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Abstract

Background: Human immunodeficiency virus infection and acquired immune deficiency syndrome (HIV/AIDS) is a
spectrum of conditions caused by infection with the human immunodeficiency virus (HIV). Antiretroviral therapy
(ART) against HIV infection offers the promise of controlling disease progression and prolonging the survival of HIV-
infected patients. Reverse transcriptase (RT) inhibitors remain the cornerstone of the drug regimen to treat AIDS. In
this direction, by using group-based QSAR study (G-QSAR), identification of the structural need for the development
of lead structure with reverse transcriptase inhibition on 97 reported structures was carried out. Docking analysis
was performed further and suggested the structural properties required for binding affinity with the receptor. The
molecules in the data set were fragmented into six (R1, R2, R3, R4, R5, and R6) by applying the fragmentation
pattern. Three G-QSAR models were selected based on the statistical significance of the model. The molecular
docking study was performed to explain the structural properties required for the design of potent HIV-RT
inhibitors.

Results: The statistically validated QSAR models reveal the presence of higher hydrophobic groups containing
single-bonded –Br atom, 2 aromatic bonded –NH group with less electronegativity, and entropic interaction fields
at R2 essential for better anti-HIV activity. The presence of a lipophilic group at R3, oxygen and sulfur connected
with two aromatic bonds at R4, and –CH3 group at R5 was fruitful for reverse transcriptase inhibition. Docking
studies of the selected inhibitors with the active site of reverse transcriptase enzyme showed hydrogen bond, Van
der Waal’s, charge, aromatic, and π–π interactions with residues present at the active site.

Conclusion: The results of the generated models provide significant site-specific insight into the structural
requirements for reverse transcriptase inhibition during the design and development of novel anti-HIV compounds.
Molecular docking study revealed the binding interaction between the ligand and the receptor which gave insight
towards the structure-based design for the discovery of more potent compounds with better activity against HIV
infection.

Keywords: Quantitative structure activity relationship, G-QSAR, Antiretroviral therapy (ART), Anti-HIV, Reverse
transcriptase inhibitor, Molecular docking
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1 Background
Human immunodeficiency virus (HIV) attacks the body’s
immune system, specifically the CD4 cells (T cells),
which help the immune system fight off infections. HIV
reduces the number of CD4 cells in the body, making
the person more likely to get other infections or
infection-related cancers [1, 2]. Over time, HIV can des-
troy so many of these cells that the body cannot fight off
infections and leads to acquired immunodeficiency syn-
drome (AIDS), the last stage of HIV infection [3]. It is
one of the world’s most significant public health chal-
lenges, particularly in low- and middle-income countries.
In 2017, approximately 36.9 million people (35.1 million
adults) were living with HIV and 1.8 million people be-
came newly infected, globally. Nearly 1 million people
died from AIDS-related illnesses in 2017 [4]. The medi-
cine used to treat HIV is called antiretroviral therapy
(ART) [5, 6]. There are various antiretroviral drugs avail-
able in the market such as entry or fusion inhibitors, nu-
cleoside or non-nucleoside reverse transcriptase
inhibitors (NRTI/NNRTI), integrase inhibitors (IN), pro-
tease inhibitors (PI), and maturation inhibitors [7]. The

resistance of the virus to the available antiretroviral
drugs is the biggest challenge for ART, and the discovery
of new anti-HIV agents to overcome this resistance is
continually required [8]. Human immunodeficiency virus
(HIV) is a retrovirus because of the presence of an en-
zyme reverse transcriptase (RT), which possesses both
RNA-dependent DNA polymerase (RDDP) and
ribonuclease-H (RNase H) activities that work in tandem
to convert viral genomic single-stranded RNA to
double-stranded DNA by the process reverse transcrip-
tion and by retrotransposon, mobile genetic elements
are then integrated into the DNA of the infected host
cell to cause disease [9–11]. Hence, reverse transcriptase
inhibitors both nucleoside reverse transcriptase inhibitor
(NRTI’s) and non-nucleoside reverse transcriptase in-
hibitor (NNRTI’s) are active against HIV which inhibits
the process reverse transcription that leads to inhibition
of formation of DNA from viral RNA (Fig. 1) for inser-
tion into the host DNA sequence cause treatment of the
disease [12, 13].
Traditional drug development methods are based on

