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Abstract

Background: The 1,34-thiadiazoles are among the structural moieties that were found to be of utmost importance
in the fields of pharmacy and agrochemicals because of their widespread biological activity that includes anti-
tumor, antibacterial, anti-inflammatory, antihypertensive, anti-tuberculosis, anticonvulsant, and antimicrobial, among
others.

Results: QSAR and molecular docking studies were carried out on thirty-two (32) derivatives of 2,5-disubstituted-1,3,
4-thiadiazoles for their antifungal activities toward Phytophthora infestans. Using the “graphical user interface” of
Spartan14 software, the structure of the compounds of the dataset is drawn and then optimized at DFT/B3LYP/6-
31G* quantum mechanical method of the software. Molecular descriptors of the optimized compounds were
calculated and later on divided into the training set and test sets (at a ratio of 3:1). The training set was used for
model generation and the test set was for external validation of the generated model. Four models were generated
by the employment of genetic function approximation (GFA) in which the optimal model (4) turned out to have
the following statistical parameters: R? = 0.798318, Rzadj = 0.750864, cross-validation Rz(chv) = 0662654, and
external validation Rzpred = 0.624008. On the molecular docking study of thiadiazole compounds with the target
protein of Phytophthora infestans effector site (PDB ID: 2NAR ), compound 13 shows the highest binding affinity
with — 9.3 kcal/mol docking score and composes hydrophobic as well as H-bond interactions with the target
protein (2NAR).

Conclusion: The result of the QSAR study signifies the stability and robustness of the built model by considering
the validation parameters and this gave an idea of template/ligand-based design while the molecular docking
study revealed the binding interaction between the ligand and the protein site which gave an insight toward an
“optimization method” of the structure-based design for the discovery of more potent compounds with better
activity against Phytophthora infestans using the approach of computer-aided drug design (CADD) in plant pathology.
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1 Background

Phytophthora infestans (also called potato blight) may be
the most destructive of all plant pathogens that exces-
sively damage potato/Irish potato leading to famines and
immigration in the nineteenth century [13, 14]. Some of
the signs and symptoms of this disease can be seen as a
white color in potato. P. infestans generate some spor-
anges on the steam and leaves of potato [15]. The spor-
anges always displayed at the lower superficies of the
leaves. However, as in the case of tuber blight, the white
hypha usually appears at the superficies of the tuber
[11]. In normal circumstances, P. infestans perfect its life
on potato or tomato leaves at approximately 5 days [22].
The sporanges formed at the surface of foliage thereby
dispersing through plants at over 10 °C (50 °F)
temperature and humidity of above 75-80% in two or
more days. Sometimes the spores are washed away by
the rain which gets into the soil and infect the early-
stage tubers; and also, these spores can make long dis-
tances into the air which can easily get into another
host. The premature levels of the blight may have disap-
peared. Some of the symptoms involve dark blotches dis-
played at the extreme end of the leaf and on the plant’s
stem. A grey/dark patch developed on the affected tuber
which covered the skin and rapidly decomposed it to an
unpleasant odor. And apparently, healthy tubers may
later become rotten while stored. According to the FOA
report, the most thrusting/attacking problem in the third
world apart from poverty must be food shortages.
Farmers in Africa are encountering distinct limitations
in food production as well as cash crops. Some of those
limitations include damages from diseases and pests like
fungi. In the search for food and the fight for human
survival, the Irish potato has a significant role to play in
food supply and, therefore, has been an instrument in
addressing the issues of food insecurity, due to its per-
formance in a given area and in a given time. This po-
tato blight cause excessive economic loose, the annual
economic loose caused by P. infestans in the developing
countries begins to approach a $3-billion mark [5]. Due
to its rapid adaptation to the various management skills
(such as genetic resistivity), control of this plant patho-
gen is really challenging [10]. And this makes the syn-
thesis of novel compounds that will inhibit the
dangerous P. infestans to be among the most consider-
able in the field of agrochemicals. Some of these re-
searches include computational studies.

