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Abstract

Background: Though downward longwave radiation (DLR) models curb the paucity of data, they are mostly
location dependent. Therefore, there is a need to evaluate their relevance given the increasing use of machine
learning techniques. In this study, cloudless DLR estimates from regression models and soft computing models of
neural networks (NN), support vector regression (SVR) and adaptive neuro-fuzzy inference system (ANFIS) were
compared. Clear days from September 1992 to August 1994 and July 1995 to March 1998 in Ilorin (8.50 °N, 4.55 °E),
Nigeria were considered, while the predictors for the models were water vapour pressure, e and air temperature, T.

Results: A new regression model in relation to the Boltzmann constant, σ: ð1:014ð1:0�1030�e
T13

Þ þ 0:699ÞσT 4, was
better than other regression models and applicable at another location. Between 1 and 8, the sixth degree was the
best polynomial kernel function in SVR models’ estimations of cloudless DLR. Though the new regression model
was comparable to expert systems, ANFIS was still the best model due to its consistent high correlations and
lowest estimation errors.

Conclusions: Experience-based computational procedures that combine enough logics with neural networks
respond effectively to other data. Furthermore, the analytical relationship between water vapour pressure and air
temperature in DLR’s mechanism should be redefined accordingly, while the sixth polynomial should be used as
the default setting in SVR systems.

Keywords: Cloudless downward longwave radiation, Regression models, Neural networks, Support vector
regression, Adaptive neuro-fuzzy inference system
1 Background
Atmospheric radiation in the wavelength region of 4–
100 μm that originates from the sun and often interacts
with atmospheric constituents while travelling to the
earth’s surface is known as downward longwave radi-
ation (DLR) [50, 83, 123]. DLR is part of the energy
budget balance of the earth’s surface, and it is useful for
evapotranspiration, plant water demand, greenhouse ef-
fect, global warming detection, solar thermal and photo-
voltaic applications, meteorology, climate model, ecology,
hydrology, etc. [16, 57, 95, 100, 110, 124, 126].
Because the atmosphere acts like a blackbody, DLR’s

intensity depends on its interaction with the atmosphere.
Longwave radiation from the sun occasionally passes
through the atmospheric window to the ground without
being absorbed, and the atmosphere sometimes
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transmits global solar radiation to longwave radiation.
Hence, the magnitude of DLR is more during the day
than at night. While the outgoing longwave radiation
moves up, DLR moves down in the atmosphere, and
their difference is known as the net longwave radiation.
Atmospheric constituents that interact with DLR include
O2, CO2, O3, H2O, CO, aerosols, etc. DLR also influ-
ences geographic parameters like the land cover, lati-
tude, elevation and longitude [23, 27, 30, 83, 109, 123].
DLR surpasses the upward longwave radiation in the

tropics such that tropical net longwave radiation biases
toward DLR, unlike in the polar and mid-latitudinal re-
gions. The relationship between the equatorial region
and the sun is typical because the sun’s influence is
about the same year-long due to its direct incident rays
and small angular variations. Hence, equatorial solar
radiations are high, and the equatorial atmosphere, soil
and water bodies get quite hot [46, 63]. Furthermore,
the sky at the equatorial zone is mostly cloudy, while the
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tropics act like the heat source of the globe, the polar re-
gions behave like the heat sink. The earth achieves en-
ergy balance through heat flux exchange via air and
ocean current movements between the tropics and the
other regions [47, 92, 98].
Pyrgeometers, the instruments for direct measurement

of DLR require calibration in specialised labs every 6
months to 2 years of use. Sometimes, they react to a dif-
ferent spectrum in the field from the one in the labora-
tory. To eradicate errors triggered by sensor sensitivity
to the heat detained by thermopile sensor plate and
doom, the instruments are still being improved upon.
Additionally, pyrgeometers are costlier than their coun-
terpart, the pyranometers used for measuring global
solar radiation. Though there has been an increase in
meteorological stations, there are few ground measure-
ments of DLR resulting in the scarcity of its data due to
issues with pyrgeometers [55, 67, 96, 97, 114].
Sometimes, models are deployed to alleviate the paucity

of data. There are two major types of models: the trad-
itional method and expert systems. The traditional method,
otherwise known as regression, involves using the least
square routine (or any other parametric approach like
autoregressive representation or robust fitting) to obtain
the empirical coefficient(s) with the mathematical expres-
sion(s) that govern a process [8, 21, 88]. On the other hand,
expert systems deploy crude computational approxima-
tions of nervous system signals for learning, memorising,
recalling and decision-making and other functions, to solve
problems. Though expert systems can resolve challenges
with proper mathematical expressions, their peculiarity lies
in solving problems with no known or competent mathem-
atical procedures. Expert systems are used in different
fields for optimisation, classification, forecasting and
Table 1 Some of the uniquely different cloudless DLR regression m

Authors and year Models

Brunt [17] ð0:605þ 0:048e
1
�
2 ÞσT 4

Efimova [35] (0.746 + 0.0066e)σT4

Swinbank [111] (5.31 × 10−13)T6

Idso and Jackson [49] (1 − 0.261 × exp(−7.77 × 10−

Maykut and Church [69] (0.7855)σT4

Brutsaert [18] 1.24(e/T)1/7σT4

Satterlund [99] 1.08[1 − exp(−eT/2016)]σT4

Idso [48]
0:179½e1

�
7 � expð350=TÞ

Idso [48] [0.70 + 5.95 × 10−5 × e × exp

Prata [89] ½1−ð1þ 46:5 ðe�T ÞÞ � exp

Guest [42] σT4 − 85.6

Iziomon et al .[51] ½1−0:35� expð−10:0� ðeTÞ
Where e is water vapour pressure (mb), T is air temperature (K) and σ is Stefan Bolt
others. Artificial neural networks (or neural networks),
support vector regression, adaptive neuro-fuzzy inference
system and hybrids are common expert systems for model-
ling [22, 41, 44, 58, 91].
Several researchers have used regression to model DLR.