random screening, which has a major disadvantage like a

Fig. 1 Mechanism of reverse transcriptase inhibitors in HIV
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lengthy, expensive, and intellectual method. To over-
come these disadvantages in the recent decade, the
emergence of computer-aided drug development
(CADD) processes are taken place [14]. These methods
are run at a lower cost and give a viable option for the
screening of potential drug candidates. The number of
methodologies is involved in the CADD, out of this
quantitative structure-activity relationship (QSAR) is
one such efficient chemoinformatic tool, which aims to
identify and quantify the relationship between molecular
structure and certain physicochemical properties for the
development of predictive models [15]. QSAR models
like 2D and 3D are having their own merits and de-
merits. Generated 2D QSAR models are only correlating
the physiochemical properties of the molecules with
their biological activity. These models do not specify the
site at which modification is required for enhancement
of activity. For this purpose, 3D-QSAR models are suit-
able for the prediction of the activity of the compounds
based on their 3D grid points generated around the
aligned set of molecules. One of the major limitations of
the 3D-QSAR method is its dependency on molecular
alignment and conformers chosen for the alignment.
This becomes crucial when the information of confirm-
ation is absent or when the molecular framework is not
rigid. Hence, it is clearly understood that there is a re-
quirement of a QSAR method which will allow flexibility
to study molecular sites of interest and not depend upon
conformational analysis and alignment of the molecules
to provide information about sites and nature of inter-
action required for activity. Fragment-based G-QSAR
has shown promise in current drug discovery and lead
optimization. This method involves the calculation and
evaluation of descriptors only for the substituent groups
or molecular fragments instead of the whole molecule
[16]. The biggest advantage of this method is it can be
applied for both congeneric and non-congeneric series.
G-QSAR method is helpful over 2D- and 3D-QSAR
methods because this method provides useful informa-
tion about the significant substitution sites, their chem-
ical nature, and overall interaction that affects the
therapeutic activity of the compounds [17, 18]. The
focus of the present study was to develop fragment-
based G-QSAR model correlating the biological activity
of the molecular fragments with the 2D fragment-based
descriptors and molecular docking study to interpret the
structural requirement and the mechanism of the bind-
ing interaction between the ligand and the receptor on a
congeneric series of 97 compounds taken from reported
literature. The information derived from such predictive
models could be utilized for accurate prediction of bio-
logical activities (dependent variables) of molecular frag-
ments based on their chemical structure and properties
(independent variables) that can be utilized as the

building blocks for designing of novel anti-HIV mole-
cules before synthesis and experimental testing [19, 20].
The result of the docking study can improve the binding
process of ligands with its receptor and provide insights
into the structural features related to the activities of the
new drug compounds.

2 Methods
2.1 Data set
To perform the present computational study, a data set
of 97 compounds having reported IC50 values was taken
from the literature [21]. The selected compounds for the
study shared the same activity and assay procedure with
significant variations in their structure and potency. In-
hibitory potencies of the compounds in the data set have
IC50 value ranges from 0.63 to 19.5 nm which were fur-
ther converted to pIC50 by using the mathematical for-
mula given as Eq. 1:

pIC50 ¼ − log10 IC50ð Þ ð1Þ

The chemical structure of the congeneric dataset was
prepared by using MarvinSketch. The conversion of 2D
structures to 3D structures and energy minimization of
3D compounds were performed by the help of force field
batch minimization modules of the VLifeMDS software
[22]. Energy minimization is performed to optimize the
molecules up to their lowest stable state of energy. A
template which is the representative of the entire mole-
cules of the dataset under study was drawn with the
presence of a dummy atom at the substitution sites. The
template has 6 substitution sites depicted as R1–R6 in
Fig. 2. The study was performed by using VLife MDS
version 4.6 from VLife Sciences Technologies Pvt Ltd,
Pune, India.

2.2 Calculation of descriptors for G-QSAR modeling
This step is performed by using the G-QSAR module of
VLife MDS. The common scaffold (Fig. 2) was used as a
template for the generation of fragment-based G-QSAR
models. The optimized molecules were imported into
the QSAR worksheet, and their pIC50 values were incor-
porated manually, followed by the calculation of various
physiochemical descriptors for the different substitution
sites of the compounds [23]. A total of 321 physiochem-
ical descriptors for classes like individual physiochemical
descriptors like molecular weight, hydrogen bond donors
and acceptors, retention index (chi), atomic valence con-
nectivity index (chiv), chain path count, cluster, path
cluster, kappa, estate numbers, estate contributors, and
information theory index were calculated for the groups
to present at the substitution site in each of 97 mole-
cules presented in Table 1.
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2.3 Data selection and building of G-QSAR model
The data set was divided into a training set of 75 com-
pounds and a test set of 22 compounds based on Sphere
Exclusion algorithms so that the activity of the selected
test set is uniformly distributed throughout the activity
column of the compounds [19]. Unicolumn statistics is
performed for both training and test series to check the
spread of data. The results of the unicolumn statistics
study are presented in Table 2. From the result, the test
set is interpolative, i.e., the activity of the test set is de-
rived within the activity range of the training set. The
mean and standard deviation of the training and test sets
provide insight into the relative difference of mean and
point density distribution of the two sets. The average
value of the test set is higher than the training set shows
the presence of relatively more active molecules as com-
pared to the inactive ones.
For the building of G-QSAR models, a simulated an-

nealing algorithm (SA) was utilized. After that, multiple
G-QSAR models were generated using multiple linear
regression (MLR), partial least squares regression
(PLSR), and principal component regression (PCR).

