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Abstract

Background: Lung cancer has been reported to be among the leading cancer cases in the world. It was also reported
to have caused a lot of death every year and accounted for about one-third of the whole cancer deaths in the globe.
The main subset of lung cancers that accounts for about 85% of the problems of lung cancer raised above was non-
small cell lung cancer (NSCLC). The most common cause of NSCLCs that mostly affects women and cigarette smokers
was recognized to be overexpression of epidermal growth factor receptor tyrosine kinase (EGFR TK).

Results: Five models on thirty five (35) NSCLC therapeutic agents were developed via quantitative structure-activity
relationship (QSAR) technique. The best model among them was selected and reported due to its fitness statistically
with the following validation parameters: R2 of 0.8764, R2adj of 0.8370, Qcv

2 of 0.7655, R2test of 0.7024, and LOF of 0.3312.
Molecular docking was used to elucidate the mode of binding interactions between the thirty five (35) NSCLC
therapeutic agents and the binding pose of EGFR tyrosine kinase receptor (3IKA) in this research. Compound 29 was
recognized to have the most excellent binding affinity of − 8.8 kcal/mol among others. The drug-likeness and
pharmacokinetic properties of all the NSCLC therapeutic agents were predicted using SWISSADME, and none among
the molecules under investigation violated more than the permissible limit of the conditions stated by Lipinski’s RO5
filters. Five hit compounds were identified using molecular docking virtual screening. The five (5) hit compounds were
further screened and identified compound 16 and 27 as excellent among them using their pharmacokinetic profiles
and drug-likeness properties.
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Conclusion: QSAR technique was used to build five models on thirty five (35) NSCLC therapeutic agents. The best
model among them was reported because it is statistically significant with good validation parameters. The molecular
docking result has identified five (5) hit compounds. The most common amino acid residues to all hit compounds
under investigation were Glu762, Leu718, Lys745, and Val726 which might be responsible for the higher inhibitory
activities/binding affinities of the compounds under investigation. Furthermore, these five (5) hit compounds were
further subjected to drug-likeness and pharmacokinetic properties prediction to determine which among them have
the best pharmacokinetic profile. Compounds 16 and 27 among the hit compounds were observed to have high
chance of passive absorption by the gastrointestinal tract while the other three have low tendency of passive
absorption. More so, only compounds 16 and 27 have higher bioavailability scores, and none of the two have more
than one violation of the RO5 criteria. The cause of efficiency of compounds 16 and 27 might be as a result of good
pharmacokinetic profiles and drug-likeness properties possessed by the molecules when compared to other hit
compounds.

Keywords: QSAR, NSCLC, In silico, SWISSADME, Applicability domain

1 Background
Among the hurdles faced by medicinal chemists was the
discovery of inhibitors for mutant-selective kinase and
was among the primary interest for epidermal growth
factor receptor (EGFR) tyrosine kinase inhibitors [1].
The treatment of EGFR to control non-small cell lung
cancers with the T790M resistance mutation prevails as
a vital medical necessity [2].
Lung cancer has been reported to be among the lead-

ing cancer cases in the world. It was also reported to
have caused a lot of death every year and accounted for
about one-third of the whole cancer deaths. The main
subset of lung cancers that accounted for about 85% of
the problems of lung cancer was NSCLC [3]. The most
common cause of NSCLCs that mostly affects women
and cigarette smokers was recognized to be overexpres-
sion of EGFR tyrosine kinase. It was found in about 10–
15% and 30–40% of the population of patients in Cauca-
sia and Asia [3].
NSCLC therapeutic agents manifest a very high response

rate in patients with stimulating changes of EGFR. NSCLC
therapeutic agents are categorized into two different classes:
the first class is reversible NSCLC therapeutic agents (first-
generation EGFR inhibitors) which include gefitinib and er-
lotinib. The second class is referred to as irreversible inhibi-
tors and consists of the second and third generation NSCL
C therapeutic agents. The second and third generation
NSCLC therapeutic agents include afatinib and osimertinib.
All these classes of drugs mentioned were designed pur-
posely for the treatment of NSCLC. Most especially, the
first-generation reversible NSCLC therapeutic agents were
designed to manage EGFRL858R mutations. The second-
generation irreversible NSCLC therapeutic agents were de-
signed for the treatment of EGFRT790M mutations. And the
third-generation irreversible NSCLC therapeutic agents
were designed for the medication of EGFRT790M/L790M

double mutations [1, 4–6].

