
RESEARCH Open Access

QSAR, QSTR, and molecular docking studies
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Abstract

Background: Prostate cancer is the most common non-cutaneous cancer in males and accounts for about 4% of
all cancer-related deaths in males annually. In silico methods provide faster, economical, and environmentally
friendly alternatives to the traditional trial and error method of lead identification and optimization. This study,
therefore, was aimed at building a robust QSAR and QSTR model to predict the anti-proliferate activity and toxicity
of some phenylpiperazine compounds against the DU145 prostate cancer cell lines and normal prostate epithelial
cells as well as carry out molecular docking studies between the compounds and the androgen receptor.

Results: Genetic Function Algorithm–Multilinear Regression approach was employed in building the QSAR and
QSTR model. The QSAR model built had statistical parameters R2 = 0.7792, R2adj. = 0.7240, Q2

cv = 0.6607, and R2ext =
0.6049 and revealed the anti-proliferate activity to be strongly dependent on the molecular descriptors: VR3_Dzp,
VE3_Dzi, Kier3, RHSA, and RDF55v. The QSTR model, on the other hand, had statistical parameters R2 = 0.8652, R2adj.
= 0.8315, Q2

cv = 0.7788, and R2ext = 0.6344. The toxicity of the compounds was observed to be dependent on the
descriptors MATS8c, MATS3s, ETA_EtaP_F, and RDF95m. The molecular descriptors in both models were poorly
correlated (R < 0.4) and had variance inflation factors < 3. Molecular docking studies between the androgen
receptor and compounds 25 and 32 revealed the compounds primarily formed hydrogen, halogen, and
hydrophobic interactions with the receptor.

Conclusion: Findings from this study can be employed in in silico design of novel phenylpiperazine compounds. It
can also be employed in predicting the toxicity and anti-proliferate activity of other phenylpiperazine compounds
against DU145 prostate cancer cell lines.

Keywords: Quantitative structure activity relationship, Quantitative structure toxicity relationship, Molecular docking,
Prostate cancer, Computational chemistry

1 Background
The emergence of new diseases coupled with the in-
creasing resistance of existing diseases to therapies cur-
rently in use has ensured the continual need for novel
medication and therapies. The need for novel therapies
has had its toll on the environment—particularly on

plants and micro-organisms [1, 2]. The use of the trial
and error method of traditional drug design has led to
wastage of precious natural resources, disruption of the
ecosystem, and in some cases, environmental pollution.
Additionally, obtaining a drug candidate using trad-
itional methods usually take a long time [3]. Computa-
tional methods, however, proffer time-saving, cost-
efficient, and cleaner alternatives. Computer-aided drug
design (precisely ligand based design) employs tools that
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model the activities of certain compounds, and after-
ward, the model built is used to predict the activities of
other compounds having a similar pharmacophore [4,
5].
Cancer refers to a collection of over 200 different types

of diseases in which certain cells grow abnormally and
have the potential to invade or spread to other body
parts, killing healthy cells in the process [6]. Prostate
cancer is one of the most common cancers diagnosed in
males. It is second only to skin cancer and more preva-
lent than lung cancer in the UK and the USA. Prostate
cancer accounts for about 4% of all cancers suffered by
men annually. An estimate of 1.3 million cases was re-
ported worldwide in 2018. Prostate cancer is prevalent
in older men (> 65 years) with 6 out of 10 men in the
age group being diagnosed with the cancer. About 80%
of all prostate cancer cases are reported in this age
group [7–9]. The mortality rate of prostate cancer is not
very high; the 5-year survival rate of prostate cancer is
about 98%. However, prostate cancer is still one of the
leading causes of cancer-related deaths in males, second
only to lung cancer. It is the fifth leading cause of deaths
in males worldwide. It also accounts for about 4% of

cancer-related deaths, and over three hundred thousand
deaths were attributed to the cancer in 2018 in the USA
[7, 8].
DU145 cell line is one of the three most used prostate