2.4 Validation of the developed G-QSAR model
For validation of the developed G-QSAR models, the
data set is divided into two sets as training and test sets.
This division is based on the substitution groups and the
inhibition of compounds. The training set is employed
to produce the QSAR model, and the test set is used to
validate the quality of the developed models [24]. The
statistical parameters of the developed models and in-
ternal and external validations are adopted for testing
the fitness, stability, and predictive ability of the QSAR

models [17]. The models are validated by considering
many statistical parameters such as the number of com-
pounds in regression (n), the number of variables (k), de-
gree of freedom, squared correlation coefficient (r2),
cross-validated correlation coefficient (q2), Fisher’s value
(F test), and r2 for the external test set, (pred_r2) for ex-
ternal validation. For the internal predictive ability of the
model, leave-one-out (LOO) method is used, showed as
the value of q2 (cross-validated explained variance). Ex-
ternal validation of the developed QSAR models is per-
formed by measuring the predictive power of the
current models on the external test set by calculating
the pred_r2 value as given in Eq. 2, which gives the stat-
istical correlation between predicted and actual activities
of the test set compounds

pre r2 ¼ 1‐

P
yi − y

_
i

� �2

P
yi − ymeanð Þ2 ð2Þ

where yi, y
_
i, and ymean are the actual, predicted activity

of the ith molecule in the test set, and the average activ-
ity of all the molecules in the test set, respectively.
Internal validation of the developed QSAR models is

performed by calculating the q2 value as given in Eq. 3,
which gives the statistical correlation between predicted
and actual activities of the training set compounds.

q2 ¼ 1‐

P
yi − y_i

� �2

P
yi − ymeanð Þ2 ð3Þ

where yi, , and ymean are the actual, predicted activity
of the ith molecule in the training set, and the average

Fig. 2 Molecular template of 4-arylthio and 4-aryloxy-3-iodopyridine-2(1H)-one derivatives utilized for fragmentation pattern (R1–R6 are
substitution sites)

Panigrahi et al. Beni-Suef University Journal of Basic and Applied Sciences            (2020) 9:48 Page 4 of 18



Table 1 Chemical structure and observed and predicted activities (pIC50) for the training and test set compounds
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activity of all the molecules in the training set,
respectively.
The generated models were considered having a sig-

nificant predictivity when the squared correlation coeffi-
cient (r2) between physiochemical descriptors
(independent variable) and activity (dependent variable)
was over 0.6. The developed model possesses significant
internal and external predictivity when the cross-
validated correlation coefficient of the leave-one-out
method (q2) > 0.6, the correlation coefficient of the
training set (pred_r2) > 0.5, and higher value of F test.

2.5 Molecular docking study
A molecular docking study is a computational approach for
searching a ligand that can fit both geometrically and ener-
getically into the binding site of a target to show biological
activity [25]. Docking study helps to predict drug/ligand or
receptor/protein interactions by identifying the suitable ac-
tive sites in the protein, getting the best geometry of ligand-
receptor complex, and calculating the energy of interaction
for different ligands to design more effective ligands with
good binding affinity against RT enzyme [26].

2.5.1 Protein preparation
For protein preparation, three-dimensional crystallo-
graphic structures, and the coordinates of the target

protein (PDB-ID: 1S6G) having resolution 3.0 Å is re-
trieved from the RCSB PDB database (https://www.rcsb.
org). The protocol for protein preparation was per-
formed by deleting the bounded ligand, inserting missing
atoms in incomplete residues, deleting alternate confor-
mations, and modeling the missing loop regions with the
help of Biopredicta (homology modeling) modules of the
VLife-MDS software [27]. The final 3D structure of RT
was evaluated using Biopredicta modules; Ramachan-
dran plot showed that 87.95% of residues presented in
most favored regions (Fig. 3). Before performing docking
bond, orders of the ligands are assigned, hydrogen atoms
are added, and the water molecules which do not involve
in the interaction are deleted.

