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Abstract

Background: Pyrazole-furan and pyrazole-pyrrole moiety are among the molecular structures that were found to
have an extensive range of applications in the field of medicine and agrochemical due to their wide spectrum of
biological activities. These include antimicrobial activity, anti-glaucoma activity, ocular hypertension activity, and
antifungal activity.

Results: An in silico study was carried out on 37 compounds of pyrazole-furan and pyrazole-pyrrole carboxamide
derivatives against Sclerotinia sclerotiorum. Using Spartan 14 software, optimization of the compounds was
performed at the DFT/B3LYP/6-31G* quantum mechanical method. PaDEL descriptor software was used to calculate
the molecular descriptors, and a Generic Function Approximation (GFA) was employed to generate the model. Out
of four models generated, model 1 was found to be the optimal and has the following statistical parameters; R2 =
0.83485, R2adj = 0.793563, cross-validated R2 = 0.74037, and external R2 = 0.58479. Molecular docking study was
carried out between the antifungal compounds, and the binding site of S. sclerotiorum (PDB CODE 2X2S) in which
compound 7 was identified to have the highest binding energy of − 7.5kcal/mol. This compound “7” has a strong
affinity with the macromolecular target point of the S. sclerotiorum (2x2s), producing H-bond and as well as the
hydrophobic interaction at target point of the amino acid residue. Considering compound 7 as our scaffold, four (4)
more potent compounds (7a, 7b, 7c, and 7d) were designed using optimization method of structure-based
designed which have the following docking score, − 7.7, − 7.8, − 7.7, and − 7.7kcal/mol.

Conclusion: Statistical analyses including variance inflation factor (VIF), mean effect (ME), and applicability domain
were conducted on the model. Considering an interpretation of the descriptors given in the discussion, the QSAR
model provided an idea of ligand-based design while the molecular docking gave an insight on structure-based
design of the new compounds with better activity against S. sclerotiorum in which four (4) compounds 7a, 7b, 7c,
and 7d were designed and discovered to be of high quality and have greater binding affinity compared to the one
obtained from the literature (compound 7).

1 Background
Sclerotinia sclerotiorum otherwise called cottony rot,
blossom blight, stem rot, crown rot, or watery soft
rot, is a fungal pathogen that results in a plant disease
known as “white mold” under favorable conditions. This
pathogen produces black resting structures (called scler-
otia) on the affected plant. It can be found in different
parts of the world with an extensive range of hosts [4]. S.
sclerotiorum causes great losses when onset on a favorable
environmental and extensive care or control measures

should drastically be taken [23]. Herbaceous, succulent
plants (particularly flowers) and vegetables are the
common hosts.
Pyrazole-furan and pyrazole-pyrrole moiety are among

the molecular structures found to have an extensive
wide range of applications in the field of medicine and
agrochemical due to their wide range of biological activ-
ity such as antimicrobial activity [8], anti-glaucoma and
ocular hypertension activity [20], antifungal activity [18],
and as D-amino acid oxidase (DAAO) inhibitors [12]
among others.

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

* Correspondence: isyakuyusuf01@gmail.com
Department of Chemistry, Ahamadu Bello University, Zaria, Nigeria

Beni-Suef University Journal of
Basic and Applied Sciences

Isyaku et al. Beni-Suef University Journal of Basic and Applied Sciences
           (2020) 9:15 
https://doi.org/10.1186/s43088-020-0038-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s43088-020-0038-4&domain=pdf
http://orcid.org/0000-0001-7436-3507
http://creativecommons.org/licenses/by/4.0/
mailto:isyakuyusuf01@gmail.com


The quantitative analysis of the structure-activity rela-
tionship (QSAR) is among the major efficient methods
to optimize the main compounds and design novel com-
pounds. QSAR is used to predict bioactivity of the
compounds such as toxicity, carcinogenicity, or mutage-
nicity, depending on the structural characteristics of the
molecules and the actual mathematical models. Now-
adays, one can easily and accurately calculate quantum
chemical parameters of the compounds due to fast de-
velopment in computer technology as well as theoretical
quantum chemical study which helped in predicting the
new compounds with better activity than the existing
ones. This quantum chemical calculation is extensively
applied while forming the QSAR models [13]. Molecular
docking helped to investigate the capacity of the pre-
pared compounds toward interaction with the protein
residue of the target organism and to also predict the
preferred orientation of the molecules.
The objective of the current work is to build a new

model that can predict the activity of chemical products
with much better activity against S. sclerotiorum using
Genetic Function Approximation (GFA) and molecular
docking techniques.

