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Abstract

Background: Quantitative structure-activity relationships (QSAR) is a technique that is used to produce a model
that connects biological activities of compounds to their chemical structures, and molecular docking is a technique
that reveals the binding mode and interactions between a drug and its target enzyme. These techniques have
been successfully applied in the design and development of many drug candidates and herein were employed to
build a model that could help in the development of more potent antimalaria drugs.

Results: Descriptors of the compounds were calculated using the PaDEL-Descriptor software, and Genetic Function
Algorithm (GFA) was used to select descriptors and build the model. A robust and reliable model was generated
and validated to have internal and external squared correlation coefficient (R2) of 0.9622 and 0.8191, respectively,
adjusted squared correlation coefficient (Radj) of 0.9471, and leave-one-out (LOO) cross-validation coefficient (Q2

cv)
of 0.9223. The model revealed that the antiplasmodial activities of 1,2,4,5-tetraoxane-8-aminoquinoline hybrids
depend on MATS3m, GATS8p, GATS8i, and RDF50s descriptors. MATS3m, GATS8i, and RDF50s influenced the
antiplasmodial activities of the compounds positively while GATS8p negatively with the greatest influence. The
docking result shows strong interactions between 1,2,4,5-tetraoxane-8-aminoquinoline hybrids and Plasmodium
falciparum lactate dehydrogenase (pfLDH) with binding affinities ranging from − 6.3 to − 10.9 kcal/mol which were
better than that of chloroquine (− 6.1 kcal/mol), suggesting that these compounds could be better inhibitors of
pfLDH than chloroquine.

Conclusion: The results of this study could serve as a model for designing new potent 1,2,4,5-tetraoxane-8-
aminoquinolines with better antiplasmodial activities for the development of highly active antimalaria drugs.

Keywords: Antimalaria, QSAR, Molecular docking, Plasmodium falciparum lactate dehydrogenase, Tetraoxane-8-
aminoquinoline

1 Background
Malaria accounts for most of the deaths in the world es-
pecially in children and pregnant women. This infection
affected about 219 million persons in 2017 where 92% of
this number was from WHO African countries [1]. And
it claimed about 435,000 deaths worldwide in 2017
where 61% (266 000) was from children below the age of
5 years [1]. Five species of Plasmodium parasites cause

malaria in humans, and these species are P. falciparum,
P. vivax, P. malariae, P. ovale, and P. knowlesi [2].
Plasmodium falciparum is the most prevalent and the
most deadly of the five species in the WHO regions of
Africa, South-East Asia, Eastern Mediterranean, and the
Western Pacific, which is responsible for 99.7%, 62.8%,
69%, and 71.9%, respectively, of the malaria cases in
2017, while P. vivax is the most prevalent in the WHO
region of the America which is responsible for 74.1% [1,
2]. Medicinal chemists tested numerous compounds
against Plasmodium parasites to find their most efficient
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inhibitors. Aminoquinolines such as chloroquine has
been used for several decades as the first-line antimalar-
ial drug [3]. Though its efficacy has been diminished due
to Plasmodium falciparum resistance [4, 5], it remained
efficacious in some Caribbean countries and Central
America [6]. Since 2005, the World Health Organization
recommended the use of artemisinin-based combination
therapies (ACTs) for the treatment of P. falciparum mal-
aria [7, 8]. These chemotherapies show excellent efficacy
especially in the African region. But, the development
and spread of parasites resistance to any antimalarial
drug are very likely as experience with other antimalarial
drugs [9]. Furthermore, resistance to ACTs has been ob-
served and reported to be of an increase in Southeast
Asia and its spread to other regions is seriously challen-
ging [10–12], hence, the need for a promising antimalar-
ial drugs.
Combinational therapies like ACTs are costly and

have more toxic side effects than single drugs due to
drug-drug interaction [13]. The alternatives to ACTs
are hybrid compounds and molecules containing two
or more active pharmacophores that can act simultan-
eously on two or more molecular targets [14–17].
Such molecules are active against erythrocytic and
live stages of malaria infection; therefore, they can
help in fighting resistance and meeting the agenda of
eradicating malaria [18]. Nowadays, the search for an-
timalarials focuses on hybrid compounds containing
quinoline which is one of the important pharmaco-
phore acting against malaria [19–21].
Conventional drug discovery methods are expen-