QSAR is a computer-aided molecular modeling tech-
nique which quantitatively relates experimentally deter-
mined biological activities (response variable) of a
molecule and its physicochemical properties (molecular
descriptors) [7]. In addition, QSAR modeling is used to
develop a model which could be used to predict the ac-
tivities of newly designed small molecules [8]. Molecular
docking is an in silico virtual screening method applied
in computer-aided drug design used to elucidate how
ligand and receptor interact with one another using their
individual 3D structures [9]. The drug-likeness and
pharmacokinetic properties of a drug give an insight on
how the body responds to the administration of this
drug. Therefore, there is a need to study the drug-
likeness and pharmacokinetic properties of this drug be-
fore it reaches the final (clinical) stage [10].
The aim of this work is to develop a model with good

predictive power using QSAR modeling technique, to
screen and identify hit among the compounds under in-
vestigation (by elucidating the mode of binding interac-
tions between the NSCLC therapeutic agents (ligands)
and the EGFR tyrosine kinase enzyme) using molecular
docking simulation, and also to predict their drug-
likeness and pharmacokinetic properties.

2 Method
2.1 Sourcing of dataset
A set of thirty five (35) N-(5-((5-chloro-4-((2-(isopropyl-
sulfonyl) phenyl) amino) pyrimidin-2-yl) amino)-4-meth-
oxy-2-(4-methyl-1, 4-diazepan-1-yl) phenyl) acrylamide
derivatives as potent NSCLC therapeutic agents with
their inhibitory activities (GI50) in μM, synthesized
under the same condition sharing the same assayed pro-
cedure with significant variations in their structure and
potency, were downloaded from the literature of Chen
et al. for this research [11]. The corresponding inhibitory
activities (GI50) of these potent NSCLC therapeutic
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agents were then converted to their pGI50 using Eq. 1
shown below [12]. Table 1 presents the structural for-
mula, GI50, and pGI50 for all the dataset used in this
research.

pGI50 ¼ − log GI50 � 10 − 6 ð1Þ

2.2 Stable structure generations and structure sketching
Before stable structure generations, the sketching of the
2D structures of the studied NSCLC therapeutic agents
must be done, and this was achieved using the Chem-
draw software version 12.0.2 [13]. The Spartan 14 soft-
ware was used to transform the 2D structures of the
sketched NSCLC therapeutic agents to 3D structures be-
fore energy minimization (it is achieved by direct im-
portation of the 2D structures to the interface of the
software). Also, prior to stable structure generations,
there is need to remove constrain from the generated
3D structures, and this was achieved via energy
minimization [14]. Stable structure generation is a
process of determining the optimum structure of a com-
pound, and this was performed by utilizing the Spartan
14 software. The determination of the optimum struc-
ture of all the NSCLC therapeutic agents was achieved
adopting density functional theory method at B3LYP/6-
311G* level of theory [15].

2.3 Independent variable (descriptors) computation,
removal of constant/redundant variables, and data
separation
For the computation of the independent variables (de-
scriptors), the most stable structures generated were
saved in SDF, a file format that is recognized by the soft-
ware used in computing descriptors (PaDEL descriptor
tool kit) [16]. PaDEL descriptor tool kit was used to
compute both fragment count descriptors, topological
descriptors, and geometrical descriptors [17]. Pre-
treatment of data is very vital in QSAR modeling which
helps in eliminating constant and redundant descriptors
from the data before model development so as to allow
GFA select most significant descriptors. In present
study, data pre-treatment was performed manually. An-
other crucial point in QSAR modeling is development of
model building (training) and validation (test) sets. As
the name implies, model building set is used to develop
the model, and the validation set is used in verifying the
built model. Data division software retrieved from DTC
lab was moreover utilized in splitting the data into
model building set which contains 30 molecules and val-
idation set of 5 molecules utilizing Kennard-Stone algo-
rithm in this regard [18].

2.4 Building of the model
In developing the models, the actual pGI50 was used as
the response parameter while the descriptors were used
as independent parameter. Variable selection is very im-
portant in building QSAR models. In view of this, the
models were built by adopting multi-linear regression
(MLR) analysis using genetic function approximation
(GFA) method in which it creates an original population
of descriptor sets and determines the most suitable set

Table 1 Structural formula, GI50, and pGI50 of the data set

S/No. Structural formula GI50 (μM) pGI50 (μM)