2 Methods
2.1 Dataset
In this work, a series of 37 compounds were used to
generate the relationship between chemical traces of
the compound and its antifungal activity. These 37
compounds of novel pyrazole-furan and pyrazole-
pyrrole carboxamide were obtained from the previous
work [24]. The logarithm of the measured EC50 (μM)
against antifungal activity given by pEC50 (p EC50 =
− log 1/EC50) was taken as a dependent variable;
therefore, the data was linearly correlated with the in-
dependent variables (descriptors) [10]. The dataset
was represented in Table 1 and Fig. 1.

2.2 Optimization
The dataset was optimized at a level of density function
theory (DFT) by applying Becke’s three-parameter read-
Yang-Parr hybrid (B3LYP) function together with a “6-
31G *” basis set of Spartan14 software [6]. Graphical-user-
interface of Spartan14 software was used to draw the 2D
molecular structures of the dataset which were later
exported in the form of 3D. The optimized structures
were then taken to PaDEL descriptor software to generate
the quantum molecular descriptors [25].

2.3 Molecular descriptors calculations
Molecular descriptors are the properties of the molecule
in numerical/mathematical values. PaDEL descriptor
software was used to further calculate additional energy

of those low-energy conformers, where a total of 1875
descriptors were calculated [1].

2.4 Data division
To get a validated model, the dataset was divided into
training and test sets (3:1). Following the Kennard-Stone
algorithm method, the division was performed in such a

Table 1 Dataset

S/no X A R pEC50

1 O Cl Ph 0.748188

2 O Cl 2-Cl-Ph 0.70757

3 O Cl 3-Cl-Ph 1.238046

4 O Cl 4-Cl-Ph 0.919078

5 O Cl 2-MeO-Ph 1.161368

6 O Cl 3,4-(MeO)2-Ph 2.180986

7 O Cl 2-CF3O-Ph 0.342423

8 O Cl 4-CF3O-Ph 1.139879

9 O Cl 2-CF3-Ph 1.235528

10 O Cl 4-CF3-Ph 1.227887

11 O Cl 4-Me-Ph 1.209515

12 O Cl 2,5-Me2-Ph 1.143015

13 O Cl 3-NO2-Ph 0.94939

14 O Cl 4-Cyano-Ph 1.11059

15 O Cl 4-Cyanomethyl-Ph 1.113943

16 O H Ph 2.474508

17 O H 3-Cl-Ph 2.150756

18 O H 4-Cl-Ph 1.557507

19 O H 2-MeO-Ph 2.232488

20 NMe Cl Ph 1.033424

21 NMe Cl 2-Cl-Ph 0.755875

22 NMe Cl 3-Cl-Ph 1.164353

23 NMe Cl 4-Cl-Ph 1.532754

24 NMe Cl 2-MeO-Ph 0.544068

25 NMe Cl 3-MeO-Ph 1.912753

26 NMe Cl 3,4-MeO2-Ph 0.944483

27 NMe Cl 2CF3-Ph 1.834421

28 NMe Cl 4-CF3-Ph 2.115943

29 NMe Cl 2-(4-Cl-Phenyl)-Ph 2.439806

30 NMe Cl 4-t-Bu-PhCH2 0.973128

31 NMe Cl 6-Cl-Pyridin-3-yl-CH2 0.875061

32 NMe Cl 4-Cl-PhCH2CH2 0.462398

33 NMe Cl 1-naphthalene 1.884795

34 NMe H Ph 2.635383

35 NMe H 2-MeO-Ph 1.751279

36 NMe H PhCH2 2.074085

37 NMe H 4-t-Bu-PhCH2 2.121888
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way that the compounds forming the training set (70%
of the data) and the test set (30% of the data) were
shared within an entire descriptive space filled by the
complete dataset [7].

2.5 Model building and validation
The generated molecular descriptors were taken for re-
gression analysis, with experimental activities as
dependent variables and the molecular descriptors served
as independent variables. Using the Genetic Function Ap-
proximation method (GFA) incorporated in the Material
Studio 2017 software [9], the training set compounds were
utilized to develop the QSAR model. Four QSAR models
were built, and the best model was chosen according to
the one with the lowest score of lack of fit (LOF) given as
follows:

LOF ¼ SSE 1−
cþ dp
M

� �2

ðiÞ

where SSE represents the sum of squares of errors, d is a
smoothing parameter defined by the user, c is the num-
ber of terms a model possessed in addition to the con-
stant term, M gives the number of samples present in
the training set, and p is the overall number of descrip-
tors present in all terms of the model excluding the con-
stant term [11].