The 1,3,4-thiadiazoles derivatives are among the struc-
tural moieties that were found to be of utmost import-
ance in the fields of pharmacy and agrochemicals for
their widespread biological activity such as anti-tumor
[28], antibacterial [25], anti-inflammatory [19], antihy-
pertensive [30], antituberculosis [23], anticonvulsant
[18], and antimicrobial [2], among others. Furthermore,
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reports identify that compounds containing furan are in-
tensively bioactive. Several researches on the derivatives
of furan such as “pyrazole and triazole [6], diacyl-
hydrazine derivatives [7]” containing 5-phenyl-2-furan
moiety were carried out in which there appeared to have
extensive biological activities including fungicidal and in-
secticidal activities, among others.

The Quantitative structure—activity relationship (QSAR)
study aims to develop correlation models considering the
activity of compounds and other chemical information in
a statistical approach [16, 27] which will lead us to the de-
sign of new compounds. While molecular docking study
is “a way of predicting the favorable orientation of one
molecule to another when reacted to produce a stable
complex”, it will also lead us to the design of more potent
compounds.

Our aim in this research work is to predict highly ac-
tive compounds by the employment of Genetic function
approximation (GFA) and perform a molecular docking
study between the 1,3,4-thiadiazole compounds and the
2NAR protein of P. infestans to predict their stable mo-
lecular orientation.

2 Methods

2.1 Dataset

Thirty-two derivatives of 2,5-disubstituted-1,3,4-thiadia-
zole derivatives containing 5-phenyl-2-furan used in this
work were taken from the literature [8]. The activity of
the compounds were reported in EC50 (g/L) values,
which were converted to pEC50 (pEC50 = - logl/EC50).
Presented in Fig. 1 and Table 1 are the molecular struc-
tures and their corresponding activities found in the
dataset.

2.2 Molecular structure optimization

The structures of the compounds were optimized at the
“Density function theory (DFT)” level, “Becke’s three-
parameter Lee-Yang-Parr hybrid functional (B3LYP)”
version together with the “6-31G*” basis set of Spartanl4
[4]. In this process, all the molecular structures were
drawn in the graphical user interface of Spartanl4 soft-
ware. The energies of the drawn molecules were mini-
mized using Molecular Mechanics Force Field (MMFF)
calculation [3].

2.3 Molecular descriptor calculations

Molecular descriptors are the properties of the molecule
in numerical/mathematical values. PaDEL descriptor
software was used to further calculate additional energy
of those low-energy conformers, where a total of 1875
descriptors were calculated.
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Fig. 1 Parent structure of the dataset compounds

Table 1 Compounds and their pECs values 2.4 Dataset splitting

Compound R % PECey Using Kennard—Stone ?Iggrithm tecILnics, 'Fh‘e dataset of

: 4-0CH3 4NO2 1 344392 32 compounds was split H‘lt(.) two: the training set and

, g Sl - the test set (70% of the training and 30% to the test set)

- i ‘ which is found in DatasetDivision GUI 1.2 software. In

3 4d 4-0CH3 171433 this technic, the training and the test set were used for

4 2-0CH3 4 1893207 model development and its validation (externally) [12].

5 3-Cl 4-Cl 1.910624

6 4-0CH3 4-Br 1962369 2.5 Model building

7 4cl >l 500774g  The training set in the dataset was used for model gen-
eration through the employment of the GFA method

8 2-Cl 2-Cl 1.895423 . . . . . .
available in the material studio. The regression analysis

? 408t > 1840106 occurs by considering the inhibition concentration

10 H 2d 0869232 (pECso) as a dependent variable while the chosen de-

11 4-Cl 24-diF 1501059 scriptors served as independent variables.

12 2-Cl 24-di-F 1.926857

13 4-CH3 24-di-F 1873902 2.6 Internal validation

” 40CH3 2adif 1841359  Internal Vahfiatlon of 22 Compound§ of the‘ training set
took place in the software (Material studio) used for

15 3-CH3 4-F 1.506505 11 e
building the model. The validation parameters are as

16 2-Cl 3-F 1655138 follows:

17 4-CH3 4-F 2051153

18 H 4-F 0755875  2.6.1 Cross-validation

19 4Cl H 0612784  This parameter was used to determine the ability of the

20 ol H 1826723 QSAR model in predicting the activities of newly de-

51 3CH, 40CH, 1752048 mgped compounds. This indicates the stability of the
built model.