2.5.2 Protein-ligand docking
The molecular docking study was performed by using the
Biopredicta tool of the V-Life MDS software version 4.6.
The optimized and symmetrical crystalline protein struc-
ture got from Protein Preparation Wizard was used for
docking study. The energy minimization of the crystal
structure was carried out to relieve the steric clashes
among the residues due to the addition of hydrogen atoms
[28]. Crystallographic water molecules (water molecules
without H bonds) were deleted. Hydrogen bonds corre-
sponding to pH 6.8 were added considering the appropri-
ate ionization states for both the acidic and basic amino
acid residues. A grid box was generated at the centroid of
the active site for docking, and the active site was defined
with a 10 Å radius around the ligand present in the crystal
structure [29]. To test the docking parameters, all com-
pounds were docked into the catalytic pocket of the RT
enzyme (PDB-ID: 1S6Q). Finally, the best-docked struc-
ture was selected using the dock score function [30].

3 Result
3.1 Development of G-QSAR model
In the present work, effective G-QSAR model for 97
molecules belonging to the congeneric series with viabil-
ity in the biological activity is generated by calculating
fragment-based molecular descriptors. By using the
VLife MDS software, a total of 984 descriptors are calcu-
lated, and after removal of invariable columns, a total of
321 descriptors are used to generate G-QSAR models.
The sphere exclusion method with a dissimilarity value
of + 1 resulted in a training set of 75 and a test set of 22
compounds. The test set was selected as maximum
pIC50 value of the test set compounds if it was less or
equal to that of the training set and the lowest pIC50

value of the test set compound was more than or equal
to that of the training set so that the test set has been
derived from the maximum-minimum range of training
set. Multiple G-QSAR models were built using a simu-
lated annealing algorithm (SA) coupled with multiple

Fig. 3 Ramachandran plot of RT enzyme (PDB ID = 1S6Q)

Table 2 Unicolumn statistics of activity (pIC50) for training and
test set compounds for G-QSAR

Compounds Average Maximum Minimum Std. Dev Sum

Training set 0.6399 1.2999 0.0969 0.3046 40.9567

Test set 0.8303 1.0000 0.0969 0.3019 15.3789
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linear regression (MLR), partial least squares regression
(PLS), and principal component regression (PCR). Sev-
eral models were generated, and the best three out of
them are selected based on the statistical values like r2,
q2, pred_r2, F test, and standard error. The statistical pa-
rameters of each model are shown in Table 3.
The fitness plot between actual and predicted activity

for training and test set compounds provides an idea
about how well these models are trained and how well
they predict the activity of the external test set. Further,
the distribution curve of actual and predicted activity for
training and test set compounds of the developed
models is depicting closeness between the actual and
predicted activity of the compounds for training and test
sets. Descriptors like SK-hydrophobic area, SaaN-count,
Chi-3-cluster, SscHE-index, SaaNE-index, Delta epsilon-
C, SsBr count, SaaNH count, smr, SssScount,

SaaOcount, SsCH3count, 1-path count, Id-average, Chi
v3, and Chi v2 are showing contribution on the respect-
ive substitution sites.

3.1.1 Interpretation of model-I (SA-MLR)
The G-QSAR model-I was obtained by using a simulated
annealing algorithm (SA) coupled with multiple linear
regressions (MLR). The correlation equations between
activity (pIC50) and the selected parameters are
expressed by Eq. 4;

pIC50 ¼ 0:4685þ 0:5031 �0:0023ð ÞR2SKHydrophobicArea − 0:2021 �0:0757ð Þ
R2SsSHE − index − 0:0381 �0:0090ð ÞR2SaaNE − index

þ0:4132 �0:0003ð ÞR4H − acceptor Count þ 0:3217 �0:0020ð ÞR3XlogP

ð4Þ

The generated model-I was statistically significant with
predictivity, r2 = 73.11%, internal (q2), and external

Table 3 Statistical parameters of the developed G-QSAR models
Parameter Model-I (SA-MLR) Model-II (SA-PLS) Model-III (SA-PCR)

n (training/test) 75/22 75/22 75/22

Degree of freedom 83.59 89.35 80.67

r2 0.7311 0.8524 0.7124

q2 0.6874 0.6925 0.6421

F_test 44.0779 55.0374 43.4689

r2_se 0.5214 0.5778 0.5647

q2_se 0.4056 0.4265 0.4136

pred_r2 0.7325 0.7421 0.7025

pred_r2se 0.3445 0.3078 0.3487

r2 squared correlation coefficient, q2 cross-validated correlation coefficient of leave-one-out method (internal validation), F test Fisher test, Pred_r2 correlation
coefficient of the training set (external validation), SE standard error

Fig. 4 a–c Fitness plot between training and test set compounds for model-I, model-II, and model-III
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(pred_r2) validation revealed a predictive power of
68.74% and 73.25% respectively. The fitness plot between
actual and predicted activity for training and test set
compounds is given in Fig. 4a, which provides an idea
about the predictivity of the model for training and test
set compounds. Further, the distribution curve of actual
and predicted activity for training and test set com-
pounds for model-I are presented in Fig. 5a, b, depicting
closeness between the actual and predicted activity of
the compounds for training and test set. The contribu-
tion of different physiochemical descriptors towards ac-
tivity is shown in Fig. 6a.

