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Abstract

distance towards the outer cylinder as time passes.

both walls of the cylinders.

Background: Navier-Stokes and continuity equations are utilized to simulate fully developed laminar Dean flow with
an oscillating time-dependent pressure gradient. These equations are solved analytically with the appropriate boundary
and initial conditions in terms of Laplace domain and inverted to time domain using a numerical inversion technique
known as Riemann-Sum Approximation (RSA). The flow is assumed to be triggered by the applied circumferential
pressure gradient (azimuthal pressure gradient) and the oscillating time-dependent pressure gradient. The influence of
the various flow parameters on the flow formation are depicted graphically. Comparisons with previously established
result has been made as a limit case when the frequency of the oscillation is taken as 0 (w = 0).

Results: It was revealed that maintaining the frequency of oscillation, the velocity and skin frictions can be made
increasing functions of time. An increasing frequency of the oscillating time-dependent pressure gradient and relatively
a small amount of time is desirable for a decreasing velocity and skin frictions. The fluid vorticity decreases with further

Conclusion: Findings confirm that increasing the frequency of oscillation weakens the fluid velocity and the drag on

Keywords: Oscillating pressure gradient, Dean flow, Unsteady, Riemann-Sum Approximation (RSA)

1 Background

Research work on unsteady fully developed laminar
flow attributed to circumferential pressure gradient
(unsteady Dean flow) and oscillating pressure gradient
has remained very active in the past decade due its
increasing applications in hemodynamics, biofluid me-
chanics, and  engineering. The  underlying
phenomenon of fluid flow due to heat transfer has its
setback as heat alters the rheological properties of
fluids in most of the systems in the aforementioned
applications. Consequently, it will be desirable to de-
sign systems in which the flows are driven by pres-
sure and not convective current.
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A theoretical analysis on laminar steady flow due to
constant azimuthal pressure gradient in a channel can
be dated back to the work of Dean [1, 2]. Richardson
and Tyler [3] and Sexl [4] undertook an investigation
on the motion of a viscous and incompressible fluid
induced by an oscillating pressure gradient in a
straight circular pipe. In context of blood flow in the
human arterial system, the fully developed flow of a
viscous and incompressible fluid with imposed peri-
odic pressure gradient in a circular pipe was exam-
ined by Womersley [5]. Uchida [6], on the other
hand, gave the exact solution for the steady motion
of a viscous and incompressible fluid in a circular
pipe driven by pressure gradient oscillating about a
non-zero frequency. Afterwards, extensive survey has
been carried out both experimentally and theoretically
on this field of research by many workers. In an
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attempt to have an overview of this study, we shall
consider the work of Seth and Jana [7], Mullin and
Greated [8], Drake [9], Smith [10], and Badr [11].

Chamkha [12], using the cosine Fourier series and
method of separation of variables, performed an analyt-
ical evaluation on transient flow of a viscous and elec-
trically conducting fluid in a channel saturated with
non-conducting dusty fluid particles in the presence of
applied transverse magnetic field and an oscillating pres-
sure gradient in the direction of flow. A fully developed
flow due to an oscillatory pressure gradient with time-
dependent curvature in a tube was reported by Waters
and Pedley [13]. In recent past, Ansari et al. [14] solved
numerically Navier-Stokes equations responsible for the
motion of a viscous and incompressible fluid through a
pipe driven by an oscillatory pressure gradient.

With regard to the continuing investigation, Tsangaris
et al. [15] and Tsangaris and Vlachakis [16] reported the
effect of an oscillating pressure gradient on unsteady
laminar fully developed flow in the region between two
concentric cylinders. The exact solution for unsteady ro-
tating flow of a generalized Maxwell fluid in an infinite
straight circular cylinder with oscillating pressure gradi-
ent was proposed by Zheng et al. [17]. Unsteady fully de-
veloped flow of a rarefied gas due a harmonically
oscillating pressure gradient in a straight circular tube
was studied by Tsimpoukis and Valougeorgis [18].

As the trend continues to unfold and facts are
emerging, the phenomenon of an oscillating time-
dependent pressure driven flow has not been fully
understood even though experiments have been car-
ried out and interpretation of the observable behav-
iors has been formulated. Jha and Yusuf [19] in an
attempt to understand transient flow formation due
to a steady circumferential pressure gradient (azi-
muthal pressure gradient) in a composite annulus,
solved semi-analytically the governing momentum
equations accountable for the flow in terms of modi-
fied Bessel functions. In their work, they utilized a
numerical inversing technique known as Riemann-
Sum Approximation approach (RSA) in transforming
the Laplace domain solution to time domain and con-
cluded that velocity of the fluid is an increasing func-
tion of time. Other related literatures that adopted
this method of solution include the work of Jha and
Odengle [20], Yusuf and Gambo [21], and Jha and
Yahaya [22].