sive and time-consuming requiring the sacrifice of
animals or compounds in their pure forms [22].
Effective and efficient techniques that can screen
chemical databases of molecules with known
activities against a particular infection are necessary
[23]. Quantitative structure-activity relationship
(QSAR) modeling and molecular docking studies
have been successfully used in the development of
drugs as cost- and time-effective techniques [24, 25].
QSAR is a significant modeling method for
structural optimization and drug design [23, 26].
Herein, we conducted a QSAR study of tetraoxane-
8-aminoquinoline hybrids as dual-stage antimalarial
agents to produce a model that could be used to
design new potent antimalaria therapy. We also
carried out a molecular docking study of the hybrid
compounds with Plasmodium falciparum lactate
dehydrogenase (pfLDH) enzyme to investigate the
interaction of the hybrids with potential target
enzyme. Tetraoxane-8-aminoquinoline hybrids were
reported to be metabolically stable and active
against both erythrocytic and liver-stage malaria par-
asites [21].

2 Methods
2.1 Data collection
Twenty-two compounds of 1,2,4,5-tetraoxane-8-amino-
quinoline hybrids and their in vitro antimalarial activities
(EC50) against intraerythrocytic P. falciparum W2 strain
were obtained from the paper published by Capela and
coworkers [21] and used herein. The antiplasmodial
activities of the compounds reported in EC50 (μM) were
transformed to pEC50 (pEC50 = − logEC50) for the pur-
pose of this research. Structures of the molecules and
their activities were presented in Table 1.

2.2 Geometric optimization
The structures of the molecules shown in Table 1 were
drawn and optimized using the ChemDraw version
12.0.2 software [27] and Spartan 14 Version 1.1.4 soft-
ware with semi-empirical (PM3) quantum mechanics
method [28], respectively.

2.3 Molecular descriptor calculation
A total of 1875 molecular descriptors of the optimized
molecules of 1,2,4,5-tetraoxane-8-aminoquinoline hy-
brids were computed with PaDEL-Descriptor software
version 2.20 [29].

2.4 Normalization and data pretreatment
Using Eq. (1), the obtained descriptors were normalized
so that each variable will have equal opportunity in in-
fluencing the construction of a good model [30].

X ¼ X i−Xmin

Xmax−Xmin
ð1Þ

where X is the normalized descriptors, Xi is the descrip-
tor’s value for each molecule, Xmin and Xmax are the
minimum and maximum value for each descriptor. To
eliminate redundancy in the normalized data, it was then
pretreated using the Data Pretreatment software gotten
from Drug Theoretical and Cheminformatics Laboratory
(DTC Lab).

2.5 Data division
Kenard and Stone’s algorithm [31] was employed to div-
ide the pretreated data into a training set (70%) for
model generation and a test set (30%) for external valid-
ation of the model. This was achieved using the Data
Division software gotten from Drug Theoretical and
Cheminformatics Laboratory (DTC Lab).

2.6 Model generation
Using the genetic function approximation (GFA) tech-
nique in the Material Studio software, regression analysis
was carried out to generate the model (using training
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set) with the activities in pEC50 as the dependent vari-
able and the descriptors of independent variable.

2.7 Internal validation of the model generated
The model generated was assessed using Friedman for-
mula [32] and defined as:

LOF ¼ SEE

1− cþdp
M

� �2 ð2Þ

where LOF is the Friedman’s lack fit (a measure of fit-
ness of a model), SEE is the standard error of estimation,
p is the total number of descriptors in the model, d is
the user-defined smoothing parameter, c is the number
of terms in the model, and M is the number of com-
pound in the training set.
SEE is defined as:

SEE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y exp−Yprd
� �

N−P−1

s
ð3Þ

which is the same as the standard deviation of the model
and if its value is low, a model is said to be good.
The correlation coefficient R2 of a built model is an-

other parameter considered and the closer it is to 1.0,
the better the model is built. R2 is expressed as:

Table 2 The minimum required values for a QSAR model to be
generally acceptable

Symbol Name Value

R2 Coefficient of determination ≥ 0.6

P(95%) Confidence interval at 95% confidence level < 0.05

Q2
cv Cross validation coefficient < 0.5

R2−Q2
cv Difference between R2 and Q2

cv ≤ 0.3

Next. test set Minimum number of external test set ≥ 5

cR2p Coefficient of determination for Y-randomization > 0.5

Table 1 Molecular structures of 1,2,4,5-tetraoxane-8-
aminoquinoline hybrids and their antimalarial activities