1n C33H43ClN8O4S 0.023 7.6383

2 C28H34ClN7O6S2 0.04 7.398

3 C28H34ClN7O4S 0.043 7.3665

4 C29H36ClN7O4S 0.015 7.8239

5 C30H38ClN7O4S 0.025 7.6021

6 C30H38ClN7O5S 0.041 7.3872

7 C33H42ClN7O4S 0.077 7.1135

8 n C27H31ClN6O5S 1.2 5.9208

9 C28H33ClN6O4S 0.24 6.6198

10 C32H41ClN8O3S 7.1 5.1487

11 C31H40ClN7O4S 0.3 6.5229

12 C34H46N8O4S 0.027 7.5686

13 C30H39N7O4S 0.043 7.3665

14 C29H37N7O4S 0.19 6.7212

15 C26H27ClF3N7O2 0.26 6.5850

16 C25H26Cl2FN7O2 0.1 7.0000

17 C25H26ClF2N7O2 0.13 6.8861

18 C24H28ClN7O2S 0.22 6.6576

19 n C30H37ClN8O3 0.95 6.0223

20 C27H29ClF3N7O2 1.8 5.7447

21 C27H33ClN8O4S 0.031 7.5086

22 C28H35ClN7O3P 0.026 7.5850

23 C29H37ClN7O3P 0.22 6.6576

24 C26H30ClN6O4P 0.78 6.1079

25 C27H33ClN7O5PS 0.89 6.0506

26 C32H41ClN7O3P 0.041 7.3872

27 C27H31ClN8O3 0.05 7.3010

28 n C29H35ClN8O3 0.079 7.1024

29 C28H31ClN8O4 0.25 6.6021

30 C32H40ClN9O3 0.21 6.6778

31 C27H29ClN8O2 0.44 6.3566

32 C28H31ClN8O2 0.43 6.3665

33 C25H24ClN7O3 1.2 5.9208

34 n C31H36ClN9O2 0.2 6.6989

35 C29H38ClN7O4S 0.7 6.1549
nTest set
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from it by utilizing evolutionary crossover and mutation
speculators which generates a succeeding derivative
population of descriptor sets [19]. One of the distinct
characteristics of GFA is that it selects highly significant
independent variables to generate thousands of models
so as to choose the most significant among the gener-
ated models [20]. Equation 2 below presents the MLR-
GFA equation for the model:

pGI50 ¼ A1b1 þ A2b2 þ……þ C ð2Þ
where A’s are the descriptors, b’s are the coefficient of
the corresponding descriptors, and C is the regression
constant.

2.5 Validation of the model built
Validation of QSAR model is of utmost importance. This
is why a QSAR model is not considered valid unless it
undergoes so many assessment, which if it passes then it
can be used. The parameters used in evaluating or validat-
ing the quality of a QSAR model were the squared coeffi-
cient of correlation for the training set (R2training), adjusted
R2 (R2 adj), cross-validation coefficient (Qcv

2), and squared
coefficient of correlation for the test set (R2 test). The equa-
tions for the mentioned assessment parameters are given
below [21]:

R2
training ¼ 1 −

P
xobs: − xpred:
� �2

P
xobs: − xtraining
� �2 ð3Þ

where xobs., xpred., and xtraining represents the actual, esti-
mated, and mean activities of the model building set.
The R2 value was established to rely on the number of
descriptors in the model.
Therefore, the R2 value must be adjusted. The adjusted

R2 is computed utilizing Eq. 4 below:

R2
adj: ¼ 1 − 1 − R2

� � a − 1
a − b − 1

¼ a − 1ð ÞR2 −
a − bþ 1

ð4Þ

where b represents the number of descriptors used in
the model and a represents the number of compounds
in the model building set.

Q2
CV¼1 −

Pn
i¼1 Y exp: − Y pred:

� �2
Pn

i¼1 Y exp: − Y
� �2 ð5Þ

where Y exp:;Y pred:; and Y are trial, foretold, and the
mean inhibition activity values of the training set com-
pounds [22].
The generated model can then be validated externally

to confirm its predictive power and reliability. It is
achieved using the validation set compounds. The exter-
nal predictive power of the model was estimated using
the expression shown below [23]:

R2
test ¼ 1 −

P
xpred:test − x exp:test

� �2
P

xpred:test − xTraining
� �2 ð6Þ

where xpred:test and x exp:test are the estimated and actual
activities of the validation set, and xTraining is the mean
of actual activity of the model building set compounds.
Due to some reasons, the values of these parameters

are okay and important but not enough to justify the re-
liability of a model [24]. In view of this, the model has to
be subjected to other test such as applicability domain,
variation inflation factor, and mean effect.
The multi-collinearity of all the independent variables

in the reported model is ascertain by computing the
variation inflation factors (VIF) for each. The VIF help
in identifying whether these independent variables correl-
ate with one another or not. There is no correlation be-
tween the descriptors if their estimated VIF values are
equal to 1; there is high possibility of accepting the model
if their estimated VIF values are between 1 and 5; and if
their estimated VIF values are greater than 10, then the
model is therefore rejected not accepted [25]. The VIF
value can be calculated using the equation below:

VIF ¼ 1

1 − R2 ð7Þ

In order to evaluate the individual contribution and
participation of each descriptor to the selected model,
the mean effect (ME) of each descriptor is therefore cal-
culated. The equation used in calculating the ME is
shown below:

MEj ¼ Bj
Pi¼n

j¼1dijPm
j B j

Pn
i dij

ð8Þ

where ME represents the mean effect of a descriptor j in
a model, the coefficient of the descriptor J is represented
by βj in the model and the value of the independent vari-
ables for each compound in the training set is dij, n is
the number of compounds in the training set, and m is
the number of descriptor that appear in the model [26].

