
Shaheen et al. Beni-Suef Univ J Basic Appl Sci           (2024) 13:92  
https://doi.org/10.1186/s43088-024-00551-4

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Beni-Suef University Journal of
Basic and Applied Sciences

Analytical estimate of effective charge 
and ground-state energies of two to five 
electron sequences up to atomic number 20 
utilizing the variational method
Kousar Shaheen1, Roohi Zafar1, Saba Javaid1 and Ahmed Ali Rajput2*   

Abstract 

Background The variational method, a quantum mechanical approach, estimates effective charge distributions 
and ground-state energy by minimizing the Hamiltonian’s expectation value using trial wave functions with adjust-
able parameters. This method provides valuable insights into system behavior and is widely used in theoretical 
chemistry and physics. This paper aims to investigate ground-state energies and isoelectronic sequences using 
the variational method, introducing a novel approach for analyzing multi-electron systems. This technique allows 
for determining effective charge values and ground-state energies for 2–5 electrons sequence up to Z ≤ 20. Hydro-
genic wave functions are used as a trial wave function to calculate effective charge in 1 s, 2 s, and 2p states. Two 
varying parameters were used to calculate an approximate wave function for the system. These values are then 
used in non-relativistic Hamiltonian with electron–electron interaction terms to calculate the ground-state energy 
of an atom.

Result The results align with the reported experimental values, showing a marginal 1% error.

Conclusion A Python algorithm is established based on the variational principle. It was found that, based on a few 
selected parameters in scripting the program, a very promising result was obtained. Furthermore, adding more vari-
ational parameters can minimize the difference between experimental and theoretical values, and this technique can 
be extended to elements with higher atomic numbers.

Keywords Shielding effect, Electron–electron interaction, Trail wave function, Variational parameter, Quantum, 
Approximation method

1  Background
Various theoretical methods [1–14] are used to solve 
multi-electron systems. In 1959, Kinoshita et  al. [15] 
improved the ground-state energy of the Helium atom 
by using a variational method. In 1966, Kotchoubey et al. 

[16] calculated the energy and wave function of the low-
est state of the Beryllium atom by developing and using 
an algorithm on the IBM 7090/94 computer systems. In 
1976, Bunge et al. [17] yielded the ground-state energy of 
Beryllium by testing new configuration-interaction (CT) 
ideas. In 1978, Sucher estimated any atom’s ground-state 
energy using the atomic shell model [18]. 1981 Pearson 
et  al. [19] estimated the energies for several two- and 
three-electron atoms in both ground and excited states 
using a simple and semiclassical model. In 1982, Kregar 
et  al. [20] calculated the energies of atoms and ions up 
to Neon by an elementary approach. In 1984, Crandall 
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et al. [21] calculated classical electron trajectories and a 
complete set of Eigenfunctions of the Hamiltonian for 
the class of "Helium-like" atomic model. In the same 
year, Kregar et al. [22] evaluated the effective charges for 
individual electrons using a simple algorithm. In 1986, 
Parker et  al. [23] Calculated energies of inner electrons 
in atoms by assuming a Coulombic potential experi-
enced by each electron. In 1989, Anno et  al. discussed 
the Relativistic effect on the total electronic energy of an 
atom for obtaining the non-relativistic total energy [24]. 
In 1991, Davidson et  al. [25] calculated the improved 
non-relativistic stationary nucleus correlation energies 
of the ground-state atomic ions from 3 to 10 electrons 
and Z up to 20. In 1993, Chakravorty et al. [26] estimated 
the non-relativistic correlation energies and relativis-
tic corrections to ionization potentials for atomic ions 
with 11 to 18 electrons. In 2004, Rodrigues et  al. [27] 
obtained binding energies for the Lithium (3 electrons) 
to the Dubnium (105 electrons) isoelectronic series using 
Dirac–Fock approximation. In 2021, Khan et al. [28] cal-
culated ground-state energy and effective charges for 
1 s and 2 s for the Beryllium atom using the variational 
method. This paper studies ground-state energies and 
isoelectronic sequences based on the variational method. 
For this purpose, a method is proposed to investigate a 
multi-electron system. This work explores the shape res-
onance behavior in two-electron atoms below the critical 
nuclear charge (CNC). It follows the resonance trajec-
tory from critical nuclear charge (Zc) to very tiny nuclear 
charges using complex-scaling and Hylleraas configu-
ration–interaction basis functions [29]. The Deep post 
Hartree–Fock (DeePHF) method is a machine learning-
based approach for accurate and transferable ground-
state energy models in electronic structure problems, 
with reduced computational cost and linear scaling [30]. 
The research presents PauliNet, a deep quantum Monte 
Carlo (QMC) technique that computes electrical excited 
states via deep neural networks. For molecules with up to 
a few dozen electrons, it produces almost precise ground-
state solutions and solves the Schrödinger equation [31]. 
A new algorithm has been developed to reduce compu-
tational expenses by ensuring that the cost of estimating 
ground-state energy increases linearly with the number 
of accuracy bits, thus reducing the need for an exponen-
tially increasing number of gates for each circuit [32]. In 
this method, an approximation is given to estimate ana-
lytically the effective charge in a multi-electron system 
for which the Schrodinger equation could not be solved 
exactly. For instance, using this approach, the boron atom 
has been selected to calculate effective charges for 1  s 
and 2 s orbit and ground-state energies. Hamiltonian has 
been calculated for unperturbed and perturbed systems. 
We assume the nuclear charge is not shielded by the 