Angstrom [9] was the first to establish an expression for
cloudless DLR in relation to screen-level atmospheric air
temperature and water vapour pressure. Similar models
have been developed by other researchers ([26, 28, 59, 122];
(Table 1)). Additionally, relative humidity and cloud info
can be used for modelling DRL [20, 39, 45].
There are two main types of traditional modelling tech-

niques for DLR: empirical and analytical [56]. While the
empirical technique is based on data distribution, the ana-
lytical technique is based on the theory of the concerned
process. However, it can be noticed that sometimes neither
of the two techniques is independent of each other. The co-
efficients of most DLR models are location-dependent, and
because the constants may require changes, testing before
adopting them at another site is ideal [14, 29, 64, 102, 107].
Moreover, a regression model may have different coeffi-
cients for day and night periods [65].
Previous studies conducted in Ilorin (8.50 °N, 4.55 °E),

Nigeria, modelled DLR with sunshine, vapour pressure,
clearness index, photosynthetically active and global
solar radiations, using data from September 1992 to Au-
gust 1994 [115, 116, 118]. Amid clearness ratio and rela-
tive humidity, the pressure of vapour was the choicest
predictor of all skies’ DLR, and Brunt [17] was shown as
the best cloudless model for the site [115]. However, like
in Abramowitz et al. [2], the new models in Udo [115]
did not illustrate DLR as a function of the effective emis-
sivity of the atmosphere, though useful meteorological
parameters like water vapour pressure and relative
odels considered in this study

Equation no.

2

3

4
4 × (273 − T)2)) σT4 5

6

7

8

�σT 4 9

(1500/T4)]σT4 10

ð−ð1:2þ 3� 46:5� e�
T Þ
1�

2 Þ�σT 4 11

12

Þ�σT 4 13

zmann constant (5.67 × 10−8 Wm−2 K−4)
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moisture were deployed. The clearness index was also
shifted from 0.60 to 0.62 in Udo [115].
Artificial intelligence (AI) is a technological field where

machines imitate human intelligence in areas such as
problem-solving, reasoning, creating, learning, perceiv-
ing, acting, communicating, walking and playing games.
Not all AI can recall or learn from experience; some
function based on already provided knowledge. AI for
data science can be segmented into machine learning
and deep learning. Machine learning infers a compu-
terised system that learns and improves based on experi-
ence. Its major advantage is its ability to detect hidden
relationships and patterns in data. Deep learning refers
to computerised systems that process information from
one stage (input) to another (output) and may include
an in-between stage (hidden layer(s)), though it is also
experience-based. In data science, terminologies like ex-
pert systems and soft computing are often used to refer
to broad AI techniques associated with the workings of
the neurons. The common learning frames for expert
systems are supervised and unsupervised. In supervised
learning, the system learns the hidden information in
the data from the provided inputs and outputs. However,
in unsupervised learning, the outputs are not given, but
the directives that enable the system to produce the de-
sired output are spelt out. Soft computing techniques
are broad and include case-based reasoning, neural net-
works, rule-based systems, genetic algorithms, swarm
intelligence, etc. [22, 44, 121].
Expert systems like neural networks (NN) are reputed

for better performance than traditional models [41, 72].
To this end, NN has been used to model global solar ra-
diation to meet the data needs of thermal and photovol-
taic applications [32, 37, 77, 103, 119]. Compared with
traditional methods, NN often deploys more atmos-
pheric parameter inputs [75, 93]. Thus, the yardstick for
comparing both modelling techniques is not levelled
since a sufficient number of input parameters can im-
prove certain regression models [6]. NN has also been
used for computing DLR in climate models and retriev-
ing data from satellite images [24, 25, 61, 76, 79], but
rarely for estimating ground-based DLR from air
temperature and water vapour pressure. Besides, Soares
et al. [106] found DLR as an effective predictor in the
NN estimation of diffuse solar radiation in a city in
Brazil. Additionally, NN has been used to correct for
dome heating of a pyrgeometer [86].
Seemingly, the state of the art for estimating global

solar radiation is the use of expert systems such as
neural networks, support vector regression (SVR) and
adaptive neuro-fuzzy inference system (ANFIS), includ-
ing hybrids [4, 68, 73, 91]. Depending on the applied
technique, any of them can perform better than the
others. For instance, SVR-polynomial or SVR-radial
basic function was preferred over ANFIS and its hybrids
in two separate studies [85, 94], as model parameters of
the SVRs were identified, selected and aligned. In con-
trast to Olatomiwa et al. [85], the statistical indicators
for both the training and testing phases of ANFIS and
its hybrids are all close in Halabi et al. [43].
This study aims at modelling cloudless DLR in Ilorin,

Nigeria, using air temperature and water vapour pres-
sure by means of regression and soft computing tech-
niques. A larger data set spanning about 5 years will be
used. Furthermore, the exact value of 0.60 for clear skies
would be used for the clearness index. To the best of
our knowledge, this is the first study to compare a newly
developed and other regression models with three expert
systems of neural networks, support vector regression
and adaptive neuro-fuzzy inference system in the model-
ling of cloudless DLR.

1.1 Methods
1.1.1 Data
In this study, ground-based cloudless DLR was modelled
for the city of Ilorin (8.50 °N, 4.55 °E), Nigeria, using
screen-level water vapour pressure and air temperature.
Ilorin is one of the 52 Baseline Surface Radiation Network
(BSRN) stations that measure atmospheric parameters like
DLR [60, 70]. It should be noted that BSRN stations main-
tain high standards for measuring data, and the informa-
tion on the instrumentation, geography and seasons of
Ilorin have been previously reported [71, 114–118].
The periods considered in this work were from Sep-

tember 1992 to August 1994 and July 1995 to March
1998. Air temperature and water vapour pressure data
from September 1992 to August 1994 were obtained
from the Nigerian Meteorological Agency (NIMET)
[115] because they were not measured at the BSRN sta-
tion at the University of Ilorin, Nigeria. However, air
temperature was measured at the station from July 1995
to March 1998, and alone with DLR, their readings were
obtained from BSRN at https://www.pangaea.de/PHP/
BSRN_Status.php. All water vapour pressure data were
sourced from NIMET. While NIMET data were mea-
sured in a 3-hour interval, data from BSRN were taken
every 3 or 2 min and were all reduced to daily values.
Additionally, the BSRN station at the University of Ilorin