cancer cell lines in prostate cancer research, the other
two being PC3 and LNCaP cell lines. DU145 cells have
moderate metastatic potential compared to PC3 cells
and are androgen receptor positive [10]. The growth of
prostate cancer cell lines has been reported to be via
modification of the androgen receptor [11]. Thus, modi-
fication of the androgen receptor is a viable strategy for
combating early-stage prostate cancer. This study built a
QSAR and QSTR model to predict the activity and tox-
icity of some phenylpiperazine derivatives against
DU145 prostate cancer cell lines and normal prostate
epithelial cells. The study also investigated the inter-
action between the compounds and the androgen recep-
tor via molecular docking studies.

2 Methods
2.1 Dataset
Thirty-seven (37) phenylpiperazine derivatives reported
by Chen et al., [12, 13] were employed in building a

Fig. 1 2D structures compounds used in QSAR Study
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QSAR model that predicts their anti-proliferate activity
against DU145 prostate cancer cell lines. Thirty (30)
other derivatives having toxic (proliferative) activity
against normal prostate epithelial cells were employed in
building the QSTR model [12–14]. Figure 1 presents 2D
structures of the compounds used to build the QSAR
model while Fig. 2 presents those for the QSTR model.
The anti-proliferative activity (IC50) of the compounds
ranged from 0.77 to 46.24 μM while toxicity ranged from
3.87 to 49.21 μM. The activity and toxicity of the com-
pounds were converted to the logarithmic scale using
the formula pIC50 = − log10(IC50). This conversion re-
duced the skew in the activity and linearized the activity
of the compounds [15]. In the logarithmic scale, the ac-
tivity ranged from 4.3350 to 6.1135 while toxicity ranged
from 4.3079 to 5.4123, respectively.

2.2 QSAR/QSTR model
A 2D structure of each molecule was drawn using the
ChemDraw Ultra 12.0 software and then converted to
their equivalent 3D structure using the Spartan 14 V1.4
software. The ground state equilibrium geometry of the
compounds was afterward obtained via optimization
using the B3LYP/6-31G* basis set of the density

Fig. 2 2D structures compounds used in QSTR Study

Plate 1 Crystal structure of prepared androgen receptor (PDB
ID: 5T8E)
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functional theory (DFT) in the Spartan 14 software [16,
17]. The molecular descriptors of the optimized mole-
cules were calculated using the Pharmaceutical Data Ex-
ploration Laboratory (PaDEL) version 2.21 software. The
dataset of molecular descriptors obtained was pretreated
at a correlation cut-off of 0.8 in the DTC Lab Pretreat-
ment software version 1.2 and divided into a training
and test set using the Kennard-Stone algorithm in DTC
Lab Dataset Division software version 1.2. The training
set was transferred to the Accelery Material Studio Ver-
sion 8.0 software where the model was built while the
test set was subsequently employed for external valid-
ation of the built model [18, 19].

2.3 Model validation
The validity, robustness, and predicting ability of a built
model are ascertained by subjecting the model to certain
validation tests. The internal consistency and validation
of the model were ascertained using the coefficient of
determination (R2 and R2

adj.) and cross-validated coeffi-
cient of determination (Q2

cv). A robust model has values
≥ 0.7 for R2 and ≥ 0.6 for Q2

cv [20]. R2 is a measure of
the variation in the activity/toxicity of the molecules that
can be explained by the model. Thus, a robust model
should be able to explain at least 0.7 (70%) of the vari-
ation in the activity/toxicity of the compounds. Q2

cv

measures the degree to which the model can generalize

to another independent dataset of phenylpiperazine de-
rivatives [21]. R2, R2adj., and Q2

cv alongside other statis-
tical parameters such as Friedman’s lack of fit (LOF) and
significance-of-regression F-value were automatically
generated by the Material Studio software while the
model was built. The reproducibility of the model on
other independent datasets was evaluated by subjecting
the model on an independent dataset. The external coef-
ficient of determination (R2

ext.) was determined using
Eq. 1 [22].

