequence up to 3<7<20

Atomic no. Element symbol Zetrr Zetrr Ground-state energy (au) Nist data (au) [35] Percentage
of error

3 Lil 270753783 1.195188665 — 7477441542 —7.477974348 0.007

4 Bell 3.70753783 2277260599 —14.33296958 —14.32583078 0.05

5 Bl 4.70753783 3.364072635 —2347545112 —2342871141 0.2

6 CWV 5.70753783 4455242132 —34.90830907 —34.78605097 03

7 NV 6.70753783 5.550417749 —48.63460887 —483989604 05

8 oV 7.70753783 6649281388 —64.65710055 —64.2692191 0.6

9 FVII 8.70753783 7.751547417 —82.97825949 —82.39936866 0.7

10 Ne VIII 9.70753783 8.856960472 —103.6003235 -102.7916177 0.8

M Na IX 10.70753783 9.965292645 —126.5253251 —125.4508282 0.8

12 Mg X 11.70753783 11.07634052 —151.7551197 —150.3765921 0.9

13 Al XI 12.70753783 12.18992233 —179.291409 —177.577101 0.9

14 SiXll 13.70753783 13.30587529 —209.1357612 —207.0547803 1

15 P Xl 14.70753783 14.4240533 —241.2896278 —238.8150321 1

16 SXIV 15.70753783 15.54432481 —275.7543578 —272.8622295 1

17 CIXv 16.70753783 16.66657107 —312.5312101 —309.2024731 1

18 Ar XVI 17.70753783 17.79068451 —351.6213632 —347.8418263 1

19 KXVl 18.70753783 18.91656741 —393.0259246 —388.7877861 1

20 Ca Xviil 19.70753783 20.04413074 —436.7459377 —432.0411977 1
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Table 5 Various parameters for 4 electrons sequence up to 4 <7 <20

Atomic no. Element symbol Zottr Zetr Ground-state energy (au) Nist data (au) [35] Percentage
of error

4 Bel 3.70753783 2.014236844 —14.69746365 —14.66843312 02

5 Bl 4.70753783 3.018640441 —24.3352101 —24.3531327 0.07

6 cli 570753783 4.023250528 —36.46715156 —36.54589262 0.2

7 NIV 6.70753783 5.028051552 —51.09355893 —51.24605729 0.3

8 ov 7.70753783 6.0330293 —68.21467607 —68.45492762 04

9 FVI 870753783 7038170886 —87.83072311 —88.17500257 04

10 Ne VI 9.70753783 8.043464682 —109.9418995 —110.4086782 04

M Na VIII 10.70753783 9.048900217 —134.5483865 —135.1596992 04

12 Mg IX 11.70753783 10.05446807 —161.6503499 —162.429701 0.5

13 Al X 12.70753783 11.06015977 —191.2479417 —192.227136 0.5

14 SiXl 13.70753783 12.06596766 —223.3413021 —224.5574796 0.5

15 PXIl 14.70753783 13.07188485 —257.9305606 —2594173511 0.6

16 SXI 15.70753783 14.07790508 —295.0158378 —296.8215236 0.6

17 CIXIvV 16.70753783 15.08402268 —334.5972457 —336.7727902 0.6

18 Ar XV 17.70753783 16.09023251 —376.6748895 —379.2785005 0.7

19 KXVI 18.70753783 17.09652984 —421.2488678 —424.347842 0.7

20 Ca XVl 19.70753783 18.1029104 —468.3192732 —471.9822847 0.8

Table 6 Various parameters for 5 electrons sequence up to 5<7 <20

Atomic no. Element symbol Zeiir Zyry Ground-state energy (au) Nist data (au) [35] Percentage
of error

5 Bl 4.70753783 2.55658043 —24.64356486 —24.65807839 0.06

6 cl 5.70753783 3.548716852 —37.40239339 —3744195816 0.1

7 NIl 6.70753783 4542696842 —5293544274 —52.98963518 0.1

8 (0\% 7.70753783 5.538013099 —71.24483218 —71.29981956 0.08

9 FVv 8.70753783 6534311401 —92.33188266 —92.37359172 0.04

10 Ne VI 9.70753783 7.531342951 —-116.1974311 —116.2126421 0.01

1 Na VII 10.70753783 8.528930702 —142.8420161 —142.8217445 0.01

12 Mg VIl 11.70753783 9.526946726 —172.2659892 —172.2024424 0.04

13 AlIX 12.70753783 10.52529714 —204.4695822 —204.3621223 0.05

14 SiX 13.70753783 11.523912 —239.4529495 —239.3081342 0.06

15 PXI 14.70753783 12.52273848 —277.2161939 —277.0364355 0.06

16 SXI 15.70753783 13.52173612 —317.7593841 —317.5628286 0.06

17 crxin 16.70753783 14.52087359 —361.0825658 —360.8928257 0.05

18 Ar XIV 17.70753783 15.52012631 —407.1857688 —407.0315719 0.04

19 KXV 18.70753783 16.51947484 —456.0690122 —455.9889893 0.02

20 Ca xvi 19.70753783 17.51890363 —507.7323077 —507.7650781 0.006

5 Conclusion

In this research, a pattern has been generated using the
Variational Method [28], which has been applied to
2 electrons, 3 electrons, 4 electrons, and 5 electrons
sequences up to Z<20 to calculate ground energy
states and effective charges. In this study, the Hamilto-
nian is the energy operator for multi-electron systems, so

it has additional terms in the Hamiltonian of the hydro-
gen atom. The Hydrogen-like wave functions were
used as trial wavefunctions in the variational method
to find a suitable wave function to calculate the effective
charges of the 1 s and 2 s states for atoms. The ground-
state energies were calculated with the help of effective
charge values used in the Hamiltonian. The shielding
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effect contributes to the total energy of the atomic sys-
tem. The calculated ground energies were found to be
within 1%. Though the errors are small, this occurs due to
approximation used in the variational principle. Adding
more variational parameters can minimize the difference
between experimental and theoretical values.
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