Recently, Jha and Yahaya [22, 23] adopting the same
method of solution as Jha and Yusuf [19], scrutinized
unsteady Dean flow of a viscous and incompressible
fluid with constant pressure gradient. In their work,
they considered the flow in a horizontal concentric
cylinder and later extended the work to the case
when the walls of the cylinder are porous in order to
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superimpose the radial flow. They obtained that an
increasing time is desirable for an optimum velocity
and skin friction (see Jha and Yahaya [22]). In
addition, Jha and Yahaya [23] reported that the fluid
velocity and skin friction are increasing functions of
injection and time.

However, in spite of all these contributions, no research
work has been done to semi-analytically examine the influ-
ence of an oscillating time-dependent pressure gradient on
Dean flow. Although, there is a general agreement that the
annular effects are influenced by time, frequency, and amp-
litude of the oscillating pressure gradient. However, other
facets like the behavior of fluid in the annular gap with an
increasing time at fixed frequency and amplitude were not
elucidated. The aim of this article is to extend the work of
Jha and Yahaya [22] by considering an oscillating time-
dependent pressure gradient in addition to the azimuthal
pressure gradient. The governing momentum equations
are solved analytically in Laplace domain, and the Laplace
domain solution is transformed to time domain using a nu-
merical inversing technique known as Riemann-Sum Ap-
proximation  (RSA). Comparison with previously
established results is made at special case.

2 Methods

Unsteady fully developed laminar circumferential flow of a
viscous and incompressible fluid in an infinite horizontal
concentric cylinder is considered. It is assumed the cylin-
ders are fixed and the fluid is Newtonian. The Z'-axis is
taken as axis of the cylinder in the horizontal direction.
The radii of the inner and outer cylinder are r; and r,, re-
spectively (see Fig. 1). Initially, at time ¢ * <0, it is assumed
that the fluid is at rest. At £ >0, the flow is set in motion
by the applied circumferential pressure gradient (3—{;) and

the oscillating time-dependent pressure gradient in the dir-
ection of flow. The Navier-Stokes and continuity equations
for unsteady fully developed (', = 0) flow of viscous in-
compressible fluid written in polar coordinate systems as
functions of time and radial coordinates. The following
partial differential equations are given as follows:

o(r'u /
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As mentioned earlier, the cylinder is of infinite length
and the flow is fully developed, thus

Wy =0 (4)

Following the approach of Tsangaris and Vlachakis [16],
the governing momentum equation can be written as

uW*  op
P =3, (5)
a_u’_ ~ cos(w’ot’)a_P
Por ~ Y o
u low o
(G ) ©

The initial and boundary conditions under consider-
ation for the problem are
t<0:u’ =0forr <r’ <ry

/ W=0atr=n
t 0 7
> {u’:Oatr'zrg 7)

Equations (5)—(7) has been rendered dimensionless
using the following dimensionless quantities

Subject to the following initial and bound boundary
conditions
t<0:U=0for1<R<)

t>o{U:° atR=1

U=0 atR=1 (10)

Employing the classical Laplace transform technique, Egs. (9)
and (10) are transformed to the Laplace domain using U(R, s)
= [ U(R, t)e ™ *dt where s is the Laplace parameter and (s >
0). Equations (9) and (10) in the Laplace domain are given as

U 1dU u

u s
T (14sR) = - 11
& Trar " TR @ ReEtony W
Under the no slip boundary condition
U=0atR=1
= 1
{UzOMR:A (12)

Following the work of Tsangaris et al. [15], the linear
non-homogeneous differential equation in Eq. (11) can
be reduced using the given transformation below

1

URs) = Un(Ros) + pra= oy

(13)

where U}, (R, s) is the homogeneous solution of Eq. (11).
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Thus, employing Eq. (13), the exact solution of Eq.
(11) in the Laplace domain subject to boundary con-
ditions (12) is given below

U(R,s) = BiI1(R\/s) + B2K1(RV/s)
1

- 14
+ R(s*> + w?) (14)
_ Ki(Av5) =4 'K (v5)
Where  Bi = om0 (o - LAk avE] B2

— A~ 'N(V5) - [i(AWG)
T ()L AVEKL(VE) - Li(VEK1(AVS)]

The skin frictions at the outer surface of the inner
cylinder and the inner surface of the outer cylinder
are derived by differentiating Eq. (14) at R=1 and

R =, respectively

= Vs[Bily(Vs) - BoKa (V)] -

(15)