electrons in an unperturbed system, neglecting the effect 
of electron–electron interaction. In a perturbed system, 
we assume a shielding effect of the nuclear charge by the 
electrons to improve the acquired results for the unper-
turbed system.

2  Methodology
Due to an increase in the number of electrons in many 
electron systems, many additional terms are included 
in Hamiltonian, such as electron–electron interaction, 
spin–orbit interaction, and relativistic correction. One 
can write a modified Hamiltonian for the N electron sys-
tem as:

where, Hee denotes electron–electron interaction, Hr 
denotes relativistic correction,  HD denotes Darwin’s 
term, and HSO denotes spin–orbit interaction. These 
terms may be considered a perturbation to a system’s 
total energy. In atomic systems, the effects of spin–orbit 
interaction and electron–electron repulsion are major 
perturbations, with their relative significance fluctuating 
according to the atomic number Z. For lighter elements 
(low Z), the effect of electron–electron repulsion is the 
main effect. In contrast, in heavier elements, the spin–
orbit interaction becomes more important. Due to these 
interactions, it isn’t easy to calculate the exact theoreti-
cal solution in many electron systems. Different approx-
imation methods have been developed to obtain an 
approximate solution of an atom. For a system in which 
electrostatic repulsion between electrons is stronger 
than other interactions, the Hamiltonian can be writ-
ten as a sum of core Hamiltonian and electron–electron 
interaction:

The spatial solution of Eq. (2) is an eigenfunction of the 
Hamiltonian with Eigenvalue E. Due to the second term 
in the equation, the separation of variable technique is not 
applicable to solving Eq.  (2); therefore, an approximation 
method is generally used to find the solution of Hamilto-
nian [33–38]. An improved variational method based on 
variational parameters resolves these issues. These param-
eters are further used to analytically evaluate the effec-
tive charge of many states and the ground-state energy of 
the system. The theory used in this work is the same as in 
[28]. We reported effective charge and ground-state ener-
gies for two, three, four, and five electron sequences for 
atomic numbers up to Z = 20. However, we used boron as 

(1)H = Ho +Hee +Hr +HD +HSO

(2)

H = Ho +Hee =
∑N

i

[
p2

2m
−

kZe2

ri

]
+

∑
i �=j

ke2

rij
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an example to show the calculation. The methodology used 
is summarized in Fig. 1.

2.1  Calculation for Boron
To calculate the ground-state energy of an atom, the vari-
ation method is one the most common techniques used in 
atomic physics; this method requires a trial wave function 
and then calculating the expected energy of that trial wave 
function as a function of the parameters that describe the 
wave function. A good choice of trial wave function form 
is essential for the success of the variational method. To 
calculate the ground-state energy of Boron, the trail wave 
functions of boron for different states, i.e., 1  s,2  s,2px is 
given below:

(3)�100 =

(
Zeff 1

ao

) 3
2 1

(π)
1
2

e
−

Zeff 1r

ao

(4)�200 =

(
Zeff 2

ao

) 3
2 1

(32π)
1
2

(
2−

Zeff 2r

ao

)
e
−

Zeff 2r

2ao

2.2  Expected Unperturbed energy calculation for all 
electrons

The following equation calculates the unperturbed 
Hamiltonian:

Here,

(5)

�21−1 =

(
Zeff 2

ao

) 3
2 1

(64π)
1
2

(
Zeff 2r

ao

)
sinθe

−
Zeff 2r

2ao e−i∅

(6)Ĥo = −
�
2

2m

∑

i

∇2
i −

∑

i

Ze2

4π ∈o ri

(7)Ĥo = 2Ĥ1 + 2Ĥ2 + Ĥ3

(8)Eo = 2E1 + 2E2 + E3

(9)E1 =
〈
�100

∣∣∣Ĥ1

∣∣∣�100

〉

Fig. 1 Simplified algorithmic flowchart of the used methodology
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Put values of E1,E2,E3 in Eq. (8):