operated from 1992 to 2005 and could not be sustained
due to lack of funds. Ilorin is in the central region of
Nigeria and the city has three recognised seasons: dry,
rainy and Harmattan. Measurement of DLR at the Physics
Department, University of Ilorin, was done with an Eppley
PIR 20468F3 pyrgeometer calibrated by the World Radi-
ation Centre, Devon (WMRC), with calibration number
38002. The pyrgeometer was initially conditioned in 1980
by Newport, Eppley Lab, USA [117]. Furthermore, data
obtained from NIMET were measured at the airport

https://www.pangaea.de/PHP/BSRN_Status.php
https://www.pangaea.de/PHP/BSRN_Status.php
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situated about 12 km from the site of the radiation meas-
urement in the university. According to NIMET, water
vapour pressure was measured with a barometer, and the
values were reduced to mean sea level. Furthermore, a dry
bulb thermometer was used to measure temperature.

1.1.2 Regression modelling
To eliminate the contributions of the cloud to DLR, the
adopted criterion for clear skies as dictated by the clear-
ness index, KT is given as:

KT ¼ H
Ho

≥0:60 ð1Þ

where H is the daily global solar irradiation (J/m2), and
Ho is the daily extraterrestrial solar irradiation intercepted
by a plane parallel to the earth’s surface (J/m2) [11].
Data sieved through Eq. (1) were further divided into a

training (or experimental) set and a testing set because
some modelling methods like the expert systems have
the tendency to overfit. The suitability of some uniquely
different clear skies models (Eqs. (2–13) in Table 1) was
evaluated, and a new model was developed using the ex-
perimental data. Except for models with water vapour
pressure and ambient predictors, those with predictors
like humidity, dew point temperature, total column
water vapour, periodic correction factor or cleanness in-
dicator, as well as cloudy and all skies models were not
considered in this study [2, 20, 31].
The processes for obtaining the new cloudless model

are outlined below:
From the general expression for DLR, given as:

DLR ¼ FεmσT 4 ð14Þ
where F is the cloud cover and equals to 1 for clear
skies, T is air temperature, σ is the Boltzmann constant
and εm is the effective emissivity of the atmosphere [51,
102]. In situations where F = 1, Eq. (14) reduces to:

DLR ¼ εmσT
4 ð15Þ

The expression for the effective atmospheric emissivity
becomes:

εm ¼ DLR

σT 4 ð16Þ

To model the radiation using the empirical technique,
the emissivity ɛ and an independent factor were consid-
ered in the form of y = mx + c, in which y is the
dependent variable (effective emissivity of the atmos-
phere), x is the independent variable while m and c are
regression coefficients. So a fitting relationship between
the effective emissivity of the atmosphere and the inde-

pendent variable ð e j
TkÞ (where e is water vapour pressure,

j and k are constants) was sought in developing the new
model for the radiation. The new model was tested in
Spain to ascertain its adequacy.
1.1.3 Neural networks
While the Von Neumann machines perform tasks via
complex sequential processors linking commands from
one stage to another, neural networks (NN) perform
tasks via parallel connectivity of simple processors. Thus,
NN are not only faster but also tolerant of errors since a
malfunction in one unit does not halt the whole system
as in Von Neumann computers. Neural networks require
a small amount of power to operate and improve by learn-
ing from experience. Because NN are practically black
boxes, there is no need to investigate the inherent rela-
tionship between one variable and another (which could
be relatively difficult), when modelling with it [40, 52].
In this section, for a neuron x with n inputs, the

output y(x) is:

y xð Þ ¼ F
Xn

i¼1
wixi þ b ð17Þ

where b is the bias or threshold term, i is an input unit,
xi is an input value, wi is the weight for all xi and F is
the nonlinear activation function, which can be typically
sigmol, hard limit or linear.
Diverse training rules, specific topology, learning rules

and other factors such as several neurons, error function,
momentum factor, the rate of iteration, and layer and
performance parameters in the algorithms combine to
enable neural networks to function as they do. There are
some NN schemes that are suitable for various applica-
tions. However, the feed forward neural network scheme
was used in this study [66, 101]. The scheme where in-
formation flows through weighted connections only in
the forward direction has three stages: the input, hidden
layer(s) and output (Fig. 1). Each stage has layers that
comprise a certain number of biological neurons or
units, and all layers in each stage have individual con-
nections to the previous layer.
The soft computing models in this study were imple-

mented in MATLAB 2016a. The NN model consists of
two input variables (water vapour pressure and air
temperature), 10 neurons in the hidden layer and one
output variable (DLR). Furthermore, the actualization of
the NN model was done by separating 15% of the ex-
perimental data for testing, another 15% for validating
and the remaining 70% for training. Finally, the viability
of every model including NN was furthered examined
with the data of the testing set.

1.1.4 Support vector regression
The study to support vector machine (SVM) began
in the early 1960s by Vapnik and groups. It is also
regarded as the Vapnik-Chenonenkis (VC) theory



Fig. 1 The structure of the ANN system used in this study
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[12, 105, 120]. There are two categories of support
vector machine: the support vector classification
(SVC), which is used to solve classification problems,
and the support vector regression (SVR), which is
used in tackling estimation issues. A support vector
machine is primarily a classier regression method
that performs the required task of constructing hy-
perplanes in a multidimensional space with different
class labels [105, 120]. Though there are slight dif-
ferences between SVC and SVR problem formula-
tions, the neural algorithms of SVR provide the best
fit solution for the linear regression function of
either linear or nonlinear hyperplanes. A typical
structure for SVR is given in Fig. 2, where the bias-
sing is before the final stage.
Fig. 2 Architecture of the SVR system
In this section, to construct the optimal hyperplanes, a
repeatable training algorithm, which minimises an error
function, is used. Assuming there is a given set of input
training data {(xi, yi),…, (xn, yn)}, ⊂ X ∈ ℝd, where X is the
space of the input patterns like X =ℝd. The goal is to
find a flat linear function that has the most deviation
from the targets data yi for all possibly flat training data.
If the error function is given as:

1
2
wTwþ C

XN

i¼1
ξ i þ C

XN

i¼1
ξ�i ð18Þ

where wTw is the norm value, ξi and ξ�i are the slack var-
iables, C is a constant for regularisation and N is the
number of samples.
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Then, we minimise subject to:

wTϕ xið Þ þ b−yi≤εþ ξ�i
yi−w

Tϕ xið Þ−bi≤εþ ξ�i
ξ i; ξ

�
i ≥0; i ¼ 1;…;N

ð19Þ

where b and bi are the biases, ɛ is the insensitive loss
function or deviation and ϕ is the nonlinear map for the
transformation from feature to space.
In a situation where the optimisation problem in the

expression above is not feasible, a constraint v is intro-
duced to overcome over-fitting such that the new error
function becomes:

1
2
wTw−C υεþ 1

N

XN

i¼N
ξ i þ ξ�i
� �� �

ð20Þ

which we also minimise subject to:

wTϕ xið Þ þ b
� �

−yi≤εþ ξ i
yi− wTϕ xið Þ þ bi
� �

−yi≤εþ ξ�i
ξ i; ξ

�
i ≥0; i ¼ 1;…;N ; ε≥0

ð21Þ

SVM separates the unseen data using the construction
of the hyperplanes after the identification of the two
support vectors in regression problems. However, the
procedures for meeting the set target ultimately create
fairly large separations between points in feature space.
If a method of computing the intramural outcome in a
feature space is obtainable directly as a purpose to the
initial input points, building a nonlinear learning ma-
chine to reduce the large space expansion of the error
function can be done. It is accomplished by the compu-
tation of a kernel function denoted by K. For regression
problems, there are some methods that engage nonlinear
kernels and proceed to minimisation stages.
There are several kernel functions [105], and one of

them is the Laplacian radial basis function or a radial
basis function (rbf), which is given as:

K x; xið Þ ¼ exp −
1
σ2

x−x2i

� �
ð22Þ

In the cases of kernel functions, x and xi are vectors in
the input space, i.e. attribute vectors that are computed
from instructions, and sigma is the adjustment param-
eter of the slope in rbf. Another kernel function is the
polynomial which is denoted by:

K x; yð Þ ¼ xTyþ c
� �d ð23Þ

where x and y are the input vectors, c is an optional
constant obtained during training, d represents the
degree of the polynomial kernel function and T indi-
cates the linearly transformed vector in the general-
ised dot product.
Apart from the radial basis function and polynomial,
there are two other kernel functions, namely linear and
Gaussian, which are also supported in MATLAB. The
linear kernel function is given by the product of the two
vectors x and y as:

K x; yð Þ ¼ xTyþ c ð24Þ

Lastly, the Gaussian kernel function, which is a type of
the radial basis function kernel is given as:

K x; yð Þ ¼ exp −
x−yk k2
2σ2

 !
ð25Þ

In this study, the described four kernel functions
were applied using the MATLAB computing platform.
While the standards and kernel scale were set to true
and auto, respectively, in the SVR system, the other
parameters were left at default settings. Additionally,
the ideal integer (degree) of the polynomial kernel
function for the estimation of cloudless DLR was
investigated.

1.1.5 Adaptive neuro-fuzzy inference system (ANFIS)
The adaptive neuro-fuzzy inference system (ANFIS)
is a combination system that integrates the features
of both fuzzy logic (FL) and NN systems [53, 54,
62]. A fuzzy logic system can handle both linguistic
and numerically based knowledge, and it is generally
considered as the nonlinear mapping scalar output
data of an input (feature) data vector. FL is vast be-
cause there are numerous possibilities which lead to
the formation of various mappings.
The structure of FL consists of a knowledge-based

system that contains function definitions and the essential
‘if-then’ rules. These rules can be extracted from the
numerical data or might be pre-provided. Crisp numbers
are mapped into fuzzy sets by the fuzzifier. It is required
to activate rules, which are based on linguistic variables
and have an association with the fuzzy sets. Fuzzy sets
help represent symbolic knowledge information in a more
understandable, humane or natural form and can hold
uncertainties at numerous levels. To manipulate a system
based on fuzzy rules, the derivation of the essential if-then
fuzzy rules, the dividing of the universes and acknow-
ledgement of the membership functions are required.
Linguistic variables are used and incorporated in fuzzy

rule-based systems to insert rationale, with the help of a
series of logical rules containing if-then, which connect
antecedent(s) and consequent(s), respectively. A fuzzy
clause with a membership between 0 and 1 is an ante-
cedent. Fuzzy rules can be in connection with operators
which can act as multiple antecedents. This is done such
that all its constituting parts are considered simultaneously
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and resolved in a single number. On the other hand,
consequents may also comprise multiple parts, which can
be aggregated later in the form of a single output of a
fuzzy set.
Systems, which are accurate and rule-based, offer a

high number of advantages. For example, they can
see the fine line of difference between accurate and
over-general rules: the latter will always have a lesser
accuracy considering that the payoff is supposed to
vary in relation with the inputs covered by the rule
at large. Indeed, an approach based on accuracy can
certainly lead to the evolution of the optimally gen-
eral rules. In addition to this, it maintains a consistently
correct and a consistently incorrect rule simultaneously,
allowing the learning of a complete ‘covering map’ to
process. However, with many rules, antecedents and con-
sequents, the whole mapping process in FL is relatively
slow and requires a boost.
The low computational deficiency of FL is compen-

sated for by neural networks, and on the other hand, the
reasoning ability of FL compensates the backpropagation
fast learning schemes of NN [4, 53, 62, 68]. More infor-
mation on the fundamentals and applications of ANFIS
abound in specialised publications [1, 19].
In this section, assuming the fuzzy interference system

has two crispy inputs of x and y, an output of z to be
fuzzified with the fuzzy set: A1, A2, B1 and B2; then, the
first-order Takagi-Sugeno system of if-then rules can be
given as follows:

Rule 1 : if x is A1and y is B1then f 1 ¼ p1xþ q1yþ r1
Rule 2; if x is A2and y is B2then f 2 ¼ p2xþ q2yþ r2