R2
ext: ¼ 1−

P
Y exptest−Y predtest

� �2
P

Y exptest−Y exptest

� �2 ð1Þ

where Yexptest is the experimental activity/toxicity of each
test set molecule, Ypredtest is the predicted activity/tox-
icity of each test set molecule, and Y exptrain is the mean
activity/toxicity of the training set compounds. A model
with good predicting power has R2ext. ≥ 0.6 [20].
The inter-correlation between the molecular descrip-

tors was also evaluated using Pearson’s correlation and
variance inflation factor (VIF) tests [18]. To ensure that
each molecular descriptor made a unique contribution
to the prediction of the activity/toxicity, the descriptors
ought to be poorly correlated (R < 0.4) and have VIF
values less than 10. The VIF of each molecular descrip-
tor was calculated as (1 − R2)−1 [18, 22]. The mean effect

Table 1 Statistical parameters of model 1

Parameter Model 1 Model 2 Model 3 Model 4

Friedman LOF 0.318397 0.380396 0.388804 0.390866

R-squared 0.779177 0.736178 0.730346 0.728916

Adjusted R-squared 0.723971 0.670223 0.662933 0.661146

Cross validated R-squared 0.660697 0.575643 0.553878 0.554898

Significant regression Yes Yes Yes Yes

Significance-of-regression F-value 14.11407 11.161743 10.833846 10.755597

Critical SOR F-value (95%) 2.732939 2.732939 2.732939 2.732939

Replicate points 0 0 0 0

Computed experimental error 0 0 0 0

Lack-of-fit points 20 20 20 20

Min expt. error for non-significant LOF (95%) 0.210178 0.229732 0.232257 0.232872

Table 2 Description and class of molecular descriptors in the built model

Name Description Class

VR3_Dzp Logarithmic Randic-like eigenvector-based index from Barysz matrix/weighted by polarizabilities 2D

VE3_Dzi Logarithmic coefficient sum of the last eigenvector from Barysz matrix/weighted by first ionization potential 2D

Kier3 Third kappa (κ) shape index 2D

RHSA THSA/total molecular surface area 3D

RDF55v Radial distribution function - 055/weighted by relative van der Waals volumes 3D
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of each molecular descriptor was also calculated using
Eq. 2. The mean effect reveals the descriptors which
have the highest positive (or negative) impact on the ac-
tivity/toxicity [21].

Mean effect ¼ β j

Pn
i D j

Pm
j β j

Pn
i D j

� � ð2Þ

where βj is the jth descriptor’s coefficient in the regres-
sion model, Dj is the value of the jth descriptor for each
molecule in the training set, m is the number of molecu-
lar descriptors in the regression model, and n is the size
of the training set.
William’s plot of the applicability domain was also

drawn using the leverage technique (Eq. 3) [19]. The ap-
plicability domain is the surface space in which the
model makes reliable predictions for the activity/toxicity
of the compounds [23]. Compounds in the dataset which
fell within the applicability domain can be reliably
employed in further computer aided compound design
such as ligand based design.

H j ¼ x j X
TX

� �−1
xTj ð3Þ

where Hj is the leverage of the jth compound, xj is a 1 ×
m row matrix of the m molecular descriptors of com-
pound j, and X is an m × k matrix made up of m row de-
scriptor values and k columns of training set values. The
boundary of the applicability domain was evaluated as h*
= 3(m + 1)/k.