2.3  Ground‑state energy estimation for perturbed system
For the Perturbed System, to improve our results, 
we replaced  Zeff1 with Z − α1 − α and  Zeff2 by 
Z − α2 − β/7.5 in trail wave function where α1 = 0 for 
1s2 and α2 = 2 for 2s2 . The Hamiltonian of the perturbed 
system is given by Eq. (19):

Ground Perturbed Energy for 1s2 :

Ground Perturbed Energy for 2s2 :

(10)E1 =

〈
�100

∣∣∣∣−
�
2

2m
∇2
1 −

Zeff1e
2

4π ∈o r1

∣∣∣∣�100

〉

(11)E1 =
0.5Zeff1

2
�
2

ao
2m

−
0.79577Zeff1

2e2

ao ∈o

(12)E2 =
〈
�200

∣∣∣Ĥ2

∣∣∣�200

〉

(13)E2 =

〈
�200

∣∣∣∣−
�
2

2m
∇2
2 −

Zeff2e
2

4π ∈o r2

∣∣∣∣�200

〉

(14)E2 =
0.125Zeff2

2
�
2

ao
2m

−
0.01989Zeff2

2e2

ao ∈o

(15)E3 =
〈
�211

∣∣∣Ĥ3

∣∣∣�211

〉

(16)E3 =

〈
�211

∣∣∣∣−
�
2

2m
∇2
3 −

Zeff2e
2

4π ∈o r3

∣∣∣∣�211

〉

(17)E3 =
0.104167Zeff2

2
�
2

ao
2m

−
0.0199Zeff2

2e2

ao ∈o

(18)
E =

Zeff1
2
�
2

ao
2m

−
1.59154Zeff1

2
e
2

ao ∈o

+
0.354167Zeff2

2
�
2

ao
2m

−
0.05968Zeff2

2
e
2

ao ∈o

(19)

Ĥ = −
�
2

2m
∑

i
∇

2
i −

∑

i

Ze2

4π ∈o ri

+

∑

i �=j

e2

4π ∈o rij
= Ĥo + Ĥ ′

(20)E = 2E1 + V (r12)

Since, V (r13) = V (r14)=V (r23) = V (r24) . So,

Ground Perturbed Energy for 2px:

Here, V (r35) = V (r45) . So,

So, the total Hamiltonian:

And total Energy:

(21)
E = 2E2 + V (r34)+V (r13)+ V (r14)

+ V (r23)+ V (r24)

(22)E = 2E2 + V (r34)+ 4V (r13)

(23)E = E3 + V (r35)+ V (r45)

(24)E = E3 + 2V (r35)

(25)

Ĥ =2Ĥ1 + 2Ĥ2

+ Ĥ3 +
e
2

4π ∈o r12

+
e
2

4π ∈o r34

+
4e

2

4π ∈o r13

+
2e

2

4π ∈o r35

(26)
E = 2E1 + 2E2 + E3 + V (r12)

+ V (r34)+ 4V (r13)+ 2V (r35)

(27)E1 =
〈
�100

∣∣∣Ĥ1

∣∣∣�100

〉

(28)
E1 =

(
α

ao

)6
1

π2

2π

∫
0

d∅
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∫
0

sinθdθ

∞
∫
0

e
−α

(
r
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)

r
2

[
−

�
2
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1 −
αe2

4π ∈o

]
e
− αr

ao dr

(29)
E =2E1 + 2E2 + E3 + V (r12)

+ V (r34)+ 4V (r13)+ 2V (r35)

(30)E2 =
〈
�∗

200

∣∣∣Ĥ2

∣∣∣�200

〉

(31)

E2 =

(
β
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)6 1
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0
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0
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∫
∞

0
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βr
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βr
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)
r
2

[
−
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2m
∇

2
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βe2
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βr
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(
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βr
2ao
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2.4  Electron–electron interactions

Using the following integral, simplify the equation:

(32)E2 =
0.03125β2

�
2

ao2m
−

0.004974β2e2

ao ∈o

(33)E3 =
〈
�211
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〉
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∫
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]

e
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(
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�
2
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e
2

4π ∈o

(
α

ao

)6
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e
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∫
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r
2
1
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2
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Similarly, using the same integral.
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∫ ∞
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w

uv

)i+1

r
n−i

e
− uvr

w

(41)