Table 3 Validation parameters for the selected model

S/N Parameter Value

1 Friedman LOF 0.06884900

2 R2train 0.96220500

3 Adjusted R-squared (Radj) 0.94708700

4 Cross-validated R-squared (Q2
cv) 0.92225200

5 Significant regression Yes

6 Significance-of-regression F-value 63.64571300

7 Critical SOR F-value (95%) 3.52496500

8 Replicate points 0

9 Computed experimental error 0.000000000

10 Lack-of-fit points 10

11 Min expt. error for non-significant LOF (95%) 0.08840500

12 R2test 0.819102
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R2 ¼ 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Y exp−Y prd
� �2

P
Y exp−Ymtrn
� �2

vuut ð4Þ

where Yprd, Yexp, and Ymtrn are the predicted, experimen-
tal, and mean experimental activities in the training set,
respectively.
The value of R2 is directly proportional to the number

of descriptors; hence, the stability of the model is not re-
liable on it. Thus, to have a reliable and stable model, R2

is adjusted according to the expression:

R2
adj ¼

n−1ð Þ R2−p
� �

n−p−1
ð5Þ

where p is the number of descriptors in the model and n
is the number of compounds used in the training set.
The cross-validation coefficient, Q2

cv, is expressed as:

Q2
cv ¼ 1−

P
Yprd−Y exp
� �2

P
Y exp−Ymtrn
� �2 ð6Þ

where Yprd, Yexp, and Ymtrn are the predicted, experimen-
tal, and average experimental activity in the training set,
respectively.

2.8 External validation of the model generated
The generated model was assessed (using test set) for
external validation by the value of R2

test expressed as:

R2
test ¼ 1−

P
Y prd−Y exp
� �2

P
Y exp−Ymtrn
� �2 ð7Þ

where Yprd and Yexp are respectively the predicted and ex-
perimental activities of the test set, and Ymtrn is the mean
experimental activity of the training set. The closer the
value is to 1.0, the better the model generated [33].

2.9 Y-randomization test
Random multi-linear regression models were generated
(using training set) in the Y-randomization test whose
average R2 and Q2 values have to be low for the QSAR
model to be robust [33]. Coefficient of determination,
cR2

p, whose value has to be greater than 0.5 for passing
this test is also calculated in the Y-randomization test
and is expressed as:

cR2
p ¼ Rx R2−R2

r

� �2 ð8Þ

where R is the correlation coefficient for Y-
randomization and R2

r is the average “R” of the random
models.

2.10 Applicability domain of the generated model
Leverage (hi) method was used in describing the applic-
ability domain of the QSAR models [34]; and for a
chemical compound, it is expressed as:

Table 5 Pearson’s correlation, variance inflation factor (VIF), and mean effect (ME) of descriptors used in the selected model

Inter-correlation VIF ME

Descriptor MATS3m GATS8p GATS8i RDF50s

MATS3m 1 1.535934 0.904941

GATS8p 0.537545 1 2.428671 − 36.3765

GATS8i − 0.03389 0.347215 1 2.128349 30.82177

RDF50s 0.269062 0.321822 − 0.46708 1 1.953908 5.649772

Table 4 Experimental and predicted activities for the
compounds with residual

Compounds Experimental
activity (pEC50)

Predicted
activity (pEC50)

Residual

1a 6.690370 6.809850 − 0.119480

2 7.244125 7.141499 0.102626

3 7.124939 7.269416 − 0.144477

4a 7.214670 6.957825 0.256845

5 7.221849 7.266572 − 0.044723

6a 6.850781 7.158224 − 0.307440

7 7.119186 7.053930 0.065256

8a 7.346787 6.709780 0.637008

9 7.795880 7.855448 − 0.059568

10 7.823909 7.862578 − 0.038669

11 7.823909 7.842876 − 0.018967

12 7.769551 7.624906 0.144645

13 7.036212 7.242101 − 0.205889

14 7.004365 6.868879 0.135485

15 7.721246 7.645882 0.075365

16 6.754487 6.681501 0.072986

17a 6.920819 6.671336 0.249482

18 7.091515 7.064604 0.026911

19 6.542118 6.574618 − 0.032500

20 6.038105 6.116586 − 0.078482

21a 5.377786 6.057060 − 0.679270

22a 5.246417 5.781937 − 0.535520
aTest set
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hi ¼ X i X
TX

� �−1
XT

I ð9Þ

where Xi is training compounds matrix of i. X is the n ×
k descriptor matrix of the training set compound, and
XT is the transpose matrix of X used to generate the
model. The warning leverage, h*, is the maximum value
for X and is expressed as:

h� ¼ 3 pþ 1ð Þ
n

ð10Þ

where n is the number of training compounds and p is
the number of descriptors in the model.