2.4 Molecular docking
Molecular docking studies were carried out using Bio-
via’s Discovery Studio 2016 client and the Autodock
Vina integration of the PyRx-Python Prescription 0.8
software. The crystal structure of the androgen receptor
(PBD code: 5T8E) was downloaded from the protein
data bank [24]. The downloaded receptor was prepared
on the Discovery Studio software. To prepare the recep-
tor, water molecules, heteroatoms, and cofactors were
removed from the receptor. Plate 1 presents a 3D crystal
structure of the prepared receptor. 3D optimized struc-
tures of compounds 25 and 32 (Fig. 1) were prepared for

Table 3 Correlation, VIF, and mean effect of molecular descriptors

VR3_Dzp VE3_Dzi Kier3 RHSA RDF55v VIF Mean effect

VR3_Dzp 1 2.1067 1.6178

VE3_Dzi − 0.40427 1 1.4974 − 0.4341

Kier3 0.397934 0.124831 1 1.5622 − 1.8079

RHSA − 0.1099 − 0.02413 − 0.23632 1 1.0597 1.7549

RDF55v 0.355327 0.032944 − 0.05608 − 0.00731 1 1.3387 − 0.1307

Table 4 External validation of the built model

Molecule Yexp. Ypred. (Yexp. − Ypred.) (Yexp. − Ypred.)
2 (Yexp. − Ytrain.) (Yexp. − Ytrain.)

2

1 5.0079 4.8446 0.1633 0.02667 0.0045 0.000020

6 4.9952 4.8272 0.1680 0.02822 − 0.0082 0.000067

7 5.1938 4.9735 0.2203 0.04853 0.1904 0.036252

8 4.5533 4.6312 − 0.0779 0.00607 − 0.4501 0.202590

16 5.0362 4.8410 0.1952 0.03810 0.0328 0.001076

17 5.2708 4.6867 0.5841 0.34117 0.2674 0.071503

26 5.0585 5.0349 0.0236 0.00056 0.0551 0.003036

29 6.0809 5.5371 0.5438 0.29572 1.0775 1.161006

31 5.6498 5.1371 0.5127 0.26286 0.6464 0.417833

35 6.0655 5.8044 0.2611 0.06817 1.0621 1.128056

37 4.6763 5.0227 − 0.3464 0.11999 − 0.3271 0.106994

∑(Yexp. − Ypred.)
2 = 1.23606 P ðY exp:−Y trainÞ2 ¼ 3:128433

∴R2ext ¼ 1
− 1:23606

3:128433¼ 0:6049
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molecular docking by converting them to .pdb file for-
mat on the Spartan 14 software [18, 22]. The binding af-
finity of the compound and the androgen receptor was
determined using the PyRx software while the category
and type of interaction between the compounds and the
receptor were viewed on the Discovery Studio software.

3 Results
3.1 QSAR
The compounds presented in Fig. 1 were employed to
build a QSAR model using the Genetic Function Algo-
rithm–Multilinear Regression (GFA-MLR) method. Four
models were built each consisting of five molecular de-
scriptors. Model 1 was adopted as the best model be-
cause it had statistical parameters similar to those
reported for a robust model [20]. The regression equa-
tion of model 1 is presented in Eq. 4. Its statistical pa-
rameters are presented in Table 1 while the definition
and class of its molecular descriptors are presented in

Table 2. The regression equations of the other QSAR
models built are presented in Supplementary Table S1.
Table 3 presents the correlation between the molecular
descriptors in the model as well as their VIF and mean
effect values. The external validation of the model was
investigated by subjecting the model to the test set. The
external coefficient of determination (R2

ext.) was calcu-
lated as presented in Table 4.

Model 1 : pIC50 ¼ −0:298912928
� VR3 Dzp−0:171389530
� VE3 Dziþ 0:961235807
� Kier3−6:822313106
� RHSA þ 0:120746172
� RDF55vþ 8:757696717 ð4Þ

THSA sum of solvent accessible surface areas of atoms
with absolute value of partial charges less than 0.2

Fig. 3 Experimental activity against predicted activity

Fig. 4 Experimental activity against standardized residuals
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NB, Ytrain was evaluated to be 5.0034
Equation 1 was used to predict the anti-proliferate ac-

tivity of the compounds in the training and test set. The
predicted activity and residual of each compound in the
training and test sets are presented in Supplementary
Tables S2 and S3. Figure 3 presents a graph of the ob-
served experimental activity against the predicted activ-
ity. Figure 4 is a graph of the observed anti-proliferate
activity against the standardized residual, and Fig. 5 pre-
sents William’s plot of the applicability domain of the
built model.