ð26Þ
Fig. 3 ANFIS structure consisting of the five stages
where f1 and f2 are the respective outputs associated with
the fuzzy sets, p1, p2, q1, q2, r1 and r2 are design parame-
ters that are determined during training.
ANFIS modelling is in five layers (Fig. 3). The first

layer is the fuzzification unit where the crispy inputs x
and y are added to each node i which is associated with
respective linguistic marker Ai or Bi-2, such that the
membership function Oi, j estimates the membership
grade of the given input as:

O1;i ¼ μAi
xð Þ; for i ¼ 1; 2

O2;i ¼ μBi−2
yð Þ; for i ¼ 3; 4 ð27Þ

The linguistic markers Ais and Bis can be designated
as high (H1), medium (M1) and low (L1) and correspond-
ing H2, M2 and L2, respectively. The mean of all mem-
bership functions is given by the Gaussian membership
function as:

μGuassian xð Þ ¼ exp
1
2

x−c
σ

� �2� �
ð28Þ

The parameters c and σ are adaptive and determine
the degree of slope of the membership function.
The second layer is the membership unit, which deter-

mines the firing strength of a rule, by applying the prod-
uct or the addition of the input variables with the
membership functions that are incoming signals from
the first layer. The function wi is the firing strength of
the rule.

wi ¼ μAi
xð Þ � μBi−2

yð Þ; for i ¼ 1; 2 ð29Þ
The next layer, which is the third, is where all nodes

are fixed, and it is the portion that calculates the
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ration of the firing strength of the rule of the ith node
to the sum of the firing strength of all rules and of all
nodes. The third layer is otherwise regarded as the
normalised layer.

O3;i ¼ wi

w1 þ w2
for i ¼ 1:2 ð30Þ

The fourth layer, also known as the de-fuzzy layer,
takes the product of:

O4;i ¼ wi f i ¼ wi pixþ qiyþ r1ð Þ for i ¼ 1; 2 ð31Þ
The fifth layer is the output layer that takes the sum of

the outputs from the previous layer as:

O5;i ¼
X

wi f i ¼ f out ð32Þ

By default, the input to output match was used with
three languages of high, medium and low for each input.
Hence (3 243) rules were created in the training phase
and embedded into the back propagation neural network
scheme of ANFIS.

1.2 Statistical indicators
The statistical measures used in this study for examining
the extent of the appropriateness of the models are the
correlation coefficient, r and the t test, ts. They are
expressed in the equations below:

r ¼ n
P

VcVmð Þ− PVcð Þ PVmð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

Vc
2−
P

Vcð Þ2
 �
n
P

Vm
2−
P

Vmð Þ2
 �q
ð33Þ

and
Fig. 4 Monthly distribution of clear days in Ilorin, Nigeria
ts ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n−1ð ÞMBE2

RMSE2−MBE2
� �

s
ð34Þ

Furthermore,

MBE ¼
P

VC−Vmð Þ
n

ð35Þ

and,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Vc− Vmð Þ2
n

s
ð36Þ

where n is the total number of observations, MBE is the
mean bias error, VC is the calculated value from the
model, Vm is the measured value, and RMSE is the root-
mean-square error.
It was desired that the magnitude of the correlation co-

efficient, r, either positive or negative, should be within
the highest range of 0.90–1.00 and that statistical signifi-
cance of the considered model estimates was attained. A
given model’s estimates are statistically significant if
its t test is lower than the critical t (or tα/2) at a se-
lected (1 − α) % confidence level (or α level of signifi-
cance) and (n − 1) degrees of freedom. The value of
the critical t at an α level of significance and corre-
sponding degrees of freedom in two tails is obtainable
from statistical tables [13, 108]. In this study, alpha
was chosen as 5 and from the statistical table, two
tails critical t values for many observations above 30
range from 2.02 to 1.96.

2 Results
A few days were cloudless at Ilorin (Fig. 4) during the
period considered in this study due to the heavy
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cloudiness associated with the equatorial regions. Out of
1735 days from two separate periods of measurements,
205 days were clear, representing a meagre 12% that is:
205
1735 x 100. Cloudiness seemed linked or inversely propor-
tional to rainfall (Figs. 4 and 5). For example, August with
the lowest number of clear days precedes September—the
month with the highest rainfall. Furthermore, the monthly
distribution of clear days seems to be high during the first
part of the year when rainfall is low and small during the
second part of the year when rainfall is high (Figs. 4 and
5). Furthermore, there seemed to be a remarkable connec-
tion between the beginning of a season and cloudiness.
For instance, April had the highest number of clear days,
yet the month of April may be regarded as the beginning
of the rainy season. Similarly, November, which is the be-
ginning of the dry season, also had a reasonably high
number of clear days (Fig. 5). Therefore, there appeared to
be a ‘season-change’ effect on clear days as well.
From Table 2, the ideal relationship between the effective

emissivity of the atmosphere and both atmospheric air
temperature and pressure of vapour is εm∝ e

T , which is like

εm∝ð eTÞ
1
7 of Brutsaert [18]. After several attempts, the best fit

for the effective emissivity of the atmosphere was found to
be εm ∝ð e

T13Þ, and the newly developed clear skies model was:

DLR ¼ 1:014
1:0� 1030 � e

T 13

� �
þ 0:699

� �
σT 4 ð37Þ

The results estimating cloudless DLR from both regres-
sion and soft computing methods are in Tables 3, 4 and 5.
Generally, the performance of all models at the training
phase (which also has a greater number of observations)
was better than the testing phase (Tables 3, 4 and 5). And
the correlation coefficient was often low for any model
that its effective emissivity of the atmosphere can be rep-
resented by a constant or is not linked to water vapour
pressure (Eqs. (16), (17), (18) and (24)). Seemingly, models
with both the water vapour pressure and air temperature
variables were better than those with only one variable,
though no model correlated up to 90%. Despite the poor
Fig. 5 Monthly amount of rainfall distribution in Ilorin, Nigeria
correlations of Swinbank [111], the regression model was
always statistically significant, which is an indication that
the high power of temperature somewhat replicates the
ideal situation. The new model was the most impressive
regression model in Table 3 because, in addition to the
highest correlation coefficients, its estimates were also sta-
tistically significant.
Furthermore, the investigation of the most suitable de-

gree of the polynomial kernel function (poly) for esti-
mating cloudless DLR on Table 5 reveals that the sixth
was the best. Afterwards, the performance reduced such
that beyond the eighth degree, the results became un-
desirable (Table 5). Contrastingly, Table 4 reveals that at
default settings, the Gaussian kernel function SVR was
better than the other three kernel functions (Table 4).
Maybe the performance of the new model could have

been better if it were globalised given the level of its suc-
cess in estimating cloudless DLR in a temperate climate.
The new regression model was applied on the data in
Jimenez et al. [56], and the statistical measure results at
Barcelona, Spain, were: r = 0.9264, MBE = 16.9133,
RMSE = 22.5964 and (for n = 40) ts = 7.1386. At 95%
confidence level, the critical t value from the statistical
table is approximately 2.02, and because the calculated t
test is not lower than the critical value, it is accepted
that the new model does not estimate cloudless DLR in
Spain with statistical significance. Irrespective of the
attained highest correlation level, the new model overes-
timated clear skies DLR at Barcelona with large error
values. Furthermore, despite the new model not having a
correlation of up to 90% at the location it was derived, it
did at Barcelona, which indicates its wide applicability
(though the coefficients may have to be localised for a
better fit).
Comparison between the new regression model and

the soft computing models (last model on Table 3 and
all on Table 4) reveals that the former is as good as the
latter. Moreover, most SVR models have deviation errors
(MBE) greater than our regression model, though ANFIS
has the lowest MBE values of any model. The implica-
tions of the low errors of ANFIS include being stream-
lined with the training data and the ability to impress



Table 2 Correlation between the emissivity of the atmosphere
and both water vapour pressure, e, and temperature, T, from
September 1992 to August 1994

Atmospheric parameter r Standard error

log(eT2), ln(eT2) 0.8722 0.0206

eT2 0.8872 0.0194

ln(e½T2) 0.8480 0.0223

log(eT) 0.8758 0.0203

eT 0.8914 0.0190

e½T2 0.8741 0.0223

e½T 0.8823 0.0197

T 0.0240 0.0420

e/T 0.8990 0.0185

e 0.8954 0.0187
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with data not originally exposed to it. Furthermore,
comparing the training phase to the testing phase, there
is a distinguished higher variation in the performance of
the expert systems than the regression models. For in-
stance, if the correlation coefficient value of a regression
model, say Eq. (A) is higher than another regression
model, say Eq. (B) at training, it follows the same order
at testing (Table 3), but that is not always the case with
expert systems (Tables 4 and 5). Notably, the correlation
coefficient is higher for NN than ANFIS during the
training phase, but the reverse is the case during the
testing phase (Table 4).

3 Discussion
Apart from the hefty cloudiness of the wet season, which
is associated with a high concentration of water vapour,
another factor that influences clearness of the sky is the
Table 3 Statistical results for regression models’ estimations of cloud

Model Training phase (n = 143)

r RMSE MBE

Brunt [17] 0.7985 13.2107 − 4.4736

Efimova [35] 0.8086 28.0357 25.1381

Swinbank [111] 0.2981 20.6139 1.2239

Idso and Jackson [49] 0.2986 21.4172 5.4152

Maykut and Church [69] 0.2994 35.5477 − 25.8874

Brutsaert [18] 0.8047 13.7358 5.5704

Satterlund [99] 0.2998 23.8285 12.8603

Idso [48] 0.3013 41.4920 36.3682

Idso [48] 0.8260 30.0430 26.9126

Prata [89] 0.7983 13.1831 4.3305

Guest [42] 0.2994 23.6458 − 12.6583

Iziomon et al. [51] 0.8066 12.9193 − 3.9510

Present model 0.8275 11.5847 0.2412

Where n is the total number of observations
Harmattan period that occurs between November and
February. Heavy aerosols (dust-laden) and poor visibility
accompany the hot Harmattan spell [3, 10]. Thus, the
number of cloudless days is also low during the Harmat-
tan season—say December and January like at some
period of the rainy season (Figs. 4 and 5). Because of the
distinctive seasonal clouds in this region, estimating
DLR and climate modelling are difficult [74].
Given the influence of change in season on the

clarity of the atmosphere, the strength and direction
of the winds that induce change from one season to
another, in turn, affect clear days at the site. The
strength of the wind is strongest in April and weak-
est in November, and those 2 months have the high-
est clear days. While the moist south-westerly wind
dominates during the rainy season, the dry north-
easterly wind controls the dry season, and the begin-
ning of the dominance of both winds in April and
November corresponds with low atmospheric cloud
cover [83, 84, 87].
The formation of matter, from elementary particles

to light elements like hydrogen, helium and lithium
and by extension the origin of atmospheric gases like
H2O and CO2 that impact on DLR can be traced to
the beginning of the universe. According to the Big
Bang Theory, the initial temperature of the universe
was infinite nearly 14 billion years ago. Then the
universe was a small, extremely dense entity
regarded as the ylem or cosmic egg. The ylem in-
ferred a single instance when time and space coex-
isted (singularity). Time began with the explosion of
the cosmic egg, leading to different eras. Tempera-
tures were approximately: 1032 K at the Planck Era
(0 s ≤ time ≥ 10−43 s), 1027 K at the Grand
less DLR and the statistically significant models are in italics

Testing phase (n = 62)

ts r RMSE MBE ts

4.2887 0.7330 13.5892 − 4.1961 2.5356

20.1708 0.7496 28.6559 25.5969 15.5186

0.7088 0.1184 21.0120 1.3252 0.4935

3.1251 0.1183 21.9029 5.5732 2.0550

12.6628 0.1182 32.6729 − 26.2765 10.5688

5.3054 0.7374 14.4938 5.9371 3.5071

7.6663 0.1181 23.8656 12.7461 4.9339

21.7740 0.1179 40.3991 36.2112 14.0946

24.1021 0.7749 30.7321 27.4740 15.5819

4.1589 0.7316 13.7783 4.6229 2.7818

7.5292 0.1182 23.7629 − 12.8264 5.0079

2.8919 0.7431 13.3529 − 3.6223 2.8919

0.2490 0.7785 11.8883 0.3393 0.2230



Table 4 Statistical results for soft computing in the estimations of cloudless DLR and the statistically significant models are in italics