2.11 Quality assurance of the generated model
Internal and external validation parameters presented in
Table 2 give the minimum required values for a QSAR
model to be predictable and reliable [34].

2.12 Docking study
To elucidate the interaction of 1,2,4,5-tetraoxane-8-
aminoquinolines with a possible molecular target, the
molecular docking study of the hybrid compounds
was conducted with Plasmodium PfLDH which is a
potential target enzyme for antimalarials because the
parasite relies on glycolysis to produce energy [35].
The Discovery Studio software was used to prepare
the crystal structure of the enzyme obtained from
protein data bank (PDB ID: 1CET) as the receptor,
and the compounds are prepared as the ligands.
Autodock Vina in the Pyrx software was used to dock
the receptor and the ligands [36]. The docking result
was visualized and analyzed with the aid of Discovery
Studio Visualizer.

3 Results
Genetic function algorithm (GFA) of the material studio
software was used to build four QSAR models to study
how the chemical structure of 1,2,4,5-tetraoxane-8-ami-
noquinoline hybrids relates with their biological activ-
ities as potent antimalaria. One of the built models was
selected for its statistical significance and reported
herein as follows:
pEC50 = 33.566456798 * MATS3m
− 18.570253404 * GATS8p
+ 16.287782272 * GATS8i
+ 0.044070689 * RDF50s
+ 6.676939310

Fig. 1 Plot of predicted activity against experimental activity of both training and test set

Table 6 Y-randomization test result

Model R R^2 Q^2

Original 0.98092 0.962205 0.922252

Random 1 0.501859 0.251863 − 1.1707

Random 2 0.414369 0.171701 − 1.10217

Random 3 0.711928 0.506842 − 0.11473

Random 4 0.658547 0.433684 − 0.42149

Random 5 0.596917 0.35631 − 0.73407

Random 6 0.187802 0.03527 − 0.96639

Random 7 0.440244 0.193815 − 1.19777

Random 8 0.315571 0.099585 − 0.6586

Random 9 0.431688 0.186355 − 0.93619

Random 10 0.409386 0.167597 − 0.6433

Random model parameters

Average r 0.466831

Average r^2 0.240302

Average Q^2 − 0.79454

cRp^2 0.846252
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Table 3 presents the validation parameters of the
model which satisfied the minimum required values pre-
sented in Table 2.

4 Discussion
The model contained 2D autocorrelation descriptors
(MATS3m, GATS8p, and GATS8i) and radial distribu-
tion function (RDF50s) descriptor. MATS3m was
Moran autocorrelation of lag 3 weighted by atomic
masses, GATS8p, and GATS8i were Geary autocorrel-
ation of lag 8 weighted by atomic polarizabilities and
first ionization potential, respectively. The 2D autocor-
relation descriptors explained how the values of certain
functions (topological distance) at intervals equal to the
lag (atomic properties) were correlated. These descrip-
tors of type GATSd and MATSd are slightly different
but generally describe how the considered property was
distributed along the topological structure [37, 38].

RDF50s was 3D radial distribution function at 5.0 inter-
atomic distance weighted by relative I-state. RDF-type
descriptors of a molecule indicate the probability distri-
bution of finding an atom in a spherical volume of ra-
dius R [39]. RDF50s indicated the existence of a linear
relationship between the antiplasmodial activities of 1,
2,4,5-tetraoxane-8-aminoquinoline hybrids and the 3D
molecular distribution of the relative inductive effect of
atoms or group of atoms in the molecules calculated at
the radius of 5.0 Å from the geometrical centers of each
hybrids molecule.
Table 4 shows the experimental and predicted activ-

ities of 1,2,4,5-tetraoxane-8-aminoquinoline hybrids as
potent multidrug-resistant Plasmodium falciparum W2
strain inhibitors with the residual values. The high pre-
dictability of the model was indicated by the low residual
value between the experimental and predicted activity of
the compounds.