2.6 Evaluating of applicability domain
The domain of applicability is studied to ensure the reli-
ability of the prediction of the built MLR model. It is
also useful in identifying compounds that are distinct to
the training set compounds (influential compounds) or
response outliers (compounds with standardized residual
outside the square area of the model). The method
adopted in this research was the leverage approach
which is the plot of the standardized residual against the
leverages for both the training and test set compounds.
The reported model was subjected to AD using the le-
verage approach [27].
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2.7 Docking simulation
For the docking simulation, the virtual screening software
used in this research were AutoDock Vina of Pyrex, Dis-
covery studio, and UCSF Chimera on a Dell computer sys-
tem Latitude E6520 to screen and identify hit compounds
by elucidating the binding mode between the binding pose
of the target receptor and the NSCLC therapeutic agents.

2.8 EGFR tyrosine kinase enzyme and ligand preparation
for the docking simulation
The EGFR tyrosine kinase enzyme with pdb code: 3IKA
in complex with WZ4002 was downloaded from the
Protein Data Bank (https://www.rcsb.org) and used as
the target receptor for the NSCLC therapeutic agents in
this research. Discovery Studio Visualizer version
16.1.0.15350 was adopted in preparing the EGFR tyro-
sine kinase enzyme for the docking simulation. The
preparation process of the target receptor started by
adding hydrogen, then followed by the elimination of
co-ligands, water molecule, and heteroatoms from the
structure of the target receptor and saved in protein data
bank file format. The prepared structure of the target re-
ceptor is shown in Fig. 1. The NSCLC therapeutic agents
were prepared by saving the already determined
optimum structures in 2.2 above saved in protein data
bank file with the help of the Spartan’14 wave software
[14]. The prepared structure of one NSCLC therapeutic
agent among the dataset is shown in Fig. 2.

2.9 Execution of the docking simulation
The docking simulation of the NSCLC therapeutic
agents into the binding site of the target receptor
(Met793, Ala743, Met790, Leu844, Leu844, Leu718,
and Val726, these binding sites were determined by
visualizing the co-crystalline structure of WZ4002 in
the binding site of the enzyme) was carried out using
AutoDock Vina of Pyrex software [28]. Re-coupling of
the complexes for further investigation was achieved
with the help of the UCSF Chimera software [29]. For

further investigation of the binding mode interactions
of the complexes, a discovery studio visualizer soft-
ware was used to elucidate the 2D structures of all
the reported complexes [30, 31].

2.10 Drug-likeness and pharmacokinetic property
prediction
The drug-likeness and pharmacokinetic properties of
these NSCLC therapeutic agents were predicted utiliz-
ing a free online web tool (SwissADME) (http://www.
swissadme.ch/index.php) used in predicting drug-
likeness and pharmacokinetic properties of drugs [32].
The input file format for SwissADME is simplified
molecular input line entry specification (SMILES)
which contains a unit compound by line separated by
a space with a title or without a title. The computa-
tion can be setup when the molecule is ready by
clicking on the “Run” button [32].
Lipinski’s rule of five filter is mostly used as the criterion

to ascertain whether a molecule is impermeable or badly
absorbed. A molecule is considered to be orally bioavail-
able if it does not violate more than 2 of the RO5 [33].

3 Result
3.1 QSAR study
The results of the QSAR study are given in Tables 2, 3,
4, and 5 and Figs. 3 and 4.
The selected and reported model is given by the equa-

tion below with the following validation terms: R2 of
0.8764, R2

adj of 0.8370, Qcv
2 of 0.7655, R2

test of 0.7024,
and LOF of 0.3312

pGI50 ¼ 2:797519677�ATSC8c − 1:977464485�MATS8s

− 1:229853317�GATS5p − 0:735278765�VR1 Dt

þ 1:186969524�minssCH2þ 2:607601502�RDF120m

þ 0:834211273�RDF125mþ 4:685695

Fig. 1 Prepared structure of EGFR tyrosine kinase enzyme
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3.2 Docking simulation
The results of the docking simulation are presented in
Table 6 and Fig. 6.

3.3 Drug-likeness and pharmacokinetic property
prediction
The results of the drug-likeness and pharmacokinetic
property prediction are shown in Tables 7 and 8 and
Figs. 7 and 8 respectively.