∫ ∞
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e
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�
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(44)V (r34) =
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(45)V (r34) =
0.005984βe2

ao ∈o

(46)V (r13) =

〈
�200�100

∣∣∣ e2

4π∈or13

∣∣∣�200�100

〉

��200�100|�200�100 >

(47)

V (r13) =
e2

π ∈o

�
5.707538

ao

�3

� ∞

0

e
−

11.415076r1
ao r

2

1

�
−0.0012434r

2

1e
−

βr1
2ao

�
β
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�3

−0.0049736r1e
−
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�
β
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�2
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−
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β
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−
βr1
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0
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�
2π

0

d∅1
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V (r13) =
12.5664e

2
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[
−

0.002375β

(0.0438β + 1)3ao
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0.000104β2

(0.0438β + 1)4ao
−

0.0000091122β3

(0.0438β + 1)5ao

+
0.0361434
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−

0.0361434

(0.0438β + 1)2ao

]

(49)V (r35) =

〈
�211�200

∣∣∣ e2

4π∈or35

∣∣∣�211�200

〉

��211�200|�211�200 >

2.5  Optimal values
To calculate the optimal values, put values. 
E1,E2,E3,V12,V34,V35,V13 in Eq.  (26) and find the min-
ima concerning α and β.

(50)

V (r35) =
e2

32π ∈o

�
β

2ao
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� ∞
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(53)α = 0.29246217
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By putting the value of  Zeff1 and  Zeff2 in Eq.  (18), we 
have calculated the ground-state energy value:

Parameters that produced the good energy eigenvalues 
of boron (Br I) are reported in Table 1.

Figure 2 shows a 3D projection of ground-state energy 
in the z-axis within parameters Zeff1 and Zeff2 in the x–y 
plane; in this figure intensity of the color gradient from 
yellow to dark blue shows variation in ground energy 
from minimum to maximum, respectively, the gradi-
ent shows by increasing values of Zeff1 and Zeff2 we get 
approximate ground-state energy.

(57)β = 3.325646775

(58)Zeff 2 = Z − α2 −

(
β

7.5

)

(59)Zeff 2 = 2.55658043

(60)E = −670.9809eV = −24.64356486au

For confirmation, we compared the results of the ana-
lytical method suggested in this study with previously 
published experimental and theoretical data [39–42].

3  Result
From Fig.  3, it is observed that Zeff   greatly affects the 
atomic size of an atom, as the Zeff  decreases, the nuclear 
radius will grow because there is more screening of the 
electrons from the nucleus, as a result, the bonding 
energy between the nucleus and the electron decreases. 
Furthermore, it is also observed the screening effect is 
affected by the state of the atom, the value of Zeff 2 less 
than Zeff 1 The electron close to the nucleus experiences 
the maximum charge of the nucleus which counterintui-
tively outer electrons cannot due to the shielding effect of 
the inner electron. The color gradient in the graph shows 
binding energy increases due to radius reduction.

4  Discussion
Trial wave functions (4), (5), and (6) are used to calculate 
ground-state energy eigenvalues for different sequence 
variational methods. These trial wave functions contain 
two variational parameters, namely. Zeff 1  and Zeff 2 . Our 
program helps us to vary the parameters successively in 
loops until the experimental eigenvalue reported in NIST 
[35] is obtained. Calculated variational parameters for 

Table 1 The values of the best parameters of the trial wave 
function for Boron

Atomic no. Element 
symbol

Zeff1 Zeff2 Ground‑state 
energy (au)

5 B I 4.70753783 2.55658043 − 24.64356486

Fig. 2 The variation of the ground-state energy of the boron atom with respect to the variational parameters Zeff 1 and Zeff 2



Page 8 of 12Shaheen et al. Beni-Suef Univ J Basic Appl Sci           (2024) 13:92 

boron are reported in Table 1, followed by Fig. 2, which 
shows the variation of ground-state energy of boron 
atoms concerning these parameters. Table  2 compares 
the calculated results of B I and Be I atoms of sequences 
V and IV with experimental and previously reported val-
ues. In Tables 3, 4, 5, and 6, various parameters for 2 elec-
trons sequence up to 2 ≤ Z ≤ 20,3 electrons sequence up 
to 3 ≤ Z ≤ 20, 4 electrons sequence up to 4 ≤ Z ≤ 20, and 
5 electrons sequence up to 5 ≤ Z ≤ 20 respectively were 
obtained using the suggested methods and compares 

them to values that were obtained experimentally [39]. 
For 2 electron sequences, only one parameter is involved 
because of single state (1  s) involvement, whereas other 
states are also involved in other sequences. In Fig. 3, the 
energy of different electron sequences concerning the 
variational parameters Zeff 1 and Zeff 2 is plotted, and it 
is observed that energy is affected by the shielding effect 
and atomic radius of the nucleus. Therefore, the differ-
ent cations of the same element have different expected 
energy.