3.2 QSTR
The toxicity of the compounds against normal prostate
epithelial cells was also modeled by building four GFA-
MLR models. Each model consisted of four molecular
descriptors. The first model had statistical parameters
similar to those reported for a stable, robust model [20].
Equation 5 presents the regression equation of the
model. Supplementary Table S4 presents the regression

equation of the other QSTR models built. Table 5 pre-
sents the statistical parameters of the built models while
Table 6 presents the description and class of molecular
descriptors in model 1. Table 7 presents the results of
correlation studies, VIF, and mean effect of the molecu-
lar descriptors. The model was used to predict the tox-
icity of the compounds in the training set (Table S5) and
test set (Table S6). The external validation (R2

ext.) of the
model was also calculated (Table S7) and was equal to
0.6344.

Model 1 : pIC50 ¼ −5:247227835
�MATS8c−2:264116018
�MATS3sþ 3:344208710
� ETA EtaP F−0:082468094
� RDF95mþ 2:449569658 ð5Þ

Figure 6 presents a graph of the experimental activity
against the predicted toxicity of the compounds. Figure 7

Fig. 5 William’s plot of the applicability domain

Table 5 Statistical parameters of built models

Parameter Model 1 Model 2 Model 3 Model 4

Friedman LOF 0.081427 0.161877 0.176692 0.178387

R-squared 0.865187 0.731993 0.707465 0.704658

Adjusted R-squared 0.831483 0.664991 0.634331 0.630823

Cross validated R-squared 0.778806 0.550227 0.438354 0.483458

Significant regression Yes Yes Yes Yes

Significance-of-regression F-value 25.67064 10.92497 9.673568 9.543635

Critical SOR F-value (95%) 3.055818 3.055818 3.055818 3.055818

Replicate points 0 0 0 0

Computed experimental error 0 0 0 0

Lack-of-fit points 16 16 16 16

Min expt. error for non-significant LOF (95%) 0.104609 0.147494 0.154096 0.154833
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is a graph of the standardized residuals against experimen-
tal toxicity while Fig. 8 presents the domain of applicabil-
ity of the built model.

3.3 Molecular docking
Molecular docking studies were carried out to investi-
gate the binding affinity and types of interactions be-
tween compounds 25 and 32 (Fig. 1) and the androgen
receptor. The binding affinity, category, and type of
interaction between each compound and the receptor
are presented in Table 8. Plate 2 presents the 2D inter-
action between compound 25 and the receptor while
Plate 3 presents the 2D interaction between compound
32 and the receptor.

4 Discussion
In silico methods are invaluable computer aided tech-
niques employed in obtaining and optimizing poten-
tial drug leads and candidates. QSAR is a variant of
the Quantitative Structure Property Relationship
(QSPR) approach. QSAR models the activity of a set
of compounds as a linear combination of certain mo-
lecular descriptors. Molecular descriptors are numbers
that describe certain molecular properties of a com-
pound [5, 25]. A robust QSAR model employs mo-
lecular descriptors which significantly affect the
activity of the compounds. A QSAR model can be
employed in predicting the activity of other similar
compounds [18]. The built QSAR model had internal
validation parameters (R2 = 0.7792, R2

adj. = 0.7240,
Qcv

2 = 0.6607) which are similar to those reported for
a robust model [20]. The square of the coefficient of

determination (R2 and R2
adj.) is a measure of the vari-

ation in the activity of the compounds which can be
explained by the model. The built model explained at
least 70% (0.7) of the variation in the activity of the
compounds. Qcv