Model Training phase (n = 143) Testing phase (n = 62)

r RMSE MBE ts r RMSE MBE ts

NN 0.8390 11.3324 − 0.77E− 3 8.19E− 3 0.7556 12.3934 0.2565 0.1234

SVR-Gaussian 0.8501 10.9932 1.6664 1.3802 0.7723 12.2118 1.9511 1.4567

SVR-linear 0.8240 11.7666 1.3100 1.0083 0.7730 12.1311 1.2671 0.9452

SVR-polynomial (default) 0.8327 11.6289 1.9928 1.5655 0.7727 12.3041 1.9035 1.4093

SVR-radial basic function 0.8494 11.0089 1.6366 1.3530 0.7726 12.1926 1.8838 1.4074

ANFIS 0.8359 11.3225 2.38E− 5 2.51E− 5 0.7932 11.5494 0.1825 0.1617

Where n is the total number of observations
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Unification Era (10–43 s ≤ time ≥ 10–36 s), 1027 K at
the Electroweak Era (10–36 s ≤ time ≥ 10–33 s), 1015–1012

K at the Particle Era (10–12 s ≤ time ≥ 10–4 s), 109–107 K
at the Era of Nucleosynthesis (3min ≤ time ≥ 20 min),
105 K at the Era of Nuclei (3min ≤ time ≥ 20min), 3000 K
at the Era of Atoms (time about 380,000 years ago) and
30 K during the Era of Galaxies (time about 500 million
years ago). This present era is regarded as the Era of the
Solar System, and its temperature is around 3 K.
Furthermore, the Particle Era can be divided into the

first period of formation of quarks (10−12 s) when the
temperature was about 1015 K; secondly, the period of for-
mation of heavy particles when it was roughly 1014 K; and
lastly, the era of light particle formation when temperature
was approximately 1012 K. Though there are other theor-
ies on the beginning of the universe (e.g. steady state the-
ory), the Big Bang Theory predicts the universal existence
of background radiation at 3 K, and its verification had
put to rest contradictory theories [38, 112, 113, 128]. Ac-
cordingly, the good fit of DLR to the high inverse power
of temperature could be linked to the Particle Era in the
Big Bang Theory when the temperature of the universe
Table 5 Statistical results for each degree of polynomial kernel func
significant models are in italics

Degree Training phase (n = 143)

r RMSE MBE ts

1 0.8238 11.7369 1.3666 1.095

2 0.8307 11.6079 1.7796 1.396

3 0.8328 11.5971 2.0420 1.609

4 0.8322 11.5120 1.3902 1.094

5 0.8407 11.2633 1.5587 1.257

6 0.8515 10.8724 1.3523 1.128

7 0.7682 13.3322 − 2.0421 1.395

8 0.7929 12.5475 − 0.0403 0.028

9 − 0.2772 102.237 − 27.5245 2.515

10 0.0539 1333.76 − 1230.32 21.50

11 0.2260 182.977 − 177.028 34.42

Where n is the total number of observations
was around 1012 to 1015 K. That could imply that gases
and other particles continue to exist by remaining in in-
verse equilibrium with their formation temperatures.
Perhaps, the mechanism of DLR should be under-

stood from the angle of electromagnetic radiation
interaction with matter, which produces diverse phe-
nomena such as the photoelectric effect, Compton
scattering and pair annihilation [15, 36]. Like the di-
electric heating technology that raises the heat of
food in a microwave oven, the interaction between
moving gases and solar radiation in the air possibly
results in high subatomic temperatures of atmos-
pheric gases [5, 90]. However, it is not known if
dielectric heating of particles not rotating in the
atmosphere can lead to a temperature of this
magnitude.
Since most of the models for DLR are location-

dependent, it is not surprising that the others do not
fit Ilorin well, as ours do not elsewhere. There are
many variations in the composition of the global at-
mosphere, and its nature, whether dominated by
water vapour or other gases like aerosols, to a large
tion of SVR in estimation of cloudless DLR and the statistically

Testing phase (n = 62)

r RMSE MBE ts

1 0.7738 12.1464 1.3254 0.9880

3 0.7872 11.8693 1.9158 1.4720

9 0.7727 12.3154 1.9494 1.4428

9 0.7711 12.1809 1.6670 1.2434

6 0.7621 12.5872 2.0242 1.4664

2 0.7728 12.1841 0.9570 0.7091

0 0.5689 23.4873 − 4.3354 1.6903

1 0.3595 57.8330 − 8.9456 1.4091

9 0.1523 122.967 − 62.3317 5.2624

06 0.0319 1256.93 − 1216.31 34.5369

77 0.3211 185.898 − 181.001 38.4313
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extent influences DLR [125]. Some researchers like
AL-Lami et al. [7], Duarte et al. [34] and Lhomme
et al. [64] developed their models by imitating Brut-
saert [18] (Eq. 19), in which the effective emissivity
of the atmosphere, εm takes the form of:

εm ¼ A e=Tð ÞB ð38Þ

where A and B are constants. Analytically and empiric-
ally, depending on the unit of water vapour pressure, the

values of B range between 1
.
6
and 1

.
10

.