Fig. 3 Energy plotting of two, three, four, and five electron sequences with respect to variational parameters

Table 2 Comparison of the calculated results of ground-state energy of boron and beryllium atoms of sequence V and IV with 
reported experimental and theoretical values

Element Parameter Calculated values Previously reported values Percentage 
of error

B I Calculated ground-state energy 
using effective charge

− 24.64356486 − 24.65807839 (35) 0.06

− 24.5290 (38) 0.46

Be I Calculated ground-state energy 
using effective charge

− 14.69746365 − 14.66721 (36) 0.2

− 14.488 (37) 1.4

− 14.3423 (28) 2.4
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Table 3 Various parameters for 2 electrons sequence up to 2 ≤ Z ≤ 20

Atomic no. Element symbol Zeff1 Ground‑state energy (au) Nist data (au) [35] Percentage 
of error

2 He I 1.70753783 − 2.903307585 − 2.903384126 0.003

3 Li II 2.70753783 − 7.299640081 − 7.279832599 0.3

4 Be III 3.70753783 − 13.68748205 − 13.65658337 0.2

5 B IV 4.70753783 − 22.06683349 − 22.03478841 0.1

6 C V 5.70753783 − 32.4376944 − 32.41595947 0.07

7 N VI 6.70753783 − 44.80006478 − 44.80156628 0.003

8 O VII 7.70753783 − 59.15394463 − 59.19344731 0.07

9 F VIII 8.70753783 − 75.49933395 − 75.59388265 0.1

10 Ne IX 9.70753783 − 93.83623275 − 94.00496995 0.2

11 Na X 10.70753783 − 114.164641 − 114.4313222 0.2

12 Mg XI 11.70753783 − 136.4845587 − 136.8716202 0.3

13 Al XII 12.70753783 − 160.795986 − 161.3337406 0.3

14 Si XIII 13.70753783 − 187.0989226 − 187.8196495 0.4

15 P XIV 14.70753783 − 215.3933688 − 216.333976 0.4

16 S XV 15.70753783 − 245.6793244 − 246.8806655 0.5

17 Cl XVI 16.70753783 − 277.9567895 − 279.4650351 0.5

18 Ar XVII 17.70753783 − 312.2257641 − 314.0922173 0.6

19 K XVIII 18.70753783 − 348.4862481 − 350.7691275 0.6

20 Ca XIX 19.70753783 − 386.7382416 − 389.4955923 0.7

Table 4 Various parameters for 3 electrons sequence up to 3 ≤ Z ≤ 20

Atomic no. Element symbol Zeff1 Zeff2 Ground‑state energy (au) Nist data (au) [35] Percentage 
of error

3 Li I 2.70753783 1.195188665 − 7.477441542 − 7.477974348 0.007

4 Be II 3.70753783 2.277260599 − 14.33296958 − 14.32583078 0.05

5 B III 4.70753783 3.364072635 − 23.47545112 − 23.42871141 0.2

6 C IV 5.70753783 4.455242132 − 34.90830907 − 34.78605097 0.3

7 N V 6.70753783 5.550417749 − 48.63460887 − 48.3989604 0.5

8 O VI 7.70753783 6.649281388 − 64.65710055 − 64.2692191 0.6

9 F VII 8.70753783 7.751547417 − 82.97825949 − 82.39936866 0.7

10 Ne VIII 9.70753783 8.856960472 − 103.6003235 − 102.7916177 0.8

11 Na IX 10.70753783 9.965292645 − 126.5253251 − 125.4508282 0.8

12 Mg X 11.70753783 11.07634052 − 151.7551197 − 150.3765921 0.9

13 Al XI 12.70753783 12.18992233 − 179.291409 − 177.577101 0.9

14 Si XII 13.70753783 13.30587529 − 209.1357612 − 207.0547803 1

15 P XIII 14.70753783 14.4240533 − 241.2896278 − 238.8150321 1

16 S XIV 15.70753783 15.54432481 − 275.7543578 − 272.8622295 1

17 Cl XV 16.70753783 16.66657107 − 312.5312101 − 309.2024731 1

18 Ar XVI 17.70753783 17.79068451 − 351.6213632 − 347.8418263 1

19 K XVII 18.70753783 18.91656741 − 393.0259246 − 388.7877861 1

20 Ca XVIII 19.70753783 20.04413074 − 436.7459377 − 432.0411977 1
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5  Conclusion
In this research, a pattern has been generated using the 
Variational Method [28], which has been applied to 
2 electrons, 3 electrons, 4 electrons, and 5 electrons 
sequences up to Z ≤ 20 to calculate ground energy 
states and effective charges. In this study, the Hamilto-
nian is the energy operator for multi-electron systems, so 