22 4-Cl 4-CH3 2047275

23 4-0CH; 2F 1870404 )

24 3-CH; 2F 1774517 2 g 2 (Ypred-Y exp) (i)

cv <\ 2

25 H 2F 0924279 > (Y exp-Y)

26 4-CH, 4l 170927

27 4-0CHs 26-di-F 1751279 where Y., is the “observed/experimental activity”, ¥preq

28 4-Cl 26-di-F 149693 is the “predicted activity”, and Y is the “mean value of

29 2-C| 2-NO, 1.745855 the observed activity".

30 4-CHs 2-NO, 1.824126

51 40CH, 3:N0, 1957679  2-6-2 Friedman'’s lack of fit (LOF) .
The parameter describes the measure of the fitness of

32 H 2,6-di-F 1.74351

the model and it is given by equation. ii below:
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Fig. 2 X-ray structure of the downloaded protein and the prepared ligand

SEE ..
LOF = @ (ll)

where SEE is the standard error,

(Yexp_ Ypred ) ?

SEE
N-P-1

(iii)
C is the “number of terms in the model”, d is the
“user-defined smoothing parameter”, P is “the total
number of descriptors in the model”, and M is “the
number of molecules in the training set”.
The regression model is given by the straight line
graphs’ equation, “(Y = mx + ¢)”,

Y = Dlxl + szz + D3x3.... + D,,x,, +c (IV)

where Y is the predicted activity (pECso), D is the corre-
sponding coefficients, x is the independent variable, and
¢ is the regression constant [17].

2.6.3 The correlation coefficient (R?)

This is another parameter used to assess the model. The
closer the value of R to 1.0, the better the model gener-
ated. R* is expressed as:

Table 2 Validation parameters of the model 4
Friedman LOF 0.12717000
R 0.79831800

Adjusted R? 0.75086400
Cross validated R 066265400
Significant regression Yes
Significance of regression F-value 16.82278600
Critical SOR F-value (95%) 3.01408800
Replicate points 0
Computed experimental error 0.00000000
Lack-of-fit points 17

Min. expt. error for non-significant LOF (95%) 0.13201000

Z (Yexp_Yprecl)2

R =1- =
Z (Yexp_Ytrain)

(v)

The value of R* changes instantly with an increase in
descriptors; therefore, the reliability of R* in measuring
the stability of a given model is very minimal. Thus, R>
has to be adjusted in order to have a fit and strong
model. The following equation define adjusted R as [1]:

(n-1) _ (n-1)(R*>-P)
n-P-1 n-P+1

Radj = (1-R%) (vi)

where P is the number of independent variables pos-
sessed by the model and # is the number of training sets’
compounds [21].

2.7 External validation

The model generated was further validated with the test
set of the dataset in order to measure its level of compe-
tence in predicting the activity of new compounds. This
was done by evaluating the values of the square of the
calculated R* of the test set values. The closer the R” is
to 1.0, the better the robustness, fitness, and the predic-
tion capacity of the model as well. Though sometimes
R? value does not matter if the model fails other statis-
tical analyses such as variance inflation factor (VIF) and
mean effect, among others. The coefficient of determin-
ation Rzpred is given by the following equation:

Table 3 Minimum recommended values of validated
parameters for generallyacceptable QSAR

Symbol Name Value

R? Coefficient of determination 206

Posos Confidence interval at 95% confidence level < 0.05

o Cross validation coefficient <05

R et Coefficient of determination for external test set 2 0.5

VIF Variance inflation factor 1T<VIF<10
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Name pEC50 AMR SCH-7 Wlambda3.mass WnuT.polar Ypred

9 1.840106 116.2273 0.693123 1.709892 0.939062 1.949358
16 1655138 1054178 0.71753 1.980691 0.907522 1.65767
17 2051153 104.9836 0.726359 23.74621 0.928937 2.166915
19 0.612784 105.29 0.653839 0 0 1.00147
25 0.924279 100.7016 0.64501 0 0 0.786564
24 1.774517 104.9836 0.71753 0.004722 0.904366 1597157
30 1.824126 1122107 0.68231 0 0 1399054
29 1.745855 112.6449 0.673481 0 0 1.372555
31 1.257679 1145722 0.666731 0 0 1412139
32 1.74351 100.8294 0.680102 0.023018 0917819 1264777

2
R2 =1- Z (Ypredtest_Y exptest) (Vll)

-  \2
Z (Y exp(es(_Ytrain)

where Ypreq,, and Y, ., are the values of pre-

dicted and experimental activities for the test set

and Y . is the average activity for the training sets’
values [3].