The derivation and explanation in Brutsaert [18] do
not tally with ours because air temperature powers are
significantly distinct, though both models divide water
vapour pressure by air temperature in the expressions
for the effective emissivity of the atmosphere. To the
best of our knowledge, our study is the first to propose
the present formula (Eq. (38)), where the inverse of
temperature is to the power 13. The robustness of our
model signifies that there may be gaps in our previous
understanding of DLR processes in the atmosphere par-
ticularly at the equatorial region. With regards to using
screen-level water vapour pressure and ambient condi-
tions as predictors in clear skies DLR models, to the best
of our knowledge again, ignoring the studies where older
models were improved upon, until now the latest devel-
oped concepts were those of Guest [42] and Iziomon
et al. [51] (Eqs. (22) and (23)). Some authors found that
previously developed clear skies models were adequate;
hence, there was no need to advance other concepts,
while in some cases, their new models developed are
similar to existing models [33, 104]. For instance,
Niemelӓ et al. [78] came up with two comparable cloud-
less models for two boundary conditions of water vapour
pressure; nonetheless, the models are similar to Eq. (15)
[35] because each model’s effective emissivity of the
atmosphere is directly proportional to water vapour
pressure, with varying coefficients but same power of e.
It is noteworthy to mention that unlike the clear skies
DLR models, there are recent cloudy and all skies
models for the radiation [2, 104, 127].
Efforts in the past [81, 82] revealed no significant concept

about DLR like this present work. Contrary to the black
box technique of the expert systems, regression models
reveal the relationship between predictor(s) and the estima-
tor. Although not shown, the correlation between the
effective emissivity of the atmosphere, εm and ð e

T 13Þ was

slightly higher than those of εm with ð e2

T11Þ and ð
ffiffi
e

p
T 15Þ . Since

the power of temperature inversely depends on that of
water vapour pressure, it is also likely that the absence of
other gases in the model influences the power of the air
temperature.
Ignoring other influences, H2O, CO2 and O3 are the
major gases that control the thermal radiation of the at-
mosphere [49], and unfortunately only the state of H2O,
which is the most important gas, is accounted for in
most analytical and empirical regression expressions of
DLR. Theoretical inferences are meaningful when
backed by experiments; likewise, observational results
should have theoretical bases, and both views support
that data on atmospheric water vapour and air
temperature are ideal for modelling DLR. Hence, water
vapour and air temperature profiles in the atmosphere
have been studied in both the theoretical and experi-
mental viewpoints. Researchers have adopted different
patterns like square root law or log law in interpreting
the link between water vapour component and air
temperature [17, 18, 31]. It is also assumed that air
temperature at a certain power is appropriate in repre-
senting the behaviour of water vapour [111]. However, a
suitable DLR model for every condition is difficult to
come by. The problem lies in the inability to adequately
characterise the nature of water vapour in DLR’s mech-
anism. At times, the situation could be compounded
where data are rare to come by if other factors besides
water vapour pressure and air temperature are included
in the models [23]. Based on this study, air temperature
needs to be reconsidered in its relationship with water
vapour pressure in the absence of other gases or other
factors like cloud cover information when modelling
cloudless DLR. Therefore, the theoretical frame may
have to be redefined. The model developed in this study
can be applied to other equatorial regions, though at
other climates, the coefficient would have to be localised.
Preferably using data from diverse climates around the
globe could produce a universal empirical expression
that possibly fits all locations on the globe. Furthermore,
the extensions of our model to both cloudy and all skies
conditions should be considered in future studies.
Global solar radiation has been measured in many loca-

tions across Nigeria; however, DLR has only been measured
in Ilorin. Consequently, in contrast to global solar radiation
that has several developed regression models over many lo-
cations, due to lack of data, DLR has only a handful of
models [80, 104]. Though there are cloudless DLR models
other than Eqs. (14)–(25), as earlier mentioned, most of
newer models are similar to the old ones and in some cases,
researchers are localising the coefficients to fit locations of
interest [26, 64, 65, 104]. Since the target of this study was
to use water vapour pressure and temperature as predic-
tors, also due to lack of data on other variables, clear skies
models that deploy total water vapour column and dew
temperature could not be tested [104].
As mentioned earlier, some researchers had concluded

that expert systems perform better than regression models
even when both techniques were not subjected to similar
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conditions. However, in this study, we have shown that
that is not necessarily so if they are uniformly compared.
Though SVR has been highly recommended [85, 91, 94],
in this study, the model is associated with comparative
high errors, unlike ANFIS with low error terms and con-
sistent good correlations. The stability of ANFIS could be
due to its peculiar combination of the schemes of NN with
much fuzzy logic. It should be noted that relevant studies
cited here model SVR with R open-source packages. Thus,
the high SVR errors in this study are possibly due to
changes in software or unaltered system parameters [85,
91, 94]. Nonetheless, the sixth polynomial kernel function
should be used in the default settings for modelling with
SVR. Regression models are relatively easy to implement.
However, soft computing is for those with the expertise,
and to date, the feedforward neural network scheme in
MATLAB produces different results even when similar
training methods are repeated. Such uncertainty calls to
question the stability of some expert system techniques.

4 Conclusions
In this study, the tendency of regression models and ex-
pert systems of NN, SVR and ANFIS to estimate cloudless
DLR at an equatorial location, Ilorin (8.50 °N, 4.55 °E),
Nigeria, was investigated. Data from September 1992 to
August 1994 and July 1995 to March 1998 were consid-
ered, while the clear days were divided into experimental
and testing groups, water vapour pressure and air
temperature were the used predictors. It was found that
cloudiness is connected to changes in the season, and that
a new regression model was incomparable to 13 others
developed elsewhere. Possibly, the missing effect of other
DLR gases reflects on the format of the new model, and
the analytical relationship between water vapour pressure
and air temperature in atmospheric DLR should be recon-
sidered in line with our model.
However, like other cloudless DRL models, our new

empirical model was limited when tested at another lo-
cation. Hence, we recommend that in future, DLR
should be modelled with inputs from locations all over
the globe in addition to the extension of our model to
cloudy and all skies conditions. Though the soft comput-
ing models were generally better than the regression
models; nonetheless, the new regression model outper-
formed NN on the test data. Furthermore, in SVR esti-
mations of cloudless DLR, the sixth degree polynomial
kernel function was superior to the Gaussian kernel
function at default settings. Overall, ANFIS is recom-
mended for modelling cloudless DLR owing to its pecu-
liar low mean bias errors, which could be tied to the
combination of enough human logics with fast process-
ing techniques from neural networks. However, due to
the relative complexity of modelling with expert systems,
the new regression model is a viable option.
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