it has additional terms in the Hamiltonian of the hydro-
gen atom. The Hydrogen-like wave functions were 
used as trial wavefunctions in the variational method 
to find a suitable wave function to calculate the effective 
charges of the 1 s and 2 s states for atoms. The ground-
state energies were calculated with the help of effective 
charge values used in the Hamiltonian. The shielding 

Table 5 Various parameters for 4 electrons sequence up to 4 ≤ Z ≤ 20

Atomic no. Element symbol Zeff1 Zeff2 Ground‑state energy (au) Nist data (au) [35] Percentage 
of error

4 Be I 3.70753783 2.014236844 − 14.69746365 − 14.66843312 0.2

5 B II 4.70753783 3.018640441 − 24.3352101 − 24.3531327 0.07

6 C III 5.70753783 4.023250528 − 36.46715156 − 36.54589262 0.2

7 N IV 6.70753783 5.028051552 − 51.09355893 − 51.24605729 0.3

8 O V 7.70753783 6.0330293 − 68.21467607 − 68.45492762 0.4

9 F VI 8.70753783 7.038170886 − 87.83072311 − 88.17500257 0.4

10 Ne VII 9.70753783 8.043464682 − 109.9418995 − 110.4086782 0.4

11 Na VIII 10.70753783 9.048900217 − 134.5483865 − 135.1596992 0.4

12 Mg IX 11.70753783 10.05446807 − 161.6503499 − 162.429701 0.5

13 Al X 12.70753783 11.06015977 − 191.2479417 − 192.227136 0.5

14 Si XI 13.70753783 12.06596766 − 223.3413021 − 224.5574796 0.5

15 P XII 14.70753783 13.07188485 − 257.9305606 − 259.4173511 0.6

16 S XIII 15.70753783 14.07790508 − 295.0158378 − 296.8215236 0.6

17 Cl XIV 16.70753783 15.08402268 − 334.5972457 − 336.7727902 0.6

18 Ar XV 17.70753783 16.09023251 − 376.6748895 − 379.2785005 0.7

19 K XVI 18.70753783 17.09652984 − 421.2488678 − 424.347842 0.7

20 Ca XVII 19.70753783 18.1029104 − 468.3192732 − 471.9822847 0.8

Table 6 Various parameters for 5 electrons sequence up to 5 ≤ Z ≤ 20

Atomic no. Element symbol Zeff1 Zeff2 Ground‑state energy (au) Nist data (au) [35] Percentage 
of error

5 B I 4.70753783 2.55658043 − 24.64356486 − 24.65807839 0.06

6 C II 5.70753783 3.548716852 − 37.40239339 − 37.44195816 0.1

7 N III 6.70753783 4.542696842 − 52.93544274 − 52.98963518 0.1

8 O IV 7.70753783 5.538013099 − 71.24483218 − 71.29981956 0.08

9 F V 8.70753783 6.534311401 − 92.33188266 − 92.37359172 0.04

10 Ne VI 9.70753783 7.531342951 − 116.1974311 − 116.2126421 0.01

11 Na VII 10.70753783 8.528930702 − 142.8420161 − 142.8217445 0.01

12 Mg VIII 11.70753783 9.526946726 − 172.2659892 − 172.2024424 0.04

13 Al IX 12.70753783 10.52529714 − 204.4695822 − 204.3621223 0.05

14 Si X 13.70753783 11.523912 − 239.4529495 − 239.3081342 0.06

15 P XI 14.70753783 12.52273848 − 277.2161939 − 277.0364355 0.06

16 S XII 15.70753783 13.52173612 − 317.7593841 − 317.5628286 0.06

17 Cl XIII 16.70753783 14.52087359 − 361.0825658 − 360.8928257 0.05

18 Ar XIV 17.70753783 15.52012631 − 407.1857688 − 407.0315719 0.04

19 K XV 18.70753783 16.51947484 − 456.0690122 − 455.9889893 0.02

20 Ca XVI 19.70753783 17.51890363 − 507.7323077 − 507.7650781 0.006
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effect contributes to the total energy of the atomic sys-
tem. The calculated ground energies were found to be 
within 1%. Though the errors are small, this occurs due to 
approximation used in the variational principle. Adding 
more variational parameters can minimize the difference 
between experimental and theoretical values.