3.1.2 Interpretation of model-II (SA-PLS)
Model-II obtained by simulated annealing algorithm (SA)
associated with partial least square regression (PLS)
expressed as Eq. 5 explains an improved correlation coeffi-
cient of r2 = 85.24%, internal (q2) and external (pred_r2)

validation predictive power of 69.25% and 74.21% respect-
ively. The higher degree of freedom (89.35), F test
(55.037), and low standard error (pred_r2se = 0.3078)
value support the robustness of the model.

pIC50 ¼ 0:4227 − 0:2014 �0:0017ð ÞR1Volume þ 0:9541 �0:0124ð Þ
R2SKHydrophobicAreaþ 0:0417 �0:0033ð Þ
R2SsBrcount þ 0:0913 �0:0002ð ÞR2SaaNHcount − 1:6448
�0:0051ð ÞR2DeltaEpsilonC − 0:2695 �0:0104ð ÞR2IdAverageþ 0:1909
�0:0057ð ÞR21PathCount − 0:1126 �0:0033ð Þ
R4chiV3 − 0:1063 �0:0033ð ÞR4chiV2þ 0:1074 �0:0001ð Þ
R3slogP − 0:1124 �0:0048ð ÞR5smr

ð5Þ

The fitness plot and the distribution curve of ac-
tual and predictive activity for training and test sets
are given as Fig. 4b, and Fig. 5 c and d show that
the minimum difference between the actual and

Fig. 5 a–f Actual vs predicted activity of training and test set compounds for model-I, model-II, and model-III
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predicted values of the compounds is a measure of the
high quality of the model. The contribution curve of de-
scriptors towards activity is presented as Fig. 6b.

3.1.3 Interpretation of model-III (SA-PCR)
The third model, model–III, was obtained by a simu-
lated annealing algorithm (SA) associated with princi-
pal component regression (PCR) expressed as Eq. 6

explaining the biological activity as a function of
some physiochemical descriptors like SKHydrophobi-
cArea, SaaNcount, Chi3Cluster, SsCH3count, SaaS-
count, and SaaOcount at their respective fragmented
substitution sites. The generated model has correl-
ation coefficient r2 = 71.24%, internal (q2) and exter-
nal (pred_r2) predictive ability of 64.21% and 70.25%
respectively.

Fig. 6 a–c Contribution plot of descriptors towards pIC50 for model-I, model-II and model-III
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Table 4 Docking score of compounds (Kcal/mol)
Compd. No Dock score

1 − 11.225

2 − 9.508

3 − 10.783

4 − 9.531

5 − 13.039

6 − 10.816

7 − 10.747

8 − 8.66

9 − 9.206

10 − 11.714

11 − 12.655

12 − 10.574

13 − 10.958

14 − 10.385

15 − 11.348

16 − 10.397

17 − 9.356

18 − 11.127

19 − 10.421

20 − 10.286

21 − 10.22

22 − 9.728

23 − 10.799

24 − 13.278

25 − 10.811

26 − 9.397

27 − 9.994

28 − 11.258

29 − 10.716

30 − 8.001

31 − 8.857

32 − 7.659

33 − 10.126

34 − 8.39

35 − 10.129

36 − 7.847

37 − 12.319

38 − 10.922

39 − 8.296

40 − 8.561

41 − 10.199

42 − 9.321

43 − 9.074

44 − 8.775

45 − 10.248

46 − 9.961

47 − 10.951

48 − 9.515

49 − 10.232

50 − 10.768

51 − 12.478

52 − 11.422

Table 4 Docking score of compounds (Kcal/mol) (Continued)
Compd. No Dock score

53 − 12.16

54 − 13.076

55 − 10.493

56 − 12.954

57 − 12.267

58 − 10.142

59 − 12.108

60 − 13.291

61 − 13.168

62 − 12.009

63 − 9.789

64 − 11.144

65 − 11.405

66 − 10.775

67 − 11.256

68 − 8.884

69 − 11.823

70 − 10.539

71 − 11.094

72 − 11.759

73 − 12.49

74 − 8.572

75 − 9.5

76 − 8.461

77 − 8.853

78 − 8.689

79 − 10.082

80 − 9.991

81 − 9.307

82 − 10.841

83 − 11.089

84 − 10.698

85 − 11.08

86 − 9.386

87 − 11.943

88 − 11.006

89 − 10.774

90 − 11.015

91 − 10.689

92 − 10.26

93 − 10.657

94 − 10.95

95 − 10.534

96 − 11.266

97 − 11.768
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pIC50 ¼ 0:3998þ 0:4215 �0:0014ð ÞR2 − SKHydrophobicArea − 0:1088 �0:0022ð Þ
R2 − SaaNcountþ 0:4545 �0:0007ð ÞR2 − chi3Clusterþ 0:3214
�0:0033ð ÞR4 − SaaScountþ 0:1163 �0:0012ð Þ
R4 − SaaOcountþ 0:1995 �0:0048ð ÞR5 − SsCH3count