2.5.1 Internal validation
The generated model was validated internally by the fol-
lowing parameters:

a. The correlation coefficient (R2): explain the division
of overall variation ascribed to the built model. The
accepted value of R2 ranges from 0.5 to < 1 and the
more the value of R2 approaches 1.0 the better the
model. Though there are other analyses that the
model must pass before we can consider it a good
model, being the most common internal validation
pointer, R2 is expressed as follows:

R2 ¼ 1−

P
Yexpt−Yperdtð Þ2P
Yexpt−Ytrain
� �2 ðiiÞ

where Yexpt, Ypredt, and Y train represent the experimental,
predictive, and average activities of the training set [3].

b. Adjusted R2: The value of R2 is inconsistent to
evaluate the power of the built model; thus, R2 is
adjusted to restore and stabilize the model. This
adjusted R2 is defined in Eq. iii as:

R2adj ¼ 1−R2ð Þ n−1ð Þ
n−P−1

¼ n−1ð Þ R2−P
� �

n−P þ 1
ðiiiÞ

where p presents the number of descriptors that consti-
tuted the model, while n gives the number of training
set compounds [14].

c. Cross-validated R2: The validity of the models was
identified by a cross-validation test measured by
predictive Q2

cv. For a leave one out (LOO) cross-
validation, a data point is eliminated (left-out) in
the set and the model is readjusted and then
compared the predicted value of the eliminated data
point to its real value. This is repeated until each
data removed. We can then calculate the value of Q2

cv

using the sum of the squares of these elimination
residues as in the below equation:

Fig. 1 The main structure in the dataset (structural moiety)

Fig. 2 Prepared receptor
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Q2
cv ¼ 1−

P
Ypredt−Yexptð Þ2P
Yexpt−Ytrain
� �2 ðivÞ

where Yexpt, Ypredt, and Y train represent the experimental,
predictive, and average activities of the training set [2].

2.5.2 External validation
The prediction capacity of the model was examined
by an external validation through the ability of the
model to predict the activity values of the test set
compounds as well as its application in the calculat-
ing the predicted value of R2

pred according to the
equation below:

R2 ¼ 1−

P
Ypredt−Yexptð Þ2P
Yexpt−Ytrain
� �2 ðvÞ

where Ypredt and Yexpt are the test set’s experimental and
predicted activities while Ytrain gives the average activity
of the training set [5].

2.6 Statistical analysis of the descriptors
2.6.1 Variance inflation factor (VIF)
It was defined as the measure of multicollinearity
amongst the independent variables (i.e., descriptors). It
quantifies the extent of correlation between one pre-
dictor and the other predictors in a model.

VIF ¼ 1

1−R2
� � ðviÞ

where R2 gives multiple correlation coefficient between
the variables within the model. If the VIF is equal to 1, it
means there is no inter-correlation in each variable, and
if it ranges from 1 to 5, then it is said to be suitable and
acceptable. But if the VIF turns out to be greater than
10, it indicates the instability of the model and needs to
be reexamined [16, 19].

2.6.2 Mean effect (ME)
The average effect (mean effect) correlates the effect or
influence of given molecular descriptors to the activity
of the compounds that made up the model. The sign of
descriptors shows the direction of their deviation toward
the activity of compounds. That is to say, an increase or
decrease in the value of the descriptors will improve the
activity of the compounds. The mean effect is defined by
the following:

Mean effect ¼ Bj
Pn

i D jPm
j B j

Pn
i Dj

� � ðviiÞ

Fig. 4 A plot of predicted activity versus experimental activity

Fig. 3 Prepared ligand
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where Bj and Dj are the j-descriptor’s coefficient in a
model and the values of each descriptor in training set,
while m and n stand for the number of molecular de-
scriptors and the number of compounds in the training
set. To evaluate the significance of the model, the ME of
all the descriptors was calculated [11].