2 as earlier defined measures the de-
gree to which the built model can generalize over an-
other independent dataset of phenylpiperazine
compounds [21]. The model built had at least a 66%
(0.66) probability of generalizing over any dataset of
phenylpiperazine compounds. The external coefficient
(R2

ext.) of 0.6049 obtained is similar to that reported
for a model with high predicting capacity [20]. A ro-
bust model is characterized by poorly correlated mo-
lecular descriptors and VIF values less than 10.0 [18].
Table 3 presented the correlation between the mo-
lecular descriptors in the model as well as their VIF
and mean effect values. The descriptors were ob-
served to be poorly correlated (R < 0.42). The VIF
values obtained (< 2.5) revealed that descriptors were
poorly correlated and as such, each molecular de-
scriptor can be considered to make a significant con-
tribution to predicting the activity of the compounds.
Mean effect studies (Table 3) revealed that the mo-
lecular descriptors RHSA and VR3_Dzp had the high-
est significant positive effect on the activity of the
compounds while Kier3 and VE3_Dzi had the highest
negative impact on the activity of the compounds.
The coefficient of determination R2

train and R2
test ob-

tained (Fig. 3) highlights the robustness and predict-
ing power of the model while the random spread of
the standardized residuals (Fig. 4) indicates the ab-
sence of systematic errors [19]. The domain of applic-
ability of the model is the surface space where
predictions made by the model can be reliably
employed for further theoretical studies or experimen-
tal applications [23]. The domain of applicability (Fig.
5) revealed the presence of four outliers (compounds
2, 8, 26, and 31).
QSTR is also a variant of the QSPR approach, and

it models the toxicity of compounds as a linear com-
bination of molecular descriptors. QSTR models are
built on the same premise as QSAR models. The
QSTR model built explained at least 80% (R2 and
R2

adj. > 0.8) of the variation in the toxicity of the

Table 6 Description and class of molecular descriptors in model
1

Descriptor Description Class

MATS8c Moran autocorrelation - lag 8/weighted by charges 2D

MATS3s Moran autocorrelation - lag 3/weighted by I-state 2D

ETA_
EtaP_F

Functionality index EtaF relative to molecular size 2D

RDF95m Radial distribution function - 095/weighted by
relative mass

3D

Table 7 Correlation, VIF, and mean effect of molecular descriptors

MATS8c MATS3s ETA_EtaP_F RDF95m VIF Mean effect

MATS8c 1 1.985406 − 0.11295

MATS3s − 0.67158 1 2.263527 0.012116

ETA_EtaP_F − 0.13679 0.380611 1 1.217369 1.304967

RDF95m 0.117553 0.06594 − 0.02682 1 1.065157 − 0.20414
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model. The cross validated R-squared (Q2
cv = 0.7788)

and external coefficient of determination (R2
ext. =

0.6344) obtained were similar to those reported for a
robust model [20]. The molecular descriptors were
observed to be poorly correlated, having VIF values
less than 2.0. The molecular descriptor ETA_EtaP_F
was observed to have the highest positive impact on
the toxicity of the compounds. Figure 6 showed the
built QSTR model to have a high predicting ability,
posing R2

train and R2
test values of 0.8652 and 0.6317.

The model was also observed to have no systematic
error (Fig. 7), and the domain of applicability plot
(Fig. 8) revealed the presence of only one outlier
(compound 4). The QSAR and QSTR models built
can be employed in ligand based compound design to
design novel phenylpiperazine compounds with better
anti-proliferative activity and less toxicity.