= V5[Bil, (\5) - BoKo (M5)] -

2
A% (s2 + w?)
(16)

The vorticity of the fluid in the annular gap is given by

(R, S) = 713% (RU(Ra S))

= V5[Bil (Rv/5) - BK» (Rv5)] -

(17)

It is relevant to note that the above Laplace domain
solutions in Eq. (14)—(17) are to be transformed in
order to determine the velocity, skin frictions and
vorticity in time domain. Due to the intricate nature
of the closed-form solutions, a numerical inversing
procedure known as Riemann-Sum Approximation
(RSA) employed by Jha and Odengle [20], Yusuf and
Gambo [21], and Jha and Yahaya [22, 23] which is re-
markable for its precision has been utilized in trans-
forming Eq. (14)—(17) to time domain as follows:

_ 0 ‘
Z(I;’S) 4 Re <; Z(R.e + ?) (- 1)”]

(18)

L
Z(R,t) = eT

Where Z constitutes U, 7 or 5 as the case may be,
Re is the real part of the summation, i =+/-1 the
imaginary number, Q is the number of terms involve
in the summation, and & is the real part of the
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Bromwich contour that is used in inverting Laplace
transform. The Riemann-Sum Approximation (RSA)
for the Laplace inversion involves a single summation
for the numerical computation, of which its exactness
is dependent on the value of ¢ and the truncation
error prescribed by Q. Following Tzou [24], taking et
to be 4.7 gives the most desirable result.

In order to ascertain the validity of the present ana-
lysis, comparison with previously established results has
been tabulated when the frequency of the oscillating
time-dependent pressure gradient is taken as 0 (w=0)
Tables 1 and 2

3 Results

In an attempt to understand the influence of time,
frequency of oscillating time-dependent pressure
gradient and the annular gap on the velocity, skin
frictions and vorticity, a MATLAB program has
been written to compute and generate line graphs
and numerical values for the velocity, skin friction
and vorticity. The present parametric study has
been performed over a reasonable range of values
0.02<t<0.2 with £=0.05 taken as reference point,
0<w<10m, = taken as reference point and A =
2.0. The effects of the various dimensionless param-
eters on the flow formation are depicted graphically
in Figs. 2, 3, 4, 5, 6, 7, 8,9, 10, 11, 12, and 13. The
combined action of a growing time, an increasing fre-
quency of oscillating time-dependent pressure gradient
and constant pressure gradient on the azimuthal velocity
profile are shown in Figs. 2, 3, and 4. The effects of the

Table 1. Comparison of the present results obtained using the
Riemann-Sum Approximation approach (RSA) with those of Jha
and Yahaya [22] for the transient state velocity

Velocity profile

t A Present work RSA (w=0) Jha and Yahaya [22]
exact solution
02 1.2 0.0530 0.0600
14 0.0707 0.0813
1.6 0.0645 0.0745
18 0.0402 0.0460
04 1.2 0.0591 0.0600
14 0.0800 0.0813
16 0.0733 0.0745
18 0.0453 0.0460
SS 12 0.0600 0.0600
14 0.0813 0.0813
1.6 0.0745 0.0745
1.8 0.0460 0.0460
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Table 2 Comparison of the present results obtained using the Riemann-Sum Approximation approach (RSA) with those of Jha and

Yahaya [22] for the transient state skin frictions

Skin friction at R=1

Skin friction at R=A

t A Present work RSA (w =0) Jha and Yahaya [22]
exact solution
02 12 0.0968 0.0967
14 0.1871 0.1870
16 0.2706 02713
18 03390 03502
04 12 0.0968 0.0967
14 0.1871 0.1870
1.6 02714 02713
1.8 0.3499 0.3502
SS 12 0.0967 0.0967
14 0.1870 0.1870
1.6 02713 02713
1.8 0.3502 0.3502

Present work RSA (w =0) Jha and Yahaya [22]

exact solution

0.0857 0.0856
0.1496 0.1495
0.1982 0.1987
0.2292 0.2376
0.0858 0.0856
0.1496 0.1495
0.1988 0.1987
0.2373 0.2376
0.0856 0.0856
0.1495 0.1495
0.1987 0.1987
0.2376 0.2376

controlling parameters on skin friction on the outer
surface of the inner cylinder and inner surface of the
outer cylinders are depicted in Figs. 5, 6, and 7 and
Figs. 8, 9, 10, respectively. The rotation of fluid pro-
duced by the azimuthal pressure in the annular gap
when the velocity is acted upon by time, frequency of
oscillation, and constant pressure gradient are repre-
sented by Figs. 11, 12, and 13.