2.6.3 Applicability domain
To confirm the reliability of the model and to examine
the outliers as well as the influential compounds, it was
very important to evaluate its domain of applicability. It
aimed to predict the uncertainty of a compound depends
on its similarities to the compounds used in building the
model and also the distance between the training and
test sets of the compounds. This could be achieved by
employing William’s plot which was plotted using stan-
dardized residuals versus the leverages. The leverages for
a particular chemical compound was given as:

hi ¼ Zi Z
T Z

� �−1
Zi

T ðviiiÞ

where hi = leverage for a particular compound and Zi =
matrix i of the training set. Z = nxk descriptor-matrix
for the training set compounds. ZT = transpose of the Z
matrix. The warning leverage (h*) that is the boundary
for usual values of Z outliers is given by;

h� ¼ 3
pþ 1ð Þ
n

ðixÞ

where n = number of compounds in the training set and
p is the number of descriptors present in the model [15].

2.7 Ligand and receptor preparation
From the RCSBPDB (www.rcsb.org), the PDB format of
the receptor was successfully downloaded. This was then
taken to the discovery studio for an appropriate

Fig. 6 William’s plot

Fig. 5 A plot of standardized residual versus experimental activity
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preparation whereby all the residues associated with the
downloaded receptor (such as a ligand, water molecules,
and other traces) were removed. The ligands (the opti-
mized compounds) which were in the SDF file were trans-
formed into a PDB file format. The prepared structure of
S. sclerotiorum and prepared compounds were docked
using Autodock Vina 4.2 [22]. Discovery Studio Visualizer
was also used to visualize the docking results. Figures 2
and 3 showed the prepared receptor and ligand [15].

2.8 Optimization method of structure-based design
This refers to the optimization of known molecules
through evaluating its proposed analogs within the bind-
ing cavity [17]. Discovery studio was used to visualize the
receptor-ligand interactions in which different interactions
such as H-bond and hydrophobic interaction formed be-
tween compound 7 and the receptor (PDB ID: 2x2s) were
studied. Based on the knowledge of this interaction, the
designed compounds were proposed in which they were
drawn, optimized, converted to PDB, and later docked
with the receptors to record their potency.

3 Results
3.1 QSAR model (Figs. 4 and 5)
The equation of the best and selected model (model 1):

pEC50 ¼ 3:742328478�ATSc5−0:055068016�ATSm1
þ 0:308420856�nBondsM
þ 0:128047514�MDEC−13
þ 0:199822703�ndsN−0:389418304:

ðxÞ

3.2 Applicability domain (Fig. 6)

3.3 Docking studies (Figs. 7 and 8)

4 Discussion
4.1 QSAR model
QSAR examination was carried out to relate the structure-
activity relationship of the novel pyrazole-furan and
pyrazole-pyrrole carboxamide derivatives as potent inhibi-
tors of S. sclerotiorum. Five descriptors were utilized in the
construction of the QSAR model to predict the activities of
the inhibitory compounds based on the Genetic Function
Approximation (GFA). The first model (vi) was chosen as
the optimal model due to its statistical significance.
All the validation parameters that signify the stability,

robustness, and the prediction capability of the model
were presented in Table 2. The names, symbols, and clas-
ses of the five (5) selected descriptors that made up the
model are presented in Table 3.
From the Table 2 of validation parameters, the highly

calculated R2 value (0.835) for the predicted activities in-
dicated that the model is internally good. Tables 4 and 5
represent the external validation and the calculation of
predicted R2 of the best-chosen model.

4.2 Interpretation of descriptors
ATSc5 and ATSm1 are 2D auto-correlation descriptors
built by Todeschini and Consonni and defined by
Moreau-Broto autocorrelation as ATS autocorrelation
descriptor, weighted by charges (ATSc5), and weighted

Fig. 7 The interaction between the compound with the highest docking score and receptor
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Table 3 List of descriptors with their descriptions and class

S/no Descriptor Description Class

1 ATSc5 ATS autocorrelation descriptor, weighted by
charges

2D

2 ATSm1 ATS autocorrelation descriptor, weighted by
scaled atomic mass

2D

3 nBondsM The total number of bonds that have a bond
order greater than one (aromatic bonds have
bond order 1.5).