4 Discussion
4.1 QSAR studies
Using the model building set, five (5) different models
were built using MLR-GFA method. Among these five
models, the best model was selected and reported since
it has passed the minimum requirements for the evalu-
ation of a valid QSAR model as reported by Veerasamy
et al. as presented in Table 2 [23].
The descriptions of the descriptors contained in the

reported model are shown in Table 3. The negative coef-
ficients of MATS8s, GATS5p, and VR1_Dt descriptors
clearly indicated their negative contribution to the in-
hibitory activities of the NSCLC therapeutic agents. It
means that when the amount of these independent de-
scriptors is reduced in the structures of these NSCLC
therapeutic agents under investigation, there might be
an improvement in the potency of these NSCLC thera-
peutic agents toward their target receptor (EGFR tyro-
sine kinase enzyme) and reverse is the case. On the

other side, the positive coefficient of ATSC8c,
minssCH2, RDF120m, and RDF125m descriptors in
the model gave the positive contributions of these inde-
pendent descriptors to the inhibitory activities of the
NSCLC therapeutic agents under investigation. It means
when the amount of these descriptors in the composi-
tions/structures of these NSCLC therapeutic agents are
increased, there might be an improvement in the po-
tency of these NSCLC therapeutic agents toward their
target receptor and vice versa.

4.1.1 Description of the descriptors that appear in the
reported model
ATSC8c is an average centered Broto-Moreau autocor-
relation; the ATS descriptor is a graph invariant describ-
ing how the property considered is distributed along the
topological structure and can be seen as a special case in
which other types of descriptors can also be derived
from [34]. The recognized spatial autocorrelation on a
molecular graph G is given as

ATSk ¼ 1
2
�
XA

i¼1

XA

j¼1

wi � wj � δ dij; k
� � ¼ 1

2
� wT�kB � w� �

MATS8s is a Moran autocorrelation which is applied
to a molecular graph. Moran coefficient usually takes
value in the interval [− 1, + 1]. Positive autocorrelation
corresponds to positive values of the coefficient whereas
negative autocorrelation produces negative values [34].
It can be defined as

Fig. 2 Prepared structure of a NSCLC therapeutic agent

Table 2 General limit required for the QSAR model assessment

Parameter Details Accepted value Selected model

R2trng Squared correlation coefficient of training set ≥ 0.6 0.8764

Qcv
2 Cross-validation coefficient ≥ 0.5 0.7655

R2 − Q2 Difference between R2 and Q2 ≤ 0.3 0.1109

N(test set) Minimum number of external test set ≥ 5 5

R2ext. Squared correlation coefficient of test set ≥ 0.5 0.7024
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Ik ¼

1
Δk

�
XA

i¼1

XA

j¼1

wi − wð Þ � δ dij; k
� �

1
A
�
XA

i¼1

wi −wð Þ2

Radial distribution function descriptors (RDF de-
scriptors) were suggested based on a radial arrangement
function distinct from that generally used to determine
molecular changes I (s) (Hemmer, Steinhauer et al.,
1999). The radial distribution function chosen here is
that one frequently utilized for the description of the dif-
fraction patterns gotten in powder X-ray diffraction
experiments.
Ideally, the radial distribution function of a collection

of atoms B may be described as the possible occurrence
to obtain an atom in a spherical volume of radius R. The
common mode of the radial distribution function is
expressed by the equation below

g Rð Þ ¼ f �
XA − 1

i¼1

XA

j¼iþ1

wi � wj � e − β� R − rijð Þ2

Table 4 shows the pGI50, predicted pGI50, and the re-
sidual values for all the molecules under investigation.
The high predicted power of the reported model was
confirmed by the low residual values observed between
the experimental and predicted pGI50 in the table
(meaning that the reported model was reliable with high
predicted power). Furthermore, Fig. 3 presents the plot
of the predicted pGI50 versus actual pGI50 for the test
and training sets compounds, the distribution of the pre-
dicted pGI50 and the actual pGI50 of the test and train-
ing set compounds throughout the line reaffirmed the
reliability of the model. More so, the R2 values of both
the internal validation (0.8175) and that of the plot

(0.8764) agreed with one another which further con-
firmed the stability and reliability of the reported model.
On the other hand, Fig. 4 presents the scatter plot of the
residuals against actual pGI50 in which the unusual oc-
currence of these residuals of both sets on the upper
and lower sides of zero on the plot confirm that the re-
ported model was free from methodological error (sys-
tematic deviations).