ð6Þ
The fitness plot and the distribution curve of actual

and predictive activity for training and test set (Fig. 4c
and Fig. 5e, f) shows a correlation between actual and
predicted activity. Contribution curve of descriptors to-
wards activity is shown in Fig. 6c.

3.2 Molecular docking
The docking studies were carried out for 97 data set
compounds into the catalytic pocket of the prepared tar-
get RT enzyme (PDB-ID: 1S6Q) by the V-Life MDS soft-
ware. This study is useful to identify the binding potency
and poses of active molecules that reveal the molecular
mechanism of action. The compounds during docking
showed several poses, orientation, and configurations.
Each configuration is characterized by a combined score
of van der Waal’s forces, hydrogen bonding, pi inter-
action, charge interaction, halogen bond interaction, and
salt bridge interaction. The docking scores of the listed
compounds are presented in Table 4. The docking study
revealed that interactions were dominated by the hydro-
phobicity or π-aromaticity due to the presence of aro-
matic and hetero atomic rings significant for stacking
interactions. The docking interaction result of com-
pound 51 given in Table 5 reveals that the interactions
were dominated in the region of LYS-374, GLN-572,
TRP-573, PRO-574, VAL-609, PHE-610, GLU-945, and
GLU-948 amino acid residues due to the presence of the
active site in the region (Fig. 7a). The 2D-docked pose of
compound 51 in the active site of the target receptor is
shown in Fig. 7b.

4 Discussion
All three models developed during the present study are
more significant and found to have good predictivity.
Model-I developed by SA-MLR is statistically significant
and shows good predictivity for both training and test set
of compounds. The contribution plot of descriptors to-
wards pIC50 for model-I shows the positive contribution
of SKHydrophopic area (34.03%), indicates the substitu-
tion of the higher hydrophobic group like substituted aro-
matic or heterocyclic rings at R2 increase activity, while
the negative contribution of SssSHE-index (− 13.67%) and
SaaNE-index(− 2.57%) at R2 position shows –NH2 con-
nected to one bond and –SH group connected with over
one single bond are conducive for anti-HIV activity. The
positive contribution of H-acceptor count (27.95%) at R4
and XlogP (21.76%) at R3 indicates the presence of H-
bond forming elements like oxygen and sulfur at R4, and

higher lipophilic group at R3 increases drug activity by in-
creasing its binding with the receptor. G-QSAR equation
(model-II) developed by using SA-PLC algorithm shows
improved statistical study results for both training and test
set of compounds. The contribution plot shows the posi-
tive contribution of molecular weight (5.25%) at R1 which
indicates that the substitution of the bulkier group at R1
increases drug activity. The positive contribution of de-
scriptors like SKHydrophobic area (24.89%), SsBrcount
(1.08%), SaaNHcount (2.38%), and 1Pathcount (4.98%) at
R2 shows substitution of a higher hydrophobic group con-
taining more –Br atom connected with one bond, the total
number of –NH group connected with 2 aromatic bonds,
and fragment R2 of first-order increase anti-HIV activity.
Descriptors like DeltaEpsilonC (− 42.91%) and IdAverage
(− 7.03%) showing significant negative contribution to-
wards activity indicate a decrease in the contribution of
electronegativity and entropic interaction fields of the
fragment at R2 increase biological activity. The positive
contribution of slogP (2.80%) at R3 suggesting the pres-
ence of the lipophilic group at R3 enhances inhibitory ac-
tivity. Atomic valence connectivity index ChiV3 (− 2.93 %)
and ChiV2 (− 2.77%) at R4 contributes negatively towards
activity indicates the atomic connectivity index of frag-
ment R4 of order 3 and 2 decrease activity. The descriptor
smr (− 2.93 %) at R5 deleterious towards activity shows
the presence of a group having low molecular refractivity
increase enzyme inhibition. Model-III developed by SA-
PCR is also significant in predicting the role of descriptors
towards activity for both training and test set. The contri-
bution plot for descriptors and pIC50 shows a positive
contribution of SKhydrophobicArea (25.98%) and
Chi3Cluster (28.02%), and negative contribution of de-
scriptor SaaNcount (− 6.7%) at R2 means the presence of
the group having higher hydrophobicity, 3rd order cluster
chi index, and total nitrogen not connected with two aro-
matic bonds increase anti-HIV activity. The positive con-
tribution of Subaccount (19.81%) and SaaOcount (7.17%)
at R4 indicates the presence of oxygen and sulfur con-
nected with two aromatic bonds at this site increases en-
zyme inhibition activity. Descriptor SsCH3count (12.29%)
at R5 contribute positively towards activity, indicates the
presence of –CH3 group increases drug activity by in-
creasing its binding efficiency with the target site of the re-
ceptor. Molecular docking was performed for these
compounds present in the data set with the active site of
the target RT enzyme to derive the ligand-receptor inter-
action mechanism. The 2D-dock pose of compound 51
evident that the generated map of hydrophobic and
hydrophilic fields, where benzene ring and heteroatomic
(Pyridine and furan) rings are present in the chemical
structure, is buried in the hydrophobic pocket. Further
docking analysis shows the amide group of fragment R2 of
the ligand forms a hydrogen bond between amino (–NH2)
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Table 5 Docking interaction of compound 51 with the binding pocket of 1S6Q