2.8 Statistical analysis of the descriptors
2.8.1 Variance inflation factor (VIF)
VIF is defined as the measure of multicollinearity
amongst the independent variables (i.e., descriptors). It
quantifies the extent of correlation between one pre-
dictor and the other predictors in a model.

VIE 1

= 1) (viii)

where R” gives multiple correlation coefficient between
the variables within the model. If the VIF is equal to 1, it
means there is no intercorrelation in each variable, and
if it ranges from 1 to 5, then it is said to be suitable and

Table 5 Calculations of predicted R?

acceptable. But if the VIF turns out to be greater than
10, this indicates the instability of the model and need to
be reexamined ([20, 26].

2.8.2 Mean effect (ME)

The average effect (mean effect) correlates the effect or influ-
ence of given molecular descriptors to the activities of the
compounds that made up the model. The descriptor signs
show the direction of their deviation toward the activity of
the compounds. That is to say, an increase or decrease in the
value of the descriptors will improve the activity of the com-
pounds. The mean effect is defined by the following:

B> iD;
>7(B;22ID))

Mean effect =

(ix)

where B; and D; are the j-descriptor coefficient in the
model and the values of each descriptor in training set,
while 7 and # stand for the number of molecular descrip-
tors as well as the number of molecules in a training set.
To evaluate the significance of the model, the mean effect
of each descriptor was calculated [9].

(Yored = Yobs) (Yored = Yobs)” Y meanTrain Yobs = YmearTr (Yored = YmeanTrain)”
0.109252 0.011936 1.692889 0.147217 0.021673
0.002532 6.41E-06 1.692889 —0.03775 0.001425
0.115762 0.013401 1692889 0.358263 0.128353
0.388686 0.151077 1692889 — 1.08011 1.166627
-0.13771 0.018965 1.692889 — 0.76861 0.590761
—0.17736 0.031456 1692889 0.081628 0.006663
—042507 0.180686 1692889 0.131237 0.017223
-03733 0.139353 1.692889 0.052966 0.002805
0.15446 0.023858 1692889 —043521 0.189408
—047873 0.229185 1692889 0.050621 0.002562

3Yorea=Yobs)® = 0799924
Z(Ypred - YMeanTrain)2 =2.127501

Rzpred = (1 - 0.799924/2.127501) = 0.624008



Isyaku et al. Beni-Suef University Journal of Basic and Applied Sciences (2020) 9:11 Page 6 of 12
2.5
@
> 2 0% **
= _o,.“ °
S 1s
© = e.0 ’ [
=
Qe
g [
a 0.5
0
0 0.5 1 1.5 2 2.5

Fig. 3 Plot of predicted activity against experimental activity (pEC50)
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2.8.3 Applicability domain

To confirm the reliability of the model and to examine the
outliers as well as the influential compounds, it is very im-
portant to evaluate the applicability domain of the built
model. Its aim at predicting the uncertainty of a compound
depends on its similarities to the compounds used in build-
ing the model and also the distance between the training and
test set of the compounds. This can be achieved by employ-
ing William’s plot which was plotted using standardized re-
siduals versus the leverages. The leverages for a particular
chemical compound is given as follows:

hi=2,(z".2)" z," (x)

where /; is the leverage for a particular compound and
Z; is the matrix i of training set. Z is the nxk descriptor-
matrix for a training set compound. Z" is the transpose
of the Z matrix. The warning leverage (4*) that is the
boundary for normal values of Z outliers is given by;

n = 3@ (xi)

Where n is the number of molecules in the training
set whereas p gives the amount of descriptors presence
in the built model [17].

2.9 Molecular docking studies

With the aid of Autodock Vina of Pyrex software and
Discovery Studio, a molecular docking study was per-
formed between 2,5-disubstituted-1,3,4-thiadiazole de-
rivatives and P. infestans effector target site to examine
the interaction between the binding pocket of the ef-
fector and the compounds (i.e., the ligands). A highly

resolute crystal structure of P. infestans was downloaded
successfully from the protein databank (PDB Code:
2NAR). The downloaded substrate was carefully pre-
pared using Discovery Studio which was later trans-
ported to the Pyrex for the docking calculation. With
the aid of Spartanl4 version 1.1.4, the optimized com-
pounds of 2,5-disubstituted-1,3,4-thiadiazole derivatives
(the ligands) were converted to PDB files [24]. The pre-
pared structure of P. infestans effector site and prepared
ligands were docked using Autodock Vina 4.2 [29]. Dis-
covery Studio Visualizer was also used to visualize the
docking results (Fig. 2).