Table 3 Descriptions, full name, and categories of descriptors
contained in the reported model

S/no Description Full name Category

1 ATSC8c Average centered Broto-Moreau
autocorrelation—lag 8/weighted
by charges

2D

2 MATS8s Moran autocorrelation—lag 8/
weighted by I-state

2D

3 GATS5p Geary autocorrelation—lag 5/
weighted by polarizabilities

2D

4 VR1_Dt Randic-like eigenvector-based
index from detour matrix

2D

5 minssCH2 Minimum atom-type E-State: –CH2– 2D

6 RDF120m Radial distribution function—120/
weighted by relative mass

3D

7 RDF125m Radial distribution function—125/
weighted by relative mass

3D

Table 4 The pGI50, predicted pGI50, and the residual values for
the studied molecules

S/No pIG50 (nM) Predicted pIG50 Residual values

1n 7.6383 8.0744 0.4362

2 7.398 7.2607 0.1373

3 7.3665 7.1608 0.2058

4 7.8239 7.9458 − 0.1219

5 7.6021 7.5017 0.1003

6 7.3872 7.4848 − 0.0976

7 7.1135 7.2791 − 0.1656

8 n 5.9208 6.0323 0.1115

9 6.6198 6.5679 0.0518

10 5.1487 5.2937 − 0.1449

11 6.5229 6.5563 − 0.0334

12 7.5686 6.9651 0.6035

13 7.3665 7.6696 − 0.3031

14 6.7212 6.9231 − 0.2018

15 6.5850 6.5074 0.0776

16 7.0000 6.8746 0.1254

17 6.8861 6.6254 0.2606

18 6.6576 6.9125 − 0.2549

19 n 6.0223 6.2074 0.1851

20 5.7447 6.1388 − 0.3941

21 7.5086 7.4315 0.0772

22 7.5850 7.2457 0.3393

23 6.6576 6.5749 0.0826

24 6.1079 5.8741 0.2338

25 6.0506 6.3517 − 0.3011

26 7.3872 7.2227 0.1645

27 7.3010 7.4012 − 0.1001

28 n 7.1024 7.2748 0.1724

29 6.6021 6.7544 − 0.1523

30 6.6778 7.0444 − 0.3666

31 6.3566 6.3405 0.0161

32 6.3665 6.2983 0.0682

33 5.9208 6.0691 − 0.1482

34 n 6.6989 6.0783 − 0.6207

35 6.1549 5.9133 0.2416
nTest set
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The correlation statistical analysis on the independent
descriptors in the reported model shown in Table 5 indi-
cated that no relationship exists between the descriptors
contained in the reported model. This clearly portrayed
the high performance of the descriptors used in develop-
ing the reported model.
The variation inflation factor (VIF) values were further

used to confirm if there is multi-collinearity problem or
not in the descriptors of the training set used in building
the model. The VIF of all descriptors in the training set
were estimated and realized to be within the acceptable
range presented in Table 5 (meaning the values are less
than 10 for all the descriptors). This confirms the ab-
sence of multi-collinearity problem in the descriptors
used in building the reported model.
The mean effect (ME) values for all the descriptors

were computed to ascertain the participation and indi-
vidual contribution of a descriptor in opposition to other
ones in the selected model and presented in Table 5.
The indicator for either increase or decrease in potency
of the molecules is the sign of the coefficient of each de-
scriptor in the model. If a descriptor in the model has a

positive coefficient it means that an increase in such de-
scriptor may increase the potency of the molecules. But
when a descriptor has negative coefficient, it indicates
that an increase in such descriptor may decrease the po-
tency of the molecules. Whereas the coefficient of the
descriptors indicate the degree of contribution of each
descriptor in the model. It is observed that from the
model and ME values (Table 5), ATSC8c descriptor
gave the highest positive contribution both in the model
and ME analysis with + 2.797519677 and + 0.796318.
MATS8s gave the lowest negative contribution in both
the model and ME analysis with − 1.977464485 and −
0.43128.
The applicability domain (AD) of the reported model

was achieved by the plot of the standardized residuals
against leverages of both the test and training sets (Wil-
liams’ plot) as shown in Fig. 5. The AD is carried out to
identify compounds with standardized residuals greater
than three standard deviation unit (outliers) and com-
pounds with leverage values greater than the warning le-
verage h* (influential) in the data used in building the
model. Apart from that, it is also used to ascertain the

Table 5 VIF, ME, and correlation statistical analysis of descriptors of the reported model

ATSC8c MATS8s GATS5p VR1_Dt minssCH2 RDF120m RDF125m VIF ME

ATSC8c 1 2.32682 0.796318

MATS8s 0.617583 1 1.794148 − 0.43128

GATS5p 0.102951 0.078452 1 1.536439 − 0.35878

VR1_Dt 0.272343 0.192376 0.194143 1 1.64444 − 0.05016

minssCH2 − 0.41896 − 0.21208 0.33861 0.11543 1 1.555337 0.402876

RDF120m − 0.03966 0.134895 0.453081 0.366743 0.266443 1 1.535671 0.438001

RDF125m 0.147709 0.257319 0.286406 0.506069 0.098872 0.320932 1 1.498465 0.203025