Amino acid residue Ligand atoms Distance (A°) Interaction type

GLN572A 26C 3.708 Vander Waal’s interaction

27O 3.664

22C 3.461

24C 3.448

46H 3.354

10C 3.776

48H 3.193

49H 3.158

47H 2.835

50H 2.773

21C 3.269

22C 2.918

24C 2.916

25C 3.277

28 N 2.931

26C 3.234

28 N 3.135

28 N 2.889

53H 2.46

28 N 3.079

TRP573A 20 N 3.559 Vander Waal’s interaction

21C 3.543

25C 3.552

26C 3.649

27O 3.496

51H 3.003

3C 3.568

42H 3.016

43H 3.021

45H 2.97

19C 3.622

20 N 3.473

51H 3.251

2C 3.195

10C 3.261

22C 3.378

24C 3.387

30H 2.697

44H 2.761

52H 2.816

3C 3.814

19C 3.542

3C 3.8

4C 3.783
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Table 5 Docking interaction of compound 51 with the binding pocket of 1S6Q (Continued)

Amino acid residue Ligand atoms Distance (A°) Interaction type

9O 3.364

42H 3.094

43H 3.09

9O 3.508

11C 3.837

12C 3.616

33H 3.361

9O 3.522

11C 3.586

12C 3.456

33H 3.007

9O 3.272

11C 3.647

12C 3.591

33H 2.942

PRO608A 28 N 3.591 Vander Waal’s interaction

53H 2.703

28 N 3.624

53H 2.915

26C 3.163

28 N 2.833

VAL609A 26C 3.7 Vander Waal’s interaction

54H 2.815

23C 3.684

26C 3.758

24C 3.233

46H 2.962

47H 2.964

50H 2.957

PHE610A 28 N 3.406 Vander Waal’s interaction

49H 2.981

49H 2.957

54H 2.905

49H 2.767

22C 3.815

23C 3.543

24C 3.878

28 N 3.584

47H 3.188

50H 3.229

26C 3.303

46H 2.817

LYS622A 54H 2.938 Vander Waal’s interaction

28 N 2.978
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Table 5 Docking interaction of compound 51 with the binding pocket of 1S6Q (Continued)

Amino acid residue Ligand atoms Distance (A°) Interaction type

54H 2.881

GLU945A 17C 3.438 Vander Waal’s interaction

34H 3.143

37H 3.293

39H 3.08

11C 3.876

16C 3.783

17C 3.822

34H 3.355

39H 2.981

9O 3.45

34H 2.928

35H 2.987

5C 3.546

9O 3.144

40H 3.065

9O 3.085

39H 3.2

40H 2.82

13C 2.967

15C 2.96

37H 2.748

38H 2.585

39H 2.414

14C 3.336

15C 3.336

17C 3.396

13C 3.029

14C 3.275

40H 2.424

41H 2.598

GLU948A 1 N 3.266 Vander Waal’s interaction

29H 3.211

31H 3.176

32H 3.18

3C 3.382

4C 3.178

5C 3.102

6C 3.216

LYS374A 18C 4.9 Hydrophobic interaction

GLN572A 10C 4.751 Hydrophobic interaction

21C 4.941

22C 4.681

24C 4.649
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and acidic group (–COOH) of GLN-572, VAL-609, and
PHE-610 amino acid residue present at the active site of
the receptor. Hydrophobic interactions were observed be-
tween groups present at R1, R2, R4, R5, and R6 with LYS-
374, GLN-572, TRP-573, PRO-574, VAL-609, PHE-610,