Molecular docking is an in silico approach that investi-
gates the binding interaction between a ligand and recep-
tor. A receptor is a macromolecule, usually an enzyme,
biological receptor, tissue, and so on. Molecular docking is
primarily concerned with the binding affinity (or energy)
and type of interaction between the receptor and ligand
[26, 27]. Findings from molecular docking studies are
employed in in silico compound design via structure based
methods. The binding affinity and types of interactions be-
tween compounds 25 and 32 and the androgen receptor
were presented in Table 8. Compound 32 was observed to
form more non-bonding interactions with the androgen
receptor, and this accounts for its relatively higher binding
affinity (− 7.00 kcal/mol). It was observed to have interac-
tions with threonine (THR755), arginine (ARG752) pro-
line (PRO801), and phenylalanine (PHE754) amino acid
residues of the receptor and compound 25 on the other
hand for interactions with glutamic acid (GLU772),

Fig. 6 Experimental toxicity against predicted toxicity

Fig. 7 Standardized residuals against experimental toxicity
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Fig. 8 William’s plot of the applicability domain

Table 8 Binding affinity and interaction between compounds 25 and 32 and the androgen receptor

Molecule Binding
affinity (kcal/mol)

Interaction Amino acid
residue

Distance (Å)

Category Type

25 − 6.40 Halogen Halogen (fluorine) GLU772 3.13077

Hydrophobic Pi-pi stacked TYR781 3.79051

Pi-alkyl ARG779 4.90829

32 − 7.00 Hydrogen bond Conventional hydrogen bond THR755 2.21195

Hydrophobic Pi-sigma THR755 3.55928

Alkyl ARG752, PRO801 4.57691, 5.43965

Pi-alkyl PHE754, ARG752 4.98372, 4.33078

Plate 2 2D structure of the interaction of compound 25 and the androgen receptor (PDB ID: 5T8E)
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tyrosine (TYR781), and arginine (ARG779) protein resi-
dues. Furthermore, it was observed that the hydrogen
bond interaction (bond distance = 2.21195 Å) had a
greater stabilizing effect compared to the halogen inter-
action (bond distance = 3.13077 Å). Shorter bonds hold
atoms closer to each other and as such are stronger than
longer ones. The findings from the molecular docking
studies can be employed in the in silico design of novel
phenylpiperazine compounds via structure based design.
The compounds employed in this study have been re-

ported to show in vitro cytotoxic activity against the
DU145 prostate cancer cell lines [12, 13]. The regression
models built revealed the molecular descriptors which
significantly affect the cytotoxicity of the compounds.
Furthermore, the models provide a platform upon which
novel phenylpiperazine compounds can be designed via
the ligand based design approach.

5 Conclusion
This study employed variants of the Quantitative Struc-
ture Property Relationship approach for the in silico
studies of some phenylpiperazine compounds. The vari-
ants employed were QSAR and QSTR techniques. The
study built two robust models to predict the toxicity
and anti-proliferative activity of the phenylpiperazine
compounds against normal prostate epithelial cells and
the DU145 prostate cancer cell lines. Both models were
built using the Multilinear Regression–Genetic Func-
tion Algorithm method available on the Biovia’s Mater-
ial Studio version 8.0 software. Both models had
statistical parameters: R2 > 0.7, R2

adj. > 0.7, Q2
cv > 0.6,

R2
ext > 0.6, R2

train > 0.7, and R2
test > 0.7 which were

similar to those reported for robust models. The activ-
ity of the compounds was revealed to be strongly
dependent on the molecular descriptors VR3_Dzp,
VE3_Dzi, Kier3, RHSA, and RDF55v. The toxicity of
the compounds, on the other hand, was observed to be
strongly dependent on the molecular descriptors

MATS8c, MATS3s, ETA_EtaP_F, and RDF95m. Mo-
lecular docking studies were also carried out between
compounds 25 and 32 and the androgen receptor. Mo-
lecular docking studies revealed that compound 25
formed halogen and hydrophobic interactions with a
binding affinity of − 6.40 kcal/mol while compound 32
form hydrogen and hydrophobic bond interaction with
a binding affinity of − 7.00 kcal/mol with the receptor.
This study provides insight on the activity and toxicity
of phenylpiperazine compounds and also provides in-
formation that can be employed in in silico design of
other phenylpiperazine compounds via ligand based
and/or structure-based design methodology.
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