Fig. 3 Scatter plot of predicted pGI50 versus the actual pGI50 for the reported model
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quality of prediction of a model and prevent the misuse
of the results obtain by the model. From the plot, four
(4) compounds (influential compounds) of the test set
with their leverage value greater than the threshold/
warning leverage (h*) of 0.83 were identified. No influen-
tial or response outlier was identified from the training
set which means the model was valid and void. It is very
paramount to decipher that these molecules with lever-
age value greater than the threshold are not put into
consideration when designing new NSCLC therapeutic
agents. These molecules might be structurally different
from those used to generate the reported model and
thus may have different mechanism of action

4.2 Docking simulation
Molecular docking as in silico virtual screening tool was
used to elucidate the nature of binding interactions be-
tween the NSCLC therapeutic agents and the binding
pose of EGFR tyrosine kinase receptor (pdb code: 3IKA
which is selected based on published literature) in this

research (Supplementary Table 1). Five hit compounds
were identified by the virtual screening technique. Com-
pound 29 was identified to have the highest binding af-
finity of − 8.8 kcal/mol (Table 6). The compound was
seen to have interacted with the binding pose of EGFR
tyrosine kinase receptor through hydrophobic bond
interaction with Phe795, Gly796, Ala743, Leu844,
Leu718, Val726, Ala743, and Lys745 amino acid residues
of the EGFR tyrosine kinase receptor. More so, it also
interacted with EGFR tyrosine kinase receptor via elec-
trostatic bond interaction with lys745 amino acid resi-
due. Next compound in the trend with higher binding
affinity (− 8.7 kcal/mol) was compound 12 as shown in
Table 6. The interactions of the compound in the bind-
ing pose of the EGFR receptor were through hydrogen
bond with UNK1 Arg841, Asp855, Glu762, and Glu762
amino acid residues with bond distances of 2.49587 (Å),
3.7987 (Å), 3.25863 (Å), 3.72606 (Å), and 3.72287 (Å). It
also interacted with the active site of the EGFR receptor
via hydrophobic interactions with Leu718, Leu718,

Fig. 4 Plot of residuals versus the actual pGI50 for the reported model

Table 6 The ligand-receptor, binding affinity, hydrogen bond, bond distance, and other interaction of some selected ligands

Ligand-receptor (3IKA) Binding affinity
(Kcal/mol)

Hydrogen bond Bond distance (Å) Halogen, hydrophobic, and other
amino acid residues

Complex 4 − 8.4 Thr854 and Asp855 2.31432 and 2.5532 Lys745, Cys797, Ala743, Leu844, Leu718,
Val726, Ala743, and Lys745

Complex 12 − 8.7 Unk1, Arg841, Asp855,
Glu762, and Glu762

2.4959, 3.7987, 3.2586, 3.7260,
and 3.7228

Leu718, Leu718, Lys745, Val726, Leu844,
Lys728, and Leu792

Complex 16 − 8.6 Met793, Lys728, Glu762,
and Asp855

2.8649, 2.2705, 3.5998, and 3.6036 Leu718, Leu718, Lys745, Val726, Leu844,
Lys728, and Leu792

Complex 27 − 8.5 Glu762 3.68933 Leu718, Leu718, Lys745, Val726, Leu844,
Lys728, and Leu792

Complex 29 − 8.8 LYS745, PHE795, GLY796, ALA743, LEU844,
LEU718, VAL726, ALA743, and LYS745
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Lys745, Val726, Leu844, Lys728, and Leu792 amino acid
residues. Also, among the compounds with good binding
affinity was compound 16. The interaction of compound
16 in the binding pose of the EGFR receptor was through
hydrogen bond with Met793, Lys728, Glu762, and Asp855
residues with bond distances of 2.86496 (Å), 2.27045 (Å),
2.54982 (Å), 3.59983 (Å), and 3.60362 (Å) respectively. It
also interacted with the binding pose of the EGFR recep-
tor via hydrophobic interaction with Leu718, Leu718,
Lys745, Val726, Leu844, Lys728, and Leu792. The rest
other two complexes among the reported ones interacted
in the binding pose of the EGFR receptor through elec-
trostatic interactions, hydrogen bond interactions, and
hydrophobic bond interactions as shown in Table 6.
Figure 6 showed the 2D structures of compounds 29,
12, and 16 in complex with the receptor (3IKA).
Based on the molecular docking results, the most
common amino acid residues to all of the hit com-
pounds under investigation were Glu762, Leu718,
Lys745, and Val726 (Table 6), and these important
amino acid residues might be responsible for the
higher binding affinity of the reported compounds.