Fig. 2 Plot of standardized residual activity against experimental activity

Fig. 3 Plot of the standardized residuals against the leverages (Williams plot).
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Pearson’s correlation matrix, variance inflation (VIF) fac-
tor, and mean effect (ME) of the four descriptors in the
model were presented in Table 5. The correlation matrix
shows no significant inter-correlation among the descrip-
tors used in building the model as corroborated by the VIF
values which were less than 10 for all the descriptors.
Hence, the descriptors used in building the model were
good, and the model is stable without multi-co-linearity
problem. The ME indicates the magnitudes and directions
of influence of the descriptors on the antiplasmodial activ-
ities of the compounds. The descriptors MATS3m,
GATS8i, and RDF50s with positive sign ME values vary dir-
ectly with the activities of the molecules, while the descrip-
tor GATS8p with negative sign ME values varies inversely
with the activities of the molecules. The descriptor ME
magnitudes indicated the extent of their respective

influences where GATS8p had a greater influence on
the antiplasmodial activities of the compounds. Y-
randomization test result presented in Table 6 con-
firmed that the built QSAR model was reliable, ro-
bust, and stable for the low R2 and Q2 values for
several trials. The result also shows that the model is
good and not gotten by chance for the value of cR2p
(> 0.5).
Figure 1 presents the plot of predicted activity against

the experimental activity of both training and test set. The
linearity of this plot indicated the high predictive power of
the built model. The plot of standardized residual against
experimental activity presented in Fig. 2 shows the dis-
persal of standardized residual values on both sides of
zero; hence, there was no systematic error in the gen-
erated model [40]. Figure 3 shows the Williams plot

Table 7 Docking result between pfLDH and the selected 1,2,4,5-tetraoxane-8-aminoquinoline hybrids

Ligand
receptor

Binding
affinity
(Kcal/
mol)