Acknowledgements
We thank to Professor Dr. Zaheer Uddin for their kind assistance and outstand-
ing efforts.

Author contributions
Kousar Shaheen developed a Python program to carry out this work and 
extracted the results. Saba Javaid worked on conclusions and rechecked the 
equations. Ahmed Ali Rajput set up the introduction and overall layout of the 
manuscript. Roohi Zafar contributed to the discussion of results and enhanced 
its readability.

Funding
There is no funding for this research work.

Availability of data and materials
Data used in this work are available in the respective table and can be 
obtained from NIST website.

Declarations

Ethics approval and consent to participate
There is no ethical issue in this research.

Consent for publication
Not applicable.

Competing interests
There is no conflict of interest among the authors.

Received: 19 May 2024   Accepted: 6 September 2024

References
 1. Parpia FA, Fischer CF, Grant IP (1996) GRASP92: A package for large-

scale relativistic atomic structure calculations. Comput Phys Commun 
94(2–3):249–271

 2. Ynnerman A, Fischer CF (1995) Multiconfigurational-Dirac-Fock calcula-
tion of the 2 s 2 1 S 0–2s2p 3 P 1 spin-forbidden transition for the Be-like 
isoelectronic sequence. Phys Rev A 51(3):2020

 3. BiÉmont E, Frémat Y, Quinet P (1999) Ionization potentials of atoms and 
ions from lithium to tin (Z= 50). At Data Nucl Data Tables 71(1):117–146

 4. Gómez RW (2018) A simple model to calculate total and ionization ener-
gies of any atom. Eur J Phys 40(1):015403

 5. Chen MH, Cheng KT, Johnson WR (1993) Relativistic configuration-
interaction calculations of n= 2 triplet states of heliumlike ions. Phys Rev 
A 47(5):3692

 6. Zhang YZ, Jiao LG, Liu F, Liu AH, Ho YK (2021) Energy levels of ground and 
singly excited states of two-electron atoms in dense quantum plasmas. 
At Data Nucl Data Tables 140:101420

 7. Blundell SA, Johnson WR, Sapirstein J (1990) High-accuracy calculation 
of the 6 s 1/2→ 7 s 1/2 parity-nonconserving transition in atomic cesium 
and implications for the standard model. Phys Rev Lett 65(12):1411

 8. Dzuba VA, Johnson WR (1998) Calculation of the energy levels of barium 
using B splines and a combined configuration-interaction and many-
body-perturbation-theory method. Phys Rev A 57(4):2459

 9. Zheng NW, Zhou T, Wang T, Yang RY, Sun YJ, Wang F, Chen CG (2002) 
Ground-state atomic ionization energies for Z= 2–18 and up to 18 elec-
trons. Phys Rev A 65(5):052510

 10. Andersen T, Haugen HK, Hotop H (1999) Binding energies in atomic 
negative ions: III. J Phys Chem Ref Data 28(6):1511–1533

 11. Hartmann H, Clementi E (1964) Relativistic correction for analytic Hartree-
Fock wave functions. Phys Rev 133(5A):A1295

 12. Lindroth E, Persson H, Salomonson S, Mårtensson-Pendrill AM (1992) Cor-
rections to the beryllium ground-state energy. Phys Rev A 45(3):1493

 13. Eliav E, Kaldor U, Ishikawa Y (1996) Transition energies of barium and 
radium by the relativistic coupled-cluster method. Phys Rev A 53(5):3050

 14. Galperin FM, Amelin II, Yorkin VM (1970) Calculation of the Coulomb 
Integral for Ni Co. Fe physica status solidi (b) 41(2):871–874

 15. Kinoshita T (1959) Ground state of the helium atom II. Phys Rev 115(2):366
 16. Kotchoubey A, Thomas LH (1966) Numerical calculation of the energy 

and wavefunction of the ground state of beryllium. J Chem Phys 
45(9):3342–3349

 17. Bunge CF (1976) Accurate determination of the total electronic energy of 
the Be ground state. Phys Rev A 14(6):1965

 18. Sucher J (1978) Ground-state energy of any atom. J Phys B: At Mol Phys 
11(9):1515

 19. Pearson RG (1981) Semiclassical model for atoms. Proc Natl Acad Sci 
78(7):4002–4005

 20. Kregar, M., & Weisskopf, V. F. (1980). Ionization energies and electron affini-
ties of atoms up to neon (No. CERN-TH-2915).