3 Results
3.1 Model building and validation
Below is the equation of the best-chosen model (4).

pEC;, = Y = 0.037511826xAMR
+ 4.846246933%SCH-7
+ 0.021854712+WG.unity
+ 0.3299691xWnu2.eneg—-6.116815304

(xii)

The validation parameters are shown in Tables 2
and 3 below.

3.1.1 Model 1

In the first model, pECs5q = 0.244535617 x BCUTp-11
- 22.874691031 x SCH-6 + 0.213428935 x WA.mass
- 0.025525444 x Wgamma3.volume + 10.325883792,
RPeac = 0.395084, R, = 0.824826, R,4; = 0.783609,
R’., = 056979, Nist = 10, Nyan = 22, LOF =



Isyaku et al. Beni-Suef University Journal of Basic and Applied Sciences (2020) 9:11 Page 7 of 12

Table 6 Experimental activity, predictive activity, and residual 0.12303, and m in experimental error for non-
values of the dataset compounds significant LOF (95%) = 0.12303.
Name PECso Predicted (pECsp) Residual values
1 1.344392 1412139 — 0.067750 3.1.2 Model 2
2 1.786751 1.896776 —0.110030 In the second model, pEC5y = 0.297814107 x nCl +
3 171433 1 857390 0143060 0.168441873 x nBondsS3 + 0.001197233 x PPSA-1 -
4 1 893207 1 979555 — 0086350 0.024107696 ><2\X/gamma3.volumg + 0.268877261, 1§2teat
= 0.206664, R”in = 0.807874, R",q; = 0.762668, R"., =
° 1910624 152983 0380750 0.558932, Nist = 10, Nigain = 22, LOF = 0.12885, and
6 1962369 1.984080 - 0021710 min experimental error for non-significant LOF (95%)
7 2.007748 2.044664 - 0.036920 =0.128845.
8 1.895423 1.795907 0.099515
9 1.840106 1.949358 1.949358 3.1.3 Model 3
10 0.869232 0.958705 — 0.089470 In the third model, pEC5() = 0.139831691 x nHeavyAtom +
» 1501059 1532573 0031510 0.314911162 x nCl + 0.001443139 x PPSA-1 - 0.024455939
5 026857 R 0138135 ><2 Wgamma3.volume - 2.325579534, theat = 0.3681753,
' ' Rain = 0.800593, R, = 0.753674, R, = 0.516043, Nies; =
13 1873902 1822533 0051369 10, Nygain = 22, LOF = 0.13126, and min experimental error
14 1841359 1891726 - 0050370 for non-significant LOF (95%) = 0.131264.
15 1.506505 1.640308 - 0.133800 Table 4 and Table 5 presented the external validation
16 1655138 1657670 1657670 and calculation of predicted R* of the chosen model.
17 2051153 2.166915 2166915
18 0755875 0829351 0073480 3.2 Statistical analyses of the descriptors
The following are the different analyses: Pearson’s cor-
19 0612784 1.001470 1.001470 . . L. .
relation, standard regression coefficients, standardized
20 1826723 1679846 0.146876 predicted activity against experimental activity, standard-
21 1.752048 1.762747 — 0010700 ized residual against experimental activity (pEC50), and
22 2047275 1819474 0.227801 William’s plot.
23 1870404 1649906 0220498
24 1774517 1597157 1597157 3.3 The results of the docking study
2 0924279 0786564 0786564 The results can be seen in the receptor-ligand inter-
% 1709270 | 800588 0111320 actlon,‘ H-bond {nteractlons, and hydrophobic and elec-
trostatic interactions.
27 1.751279 1.750914 0.000365
28 1496930 1.795823 —0.298890 4 Discussion
29 1.745855 1372555 1372555 4.1 QSAR model
30 1.824126 1.399054 1.399054 The best QSAR model was generated using the GFA
31 1257679 1412139 1412139 method. Four descriptors were used in building the
3 1743510 1264777 1264777 model where four different models were generated and
model 4 found to be the best following the statistical pa-
rameters. All the values obtained matches the minimum
value for evaluating the QSAR model. These values sig-
nify that there is a high correlation between the pre-
dicted and experimental activity (pEC50, Fig. 3). Internal
and external validations, as well as the other statistical
analysis, made the model 4 to stand fit, reliable, and
Table 7 Pearson’s correlation highly predictive.
AMR SCH-7 WG.unity Wnu2eneg VIF From Tables 2 and 4, the R? values of 0.79831800 (in-
AMR 1 1032008  ternal) and 0.624008 (external) indicate a strong rela-
SCH-7 004901 1 115397  tionship between the experimental and predicted
WGunity 0127617 - 026704 1 117205,  Activities. Additionally, the inhibition activities of the
compounds increase by the addition of all the descrip-
Wnu2eneg 0067316 0316544 —031218 1 1.202662