4 Discussion

Figure 2 shows the velocity profile as time passes
for a fixed frequency of oscillation. It is observed
that as time increases, the velocity gradually in-
creases as it attains steady state. On the other hand,
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Fig. 2 Velocity profile versus time tat w=11

the velocity profile for different values of the fre-
quency of the oscillating time-dependent pressure
gradient and a fixed value of time is presented in
Fig. 3. It is evident from Fig. 3 that as the fre-
quency of oscillation increases harmonically, the
velocity of the fluid decreases. This is ascribed to
the fact that the oscillating pressure gradient is an
increasing function of frequency alone, and its in-
crease further reduces the fluid velocity in the an-
nular gap.

Figure 4 exhibits the influence of time on a con-
stant circumferential pressure gradient when the
frequency of the oscillation is taken as 0. It is noted
that as time passes, the fluid velocity is enhanced.
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The distribution of skin friction at the outer wall of
the inner cylinder for different values of time and fre-
quency of the oscillating time-dependent pressure gradi-
ent are shown in Figs. 5 and 6. It is clear from Fig. 5
that as time passes with a fixed frequency of oscillation,
the skin friction increases and later drops with further
distance from the wall. It is interesting to note that the
reverse trend is observed as time is fixed and the fre-
quency of the oscillating time-dependent pressure gradi-
ent increases as depicted in Fig. 6.This is due to the fact
that as the frequency increases harmonically, the fluid
velocity gradually drops and consequently weakening the
skin friction on the wall.

Figure 7 shows the influence of time on the skin friction
at the outer surface of the inner cylinder with an applied
constant pressure gradient. It is seen from Fig. 7 that the

R=1,t=005

effect of time and a constant pressure gradient is to in-
crease skin friction at the outer wall of the inner cylinder.

Figure 8 shows the effect of time with a fixed fre-
quency of oscillation on skin friction at the inner wall of
the outer cylinder. It is observed that as time passes, the
skin friction increases attaining its maximum and drops
gradually towards the wall.

The variation of skin friction at the inner wall of the
outer cylinder with a fixed time and an increasing fre-
quency of the oscillating time-dependent pressure gradi-
ent is demonstrated in Fig. 9. It is seen that the skin
friction decreases as the frequency of the oscillating time-
dependent pressure gradient is increased. In addition, the
decreased is more pronounced on the walls of the cylin-
der. On the other hand, influence of time on the skin fric-
tion as the frequency of the oscillating time-dependent
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pressure gradient is taken as O is presented in Fig 10. Re-
sult shows that the skin friction decreases as time passes.
The effects of frequency of oscillation and time on
the fluid vorticity are shown in Figs. 11, 12, and 13.
It is observed that the vorticity increases initially and
subsequently weakens as time passes. Although there
is a general decrease in magnitude of the vorticity
with further distance towards the wall of the outer
cylinder as time increases, the decrease is subtle when
the frequency is no longer oscillating but rather a
constant pressure gradient as evident from Fig. 13.

5 Conclusions

The influence of time and an oscillating time-
dependent pressure gradient on Dean flow has been
analyzed. The closed-form solution of the governing
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momentum equation has been derived semi-
analytically using the Laplace transformation tech-
nique in conjunction with Riemann-Sum Approxima-
tion (RSA) as a tool for inversion. The effect of
various flow parameters on the flow formation has
been represented pictorially. Findings suggest that the
fluid velocity, skin frictions, and fluid vorticity can be
minimized by increasing the frequency of oscillation.
Furthermore, the azimuthal velocity is seen to in-
crease steadily as time passes with an imposed fre-
quency of oscillation, although the increase subtle as
seen when a constant pressure gradient is applied.

5.1 Nomenclature

Ao Amplitude of oscillating pressure gradient
r1 Radius of the inner cylinder (m)
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o °© L 9 N @
[ I R R S
T T T T T
. . . .

Vorticity ()

o
T
L

-0.15 -

02 I | L L I I I I

Fig. 11 Vorticity versus time t at w =77
. J




Jha and Gambo Beni-Suef University Journal of Basic and Applied Sciences

=
4 N o
- o N}
T T
L L L

Vorticity ()
o
o
(9]

Fig. 12 Vorticity versus frequency w at t=0.05

1 11 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

r, Radius of the outer cylinder (m)
P Static pressure (Kg/ms?)

R Dimensionless radius

s Laplace parameter

t Dimensionless time (s)

Uy Reference velocity (m/s)

u’, Radial velocity (m/s)

u' Circumferential velocity (m/s)
U Dimensionless velocity

5.2 Greek letters

A Radii ratio (r,/r;)

p Fluid density (Kg/m®)

n Vorticity

7 Skin friction

¢ Dynamic viscosity of the fluid (Kg/ms)

® Frequency of oscillating time-dependent pressure
gradient
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