4.3 Drug-likeness and pharmacokinetic property
prediction
The drug-likeness and pharmacokinetic properties of all
the NSCLC therapeutic agents were predicted and pre-
sented in Supplementary Table 2 and 3. Based on the re-
sults of the molecular docking, the drug-likeness
properties of the hit compounds ware reported and pre-
sented in Tables 7 and 8. From the table, no molecule
among these reported ones violated more than the per-
missible limit of the conditions stated by Lipinski’s rule of
five filters (MW˂ 500, HBD ≤ 5, HBA ≤ 10, Log p ≤ 5, and
PSA ˂ 140 Å2). As such, these molecules are expected to
be very active pharmacologically. The bioavailability radar

plot of lipophilicity, size, polarity, solubility, saturation,
and flexibility further reaffirmed the drug-likeness proper-
ties of all the reported molecules (Fig. 7). The painted pink
area shows the range for each property (XLOGP3 between
− 0.7 and + 5.0, MW between 150 and 500 g/mol, TPSA
between 20 and 130 A2, log S not higher than 6, fraction
of carbons in the sp3 hybridization not less than 0.25, and
no more than 9 rotatable bonds). Based on the condition
mentioned, all the molecules might be orally bioavailable
even though they were all too flexible and lipophilic.
Table 8 presents the pharmacokinetic properties of the

reported molecules. From the table, only molecules 16 and
27 have high probability of passive absorption by the
gastrointestinal tract while others have low tendency of pas-
sive absorption. None of the reported molecules was found
to have high probability of brain penetration. Molecules 12,
27, and 29 were predicted to be actively effluxed by P-gp
and the other two were predicted as non-substrate of P-gp.
Also, only molecules 16 and 27 have higher bioavailability
scores (this confirmed the oral bioavailability and perme-
ability of these molecules among the reported molecules
and also they have low toxicity level and good absorption
properties). The boiled-egg plot (Fig. 8) of TPSA against
WLOGP was used to portray the graphical presentation of
the brain penetration and gastrointestinal absorption of the
reported molecules. From Fig. 8, it can be clearly seen that
all the NSCLC therapeutic agents were outside BBB region
(yellow) but some were within the GI absorption region
(white color) and some were predicted to be actively
effluxed by P-gp (blue in color) and then some were pre-
dicted as non-substrate of P-gp (red color).

5 Conclusion
In conclusion, QSAR technique was used to build a model
with a very high predictive power on some thirty five (35)
NSCLC therapeutic agents. The reported model was

Table 7 Drug-likeness properties

Molecule MW No. of H-bond acceptors No. of H-bond donors TPSA WLOGP Lipinski’s RO5 violations

Molecule 4 614.16 7 3 137.17 5.2 1

Molecule 12 662.85 8 3 140.41 4.55 2

Molecule 16 546.42 6 3 94.65 4.76 1

Molecule 27 551.04 6 4 123.75 2.91 1

Molecule 29 579.05 6 4 140.82 2.83 2

Table 8 Pharmacokinetic properties

Molecule Gastrointestinal absorption Brain penetration Pgp substrate Bioavailability score

Molecule 4 Low No No 0.17

Molecule 12 Low No Yes 0.17

Molecule 16 High No No 0.55

Molecule 27 High No Yes 0.55

Molecule 29 Low No Yes 0.17
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found to be statistically fit by passing validation tech-
niques employed on it with the validation parameters:
R2 of 0.8764, R2

adj of 0.8370, Qcv
2 of 0.7655, R2

test of
0.7024 and LOF of 0.3312 such as internal and exter-
nal validations and AD. The molecular docking

results showed that the most common amino acid
residues to all of the reported complexes were
Glu762, Leu718, Lys745, and Val726, and these im-
portant amino acid residues might be responsible for
the higher inhibitory activities/binding affinity of the

Fig. 5 Williams’ plot of the selected model

Fig. 6 2D view of a complex 29, b complex 12, and c complex 16 using Discovery studio visualizer
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reported compounds. More so, the drug-likeness and
pharmacokinetic properties of all the NSCLC thera-
peutic agents were predicted using SwissADME and
indicated that molecules 16 and 27 among the hit
have high probability of passive absorption by the
gastrointestinal tract while the other three have low
tendency of passive absorption and also none of the
reported molecules was found have high probability

of brain penetration. Also, only molecules 16 and 27
have higher bioavailability scores. Based on this find-
ing, it is suggested that when designing new NSCLC
therapeutic agents these hit compounds with good
binding affinity and pharmacokinetic profile should be
considered for structural modifications. And also,
in vivo and in vitro assay for the ADME properties
should be validated experimentally.

Fig. 7 The plot of lipophilicity, size, polarity, solubility, saturation, and flexibility of a molecule 29, b molecule 12, and c molecule 16

Fig. 8 The plot of WLOGP against TPSA for all the molecules
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ADME properties for the compounds under investigation.
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