tors in the best chosen model.
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", the values of mean effect (MF), and confidence interval (p values)

Descriptors Standard regression coefficient (bj)

Mean effect (MF) p value (confidence interval)

AMR 0.037512
SCH-7 4.846247
WG.unity 0.021855
Wnu2.eneg 0.329969

0.521147 0.002152
0441298 0.000518
0.010013 0.000368
0.027542 0.001551

4.2 Interpretation of descriptors

The 2D molecular descriptors AMR and SCH-7 defined
as “Molar refractivity” and “Simple chain, order 7” are
the first and second highest contributors toward the
generation of the selected model with a positive mean
effect of 0.52115 and 0.4413. Thus, the addition of those
descriptors will significantly enhance the antifungal ac-
tivity of the compound. 3D descriptors WG.unity and
Wnu2.eneg with the mean effect of 0.01001 and 0.02754
have a low effect on the model therefore their increase
will have no much significant on the activity of the com-
pound. They are defined as “Non-directional WHIM,
weighted by unit weights” and “Directional WHIM,
weighted by Mulliken atomic electronegativities”.

Model 4 was examined as the optimal model considering
the descriptors from test set compounds of the dataset.

The experimental activity, predictive activity, and residual
values of the compounds are given in Table 6. The residual
value is defined as the difference between the experimental
and predicted activities. The lower residual values between
the experimental and predicted activities indicate the high
predictive power of the model.

4.3 Statistical analysis of descriptors
Pearson's correlation (Table 7) was performed between the
descriptors of the chosen model in order to evaluate the

relationship between each of the descriptors. The result of
the correlation showed no intercorrelation among the de-
scriptors with a correlation coefficient of less than 0.5, which
signified that the descriptors used in the model were good
enough. The VIF values are within the range of 1 to 5 which
indicated that the descriptors and model are suitable and
acceptable.

Table 8 showed the standard regression coefficients “by”,
the values of mean effect (MF), and confidence interval (p
values). These give vital information on the effect and contri-
bution of the descriptors toward the built model. The indi-
vidual capability and inducing power of the selected
descriptors toward the activity of the compounds depend on
their values, signs, and their mean effects as well. The p
values of the four descriptors (at a confidence limit of 95%)
that made up the model are all less than 0.05; this implies
that there is a significant relationship among the descriptors
(as contrary to the null hypothesis) and the inhibitory con-
centration of the compounds.

Figure 4 which presented a graph of observed activity
versus standardized residual shows a random dispersion
at the baseline where the standardized residual is zero.
Therefore, no systematic error occurred in the built
model.

The graph of standardized residuals versus leverages
(for all the training set and test set) termed the William’s

Standardized residuals

Experimental activity (pEC50)

@ Trainimg set standardized residual
Fig. 4 Plot of standardized residual against experimental activity (pEC50)
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J

plot shown in Fig. 5. The domain of applicability is
established within a box at + 3.0 limit for the residuals
and a leverage threshold /#* (h* = 0.68). This William’s
plot functions to figure out the outliers as well as the in-
fluencing compounds in the model. Our results revealed
that two compounds of the test set (with pECso of
1.84011 and 2.05115) were outside the applicability do-
main which signified that the compound may be struc-
turally different from other compounds in the dataset.
Thus, the compound was outside the warning leverage
h* which was found calculated as 0.68.