 21. Crandall R, Whitnell R, Bettega R (1984) Exactly soluble two-electron 
atomic model. Am J Phys 52(5):438–442

 22. Kregar M (1984) The virial and the independent particle models of the 
atom. Phys Scr 29(5):438

 23. Parker GW (1986) Energy levels of inner electrons in atoms. Phys Rev A 
33(2):799

 24. Anno T, Teruya H (1989) Relativistic effect on total energies for determina-
tion of correlation energies of atoms from their experimental total ener-
gies. J Chem Phys 91(8):4738–4744

 25. Davidson ER, Hagstrom SA, Chakravorty SJ, Umar VM, Fischer CF (1991) 
Ground-state correlation energies for two-to ten-electron atomic ions. 
Phys Rev A 44(11):7071

 26. Chakravorty SJ, Gwaltney SR, Davidson ER, Parpia FA, p Fischer, C. F. (1993) 
Ground-state correlation energies for atomic ions with 3 to 18 electrons. 
Phys Rev A 47(5):3649

 27. Rodrigues GC, Indelicato P, Santos JP, Patté P, Parente F (2004) Systematic 
calculation of total atomic energies of ground state configurations. At 
Data Nucl Data Tables 86(2):117–233

 28. Khan KUH, Aslam MI, Naeem M, Siddiqui IA (2021) Analytical estimate of 
effective charge and ground-state energy of beryllium atom utilizing vari-
ational method. Indian J Phys 95:1317–1323

 29. Jiao LG, Zheng RY, Liu A, Montgomery HE Jr, Ho YK (2022) Bound and 
resonance states near the critical charge region in two-electron atoms. 
Phys Rev A 105(5):052806

 30. Chen Y, Zhang L, Wang H, E, W. (2020) Ground state energy functional 
with Hartree-Fock efficiency and chemical accuracy. J Phys Chem A 
124(35):7155–7165

 31. Entwistle MT, Schätzle Z, Erdman PA, Hermann J, Noé F (2023) Electronic 
excited states in deep variational Monte Carlo. Nat Commun 14(1):274

 32. Wang G, França DS, Zhang R, Zhu S, Johnson PD (2023) Quantum 
algorithm for ground state energy estimation using circuit depth with 
exponentially improved dependence on precision. Quantum 7:1167

 33. Cowan, R. D. (1981). The theory of atomic structure and spectra (No. 3). 
Univ of California Press.

 34. Condon EU, Shortley GH (1935) The theory of atomic spectra. Cambridge 
University Press

 35. Condon EU, Odabasi, (1980) Atomic structure. Cambridge University 
Press, Cambridge, p 196

 36. Liboff, L Richard (2003) Introductory quantum mechanics (India: Pearson 
Education) pp. 532.

 37. G Aruldhas (2008) Quantum mechanics (New Delhi: PHI Learning Pvt. 
Ltd.) pp. 332.

 38. Demtroder W (2010) Atoms, molecules, and photons, vol 3. Berlin, 
Springer, p 336

 39. Kramida, A., Ralchenko, Yu., Reader, J. (2023), and NIST ASD Team. (NIST 
Atomic Spectra Database ver. 5.11) https:// physi cs. nist. gov/ asd [2024, 
March 27].

 40 Doma SB, Roston GD, Ahmed MF, Sen KD (2023) Confined ground state of 
beryllium atom and its isoelectronic ions. Acta Phys Pol, A 144(2):63–63

https://physics.nist.gov/asd


Page 12 of 12Shaheen et al. Beni-Suef Univ J Basic Appl Sci           (2024) 13:92 

 41. Wu F, Meng L (2018) Ground-state energy of beryllium atom with param-
eter perturbation method. Chin Phys B 27(9):093101

 42. Nicolaides CA, Beck DR (1973) Variational calculations of correlated wave-
functions and energies for ground, low-lying as well as highly excited 
discrete states in many-electron atoms using a new atomic structure 
theory including electron correlation. J Phys B: At Mol Phys 6(3):535

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Analytical estimate of effective charge and ground-state energies of two to five electron sequences up to atomic number 20 utilizing the variational method
	Abstract 
	Background 
	Result 
	Conclusion 

	1 Background
	2 Methodology
	2.1 Calculation for Boron
	2.2 Expected Unperturbed energy calculation for all electrons
	2.3 Ground-state energy estimation for perturbed system
	2.4 Electron–electron interactions
	2.5 Optimal values

	3 Result
	4 Discussion
	5 Conclusion
	Acknowledgements
	References