Hydrogen bond Hydrophobic interaction

Amino acid (bond length/Å) Amino acid

Chloroquine-
pfLDH

− 6.1 ASP230 (2.5777), LEU201 (2.7972), MET199 (3.4466) PHE229

1-pfLDH − 9.8 GLY29 (2.1060), THR97 (2.7607), CLQ1001 (2.2444), THR97 (3.0417) ALA98, PHE100, ALA236, PRO246, PRO250

2-pfLDH − 9.2 ARG171 (1.8035), ARG171 (2.2975) SER245, PRO246, A:ILE31, HIS195, ALA236,
VAL240

3-pfLDH − 8.7 SER245 (2.4233), SER245 (2.8894) ILE239, ARG171, VAL248, ALA249, TYR174,
TYR175, ALA244,

4-pfLDH − 10.0 VAL138 (3.7679), ASN140 (3.7714), ASN140 (3.5377), ASN197 (3.2384) ILE31, ALA98, CLQ1001, ALA236

5-pfLDH − 9.0 ARG231 (2.0266) ALA249, LYS179, PRO184, TYR174, VAL248

6-pfLDH − 9.9 GLY29 (2.2910), CLQ1001 (2.0034) VAL55, ALA98, ALA236, HIS195, PRO246

7-pfLDH − 7.9 SER170 (2.5719) ILE239, ALA244, VAL248, TYR247, PRO184,
ARG185

8-pfLDH − 6.3 GLN151 (3.0302), GLN151 (3.7013) HIS150, ILE121, LEU274

9-pfLDH − 7.9 LEU201 (2.3313), MET199 (2.6715), MET199 (2.3318), LYS198 (3.2976) LYS203, ARG204, VAL233

10-pfLDH − 7.7 GLY29 (2.4583), A:CLQ1001 (2.3601), THR97 (2.6078) ILE31, ALA236, PRO246, PRO250

11-pfLDH − 7.8 HIS126 (2.7594), GLU122 (2.6678), ILE121 (2.9335), HIS126 (3.0261) GLY125, HIS126, LYS56, LYS129

12-pfLDH − 7.0 ASN241 (2.2532), GLU238 (3.6529) LEU201, VAL233, PHE229, LEU237

13-pfLDH − 7.6 LYS198 (2.4903), ASN197 (2.3649), ASN197 (2.7735) VAL233, VAL200, LYS314

14-pfLDH − 8.8 LYS179(2.6955), ARG231(2.7157), ALA227(2.5198), ASP230(2.7896) LYS179, ALA227, ARG23

15-pfLDH − 8.2 ASN197(2.4766), ARG204(2.8146), ASN308(2.5317), LEU201(3.5001) LYS198, LYS314, ARG204, LYS203

16-pfLDH − 9.5 ASN197(2.7834), PRO246(2.7829), HIS195(3.2764), GLY196(3.5875),
GLY196(2.8854), ASN140(3.4465)

ALA194, ALA236, LYS198, HIS195, ILE31

17-pfLDH − 8.1 TYR247(1.9435), VAL248(2.0922), TYR175(2.5401) VAL248, TYR247, ARG171, ALA249, TYR174

18-pfLDH − 8.4 ARG109(2.8447), PRO246(2.3330), ASN140(3.6229) ILE31, ALA236, LEU237, HIS195

19-pfLDH − 10.7 ARG109(2.8330), ASN140(2.4985) ALA236, ILE31

20-pfLDH − 10.1 SER170(2.9969), SER170(2.0060) TYR174, ARG171, ALA249, ILE239, LEU242,
PRO184, ARG185

21-pfLDH − 10.8 SER170(2.9770), SER17(1.98570) TYR174, ARG171, ILE239, ALA249, LEU242,
TYR174, PRO184, ARG185

22-pfLDH − 10.9 ARG109(3.0448), PRO246(2.8417), ASN140(3.5002) ALA236
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of the standardized residuals versus the leverages. It
was clear that all compounds were within the applic-
ability domain and have no influential compounds.
This implies that any of the compounds can be used
in designing new 1,2,4,5-tetraoxane-8-aminoquinoline
hybrids with highly potent antiplasmodial activities.
Table 7 presents the result of the molecular docking

study carried out between PfLDH (receptor) and 1,2,4,5-
tetraoxane-8-aminoquinoline hybrid compounds (li-
gands). The result shows strong interactions of the

ligands with the active sites of the receptor with binding
affinities ranging from − 6.3 to − 10.9 kcal/mol having
important hydrogen bonding and hydrophobic inter-
action with the amino acids of the protein. The binding
affinities of all the hybrids are better than that of chloro-
quine. Figure 4 shows the 2D and 3D interaction of lig-
and 22 with the receptor. This interaction had the best
binding affinity of − 10.9 kcal/mol containing two con-
ventional hydrogen bonds, one of which was between
one of the oxygen atom of the tetraoxane moiety as the

Fig. 5 Hydrogen bond 22-pfLDH interactions

Fig. 4 3D and 2D 22-pfLDH interactions
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H-acceptor and ARG109 residue as the H-donor, and
the other was between the NH of the quinoline moiety
as the H-donor and the residue PRO246 as the H-
acceptor. The interaction also contains a carbon-
hydrogen bond between the methoxide carbon atom of
the quinoline moiety as the H-donor and ASN140 resi-
due as the H-acceptor. The ligand also formed two
hydrophobic interactions of alkyl-alkyl type with the
ALA236 amino acid of the receptor and halogen-type
interaction between ASP53 and bromine atom of the
ligand. The hydrogen bond and the hydrophobic
interactions of ligand 22 with the receptor are depicted
in Figs. 5 and 6, respectively.

5 Conclusion
QSAR and molecular docking studies were conducted
on 1,2,4,5-tetraoxane-8-aminoquinoline hybrids as po-
tent antimalaria. A stable, reliable, and robust model was
generated and found to be influenced by MATS3m,
GATS8p, GATS8i, and RDF50s descriptors. MATS3m,
GATS8i, and RDF50s were found to influence the anti-
plasmodial activities of the compounds positively while
GATS8p negatively with the greatest influence. The mo-
lecular docking study revealed the mode of interaction
of the hybrid compounds with Plasmodium falciparum
lactate dehydrogenase as the potential target. The result
shows strong interaction of the compounds with the re-
ceptors. The QSAR model couple with the docking re-
sult can be employed in designing new 1,2,4,5-
tetraoxane-8-aminoquinoline hybrids with highly potent
activities against Plasmodium falciparum.
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