GLU-945, and GLU-948 amino acids of receptor to form
a stabilized complex suggesting a strong binding of inhibi-
tors with the RT enzyme. The residue such as GLN-572,
TRP-573, PRO-608, VAL-609, PHE-610, LYS-622, GLU-
945, and GLU-948 was involved in the van der Waal’s

Table 5 Docking interaction of compound 51 with the binding pocket of 1S6Q (Continued)

Amino acid residue Ligand atoms Distance (A°) Interaction type

25C 4.919

10C 4.203

21C 4.044

22C 3.461

23C 4.071

24C 3.448

25C 4.041

TRP573A 10C 4.07 Hydrophobic interaction

19C 2.935

21C 3.238

22C 4.033

24C 4.048

25C 3.265

10C 4.928

19C 3.542

21C 4.39

25C 4.399

PRO574A 19C 4.821 Hydrophobic interaction

VAL609A 23C 4.682 Hydrophobic interaction

PHE610A 22C 4.599 Hydrophobic interaction

23C 3.954

24C 4.631

22C 3.815

23C 3.543

24C 3.878

GLU945A 17C 4.85 Hydrophobic interaction

18C 4.505

17C 3.438

18C 3.241

GLU945A 17C 3.822 Hydrophobic interaction

18C 2.651

GLU948A 10C 4.751 Hydrophobic interaction

19C 4.687

TRP573A 11C 4.553 Aromatic interaction

11C 4.347

TRP573A 20 N 3.559 Charge interaction

GLN572A 53H 2.035 H-bond interaction

VAL609A 53H 1.804 H-bond interaction

PHE610A 54H 2.512 H-bond interaction
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interaction, and amino acid TRP-573 involved in both aro-
matic and charged interaction with the ligand molecules
increase the stabilization of inhibitor at the active site of
RT enzyme. The result of the G-QSAR and molecular
docking study provided a molecular level understanding
to infer that identified compounds are promiscuous and
might be a potential inhibitor of RT enzyme.

5 Conclusion
In the present study, an attempt was made to generate
novel fragment-based QSAR (G-QSAR) models for a
congeneric series of 97, 4-arylthio, and 4-aryloxy-3-iodo-
pyridine-2(1H)-one derivative with known anti-HIV

activity. The whole data set of compounds were divided
into training and test sets, and three G-QSAR models
were developed by a simulated annealing algorithm (SA)
coupled with multiple linear regression (MLR), partial
least squares regression (PLS), and principal component
regression (PCR). All generated models I, II, and III were
statistically significant and provide site-specific clues for
the design of new reverse transcriptase inhibitors.
Model-II developed by SA-PLS was more significant
among all; the result of the statistical parameters were r2

= 85.24%, q2 = 69.25%, pred_r2 = 74.21%, the higher de-
gree of freedom (89.35), F test (55.037), and low stand-
ard error (pred_r2se = 0.3078) values during validation

Fig. 7 a Docking pose of compound 51 into active site of 1S6Q. b 2D-ligand interaction diagram of compound 51 in the binding pocket of 1S6Q
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study for both training and test set compounds fulfilled
the conditions for predictive and robustness. This model
indicates the presence of higher hydrophobic substituent
containing single-bonded –Br atom, 2 aromatic bonded
–NH group with less electronegativity, and entropic
interaction fields at fragment R2 essential for better anti-
HIV activity. Similarly, the presence of a lipophilic group
at R3, oxygen, and sulfur connected with two aromatic
bonds at R4 and –CH3 group at R5 increases inhibition
activity by increasing binding efficiency with reverse
transcriptase enzyme. G-QSAR method allows ease to
interpretation, unlike conventional QSAR method which
could only suggest important descriptors but does not
reflect the site where it has to be optimized for further
design of new compounds. Molecular docking results of
the G-QSAR-generated compounds showed the interac-
tions between the fragmented groups reported for these
compounds and the residues located at the binding site.
Dock pose of the selected compound reveals that the
presence of a group at fragmented site R1, R4, R5, and
R6 are responsible for hydrophobic interaction, and
group at R2 is essential for both H-bond and hydropho-
bic interaction with the amino acid residues at the active
site of the target enzyme. The findings got from G-
QSAR and docking studies were utilized for designing
newer RT-inhibitor anti-HIV agents. It is therefore con-
cluded that the molecular manipulations at appropriate
sites suggested by structure-activity relationship data will
prove beneficial for identifying particular chemical vari-
ation at specific substitution sites and mathematical
models for prediction of biological activity of newly de-
signed molecules.
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