4.4 The docking study
Molecular docking was run between the protein of P.
infestans effector target site (PDB ID: 2NAR; >95%

purity) and the ligands to investigate/examine the mode
of interaction of the ligands with the macromolecular
target site of the protein. The interaction of all the 32
compounds with the receptor active site was carried
out in which the receptor-ligand interactions with
lower energy, i.e., those with better docking scores,
were recorded in Table 9. The table consists of the li-
gands with their binding affinity, the H-bonds, H-bond
distances, as well as their hydrophobic and electrostatic
interactions. The binding affinity for all the compounds
is between the range of - 82 to - 9.3 kcal/mol.
Compound 13 possessed the highest binding score with
- 9.3 kcal/mol and showed an interaction mode with
H-bonds (GLU88 with H-bond distance of 2.78089A
and GLN67A with H-bond distance of 2.91512A),

Table 9 The binding energy, H-bonds, H-bond distances, hydrophobic and electrostatic interactions of receptor, and the ligands

with the highest docking scores

Ligands Binding energy (kcal/ H-bonds H-bond distances Hydrophobic interactions Electrostatic
mol) interactions

" - 9.1 GLU88, GLN67 2.86658, 2.77632 TYR87, TYR71, LEU52, TYR87, ALA69 ASP56, GLU88

13 -93 GLU8S, GLN67 2.78089, 291512 TYR87, TYR71, LEU52, TYR87, ALA69 ASP56, GLU88

14 -89 GLN67, GLN67 2.58747,2.377 TYR87, TYR71, TYR71, ALA69, LEU52 ASP56, GLU8S, GLU88

15 -89 GLN67, GLN67 2.74137,2.57359 TYR87, TYR71, ALA69, LEU52 ASP56, GLU8S

17 -89 GLN67, GLU8S, 3.0818,3.03569, TYR87, TYR71, LEU52, TYR87 ALAE9 ASP56, GLU88
GLN67 2.74824

24 -89 GLN67, GLY68, 2.52375,2.5966, TYR87, ALAG9 LEU52 ASP56, GLU88 GLU88
GLN67 2.29024

26 -90 ASN72 2.22541 TYR87, TYR71, LEU52, TYR87, ALAG9, ASP56, GLU88

LEUS52
30 -90 ASN72 249659 TYR87, TYR71, LEU52, TYR87, ALA69, ASP56, GLU88 GLU88

LEU52
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Fig. 6 Receptor-ligand interaction
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hydrophobic interaction mode of TYR87 (4.7572A),
TYR71, LEU52, TYR87 (4.88051A), and ALA69
residues.

Figure 6 showed a receptor—ligand interaction while Fig. 7
is the 2D structure which shows that H-bond interaction ex-
ists between the receptor and the compound 13 which has a
better binding affinity and showed a better interaction with
the macromolecular target site of the residue when com-
pared with other compounds as well.

5 Conclusion

This research involves a QSAR and molecular docking
studies on 32 compounds of 2,5-disubstituted-1,3,4-thia-
diazole derivatives against P. infestans effector site. After
using DFT to optimize the compounds, GFA was used to
generate the built model. Among the four generated
models, the fourth model was found to be the optimal,
having appreciable statistical parameters with R* =
0.798318, R*,4; = 0.750864, cross-validation R* (Q*.) =
0.662654, and external validation Rzpred = 0.624008. De-
scriptors AMR and SCH-7 were the first and second high-
est contributors toward the generation of the selected
model, and thus, their increase will increase the activity of
the compound while WG.unity and Wnu2.eneg have a
low effect on the model, therefore, their increase will have
no much significance on the activity of the compound
against P. infestans.

According to the docking scores, almost all the ligands
(compounds) showed high binding affinity/strong inhib-
ition activity against P. infestans effector site. However,
ligands 11, 13, 14, 15, 17, 24, 26, and 30 showed higher
binding affinity ranging from - 8.9 to - 9.3 kcal/mol.
With ligand 13 having the highest binding energy of -
9.3 kcal/mol. This compound [13] was able to strongly
dock at the binding pocket of the P. infestans effector
site (2NAR) producing an H-bond as well as hydropho-
bic interaction with the target site.

The generated QSAR model provides a worthy idea on
ligand-based design whereas the molecular docking ana-
lysis suggested an approach toward the structure-based
design of novel and more potent compounds against P.
infestans.
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