2D

4 MDEC-13 Molecular distance edge between all primary
and tertiary carbons

2D

5 ndsN Count of atom-type E-State: = N- 2D

Table 2 Validation parameter of the model

Friedman LOF 0.236909

R-squared 0.83485

Adjusted R-squared 0.793563

Cross-validated R-squared 0.74037

Significant regression Yes

Significance-of-regression F value 20.220461

Critical SOR F value (95%) 2.732939

Replicate points 0

Computed experimental error 0.0000000

Lack-of-fit points 20

Min expt. error for non-significant LOF (95%) 0.18129900

Fig. 8 2D interaction of compound 7 with receptor
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by scaled atomic mass (ATSm1) [21]. It is given by the
equation below:

ATSd ¼
XA
i¼1

XA
j¼1

∂ij: wi:wj
� �

d ¼ wT : mB:w

where w = any atomic property, A = number of atoms,
d = topological distance, ∂ij = Kronecker delta, mB =
mth order binary spare matrix, and w = A-dimensional
vector of atomic properties. ATSc5 and ATSm1 consist
of negative mean effects which imply that they harm
the predictive activity of the model, which means that
for any increase in these descriptors there will be a
decrease in the activity of the compounds. The 2D
descriptor “nBondsM” defined as the dimensionless
total number of bonds that have bond order greater
than one and is encoded to an unsaturation. It referred
to as the number of non-kekulized structures. It has a
positive mean effect which signified an increase in it,
will enhance the activity of the chemical compound. A

simple cluster descriptor MDEC-13 (defined as molecu-
lar distance edge between all primary and tertiary
carbons) is a 2D descriptor with a positive mean effect
which signifies an increase of a simple cluster to a com-
pound increases the activity of that compound. An E-
State descriptor “ndsN” defined as Count of atom-type E-
State: =N- is a 2D descriptor with positive mean effects
which indicated that an increase in these descriptors
enhances the activity of the compounds.
The experimental, predictive, and residual activities for

both training and test sets are shown in Table 6. The
residual value is the difference between the predicted
and actual activities.

4.3 Pearson’s correlation
To evaluate the relationships between each of the
descriptors used in the model, Pearson’s correlation
was carried out on the descriptors of the built model
and the results were presented in Table 7. The results
show that the descriptors are significantly inter-
correlated because none of their correlation coeffi-
cients are up to 0.5, and this indicates the robustness
as well as the stability of the model. The Variance
Inflation Factor (VIF) values for each of the five
descriptors were not up to 2, which indicated that the
descriptors and the model are stable and accepted.
Figure 5 presents a graph of observed activity versus

standardized residual and shows a random dispersion
at the baseline where the standardized residual is
zero. This shows no systematic error occurred in the
built model.
Table 8 showed the standard regression coefficients

"bj,” the values of mean effect (MF) and confidence
interval (p values). These give vital information on
the impact and contribution of the descriptors toward
the built model. The individual capability and indu-
cing power of the selected descriptors toward the
activity of the compounds depend on their values,

Table 5 Continuation of external validation
(Ypred − Yobs)

2 YmeanTrain Yobs − YmeanTr (Ypred − YMeanTrain)
2

0.53974 1.403369 − 0.65518 0.429262

0.002401 1.403369 − 0.48429 0.234538

0.079339 1.403369 − 1.06095 1.125607

0.495232 1.403369 − 0.45398 0.206097

0.000258 1.403369 1.071139 1.147338

0.17715 1.403369 0.829119 0.687438

0.117023 1.403369 − 0.64749 0.419249

0.07566 1.403369 0.509384 0.259472

0.857383 1.403369 0.712574 0.507762

0.297397 1.403369 − 0.43024 0.185108

0.148514 1.403369 1.232014 1.517859

∑(Ypred − Yobs)
2 = 2.790097 ∑(Ypred – YMeanTrain)

2 = 6.719729

R2 = (1-2.790097/6.719729) = 0.58479

Table 4 External validation

S/no Activity ATSc5 ATSm1 nBondsM MDEC-13 ndsN Ypred (Ypred − Yobs)

1 0.748188 − 0.09095 30.34183 10 0 4 1.482858 0.73467

4 0.919078 − 0.10029 39.05478 10 0 4 0.96808 0.049002

7 0.342423 − 0.27593 40.62243 10 0 6 0.624095 0.281672

13 0.94939 − 0.08001 35.25075 10 0 6 1.653117 0.703727

16 2.474508 − 0.06526 21.62888 10 0 6 2.458433 − 0.01607

19 2.232488 − 0.18624 24.40335 10 1.23799 5 1.811596 − 0.42089

21 0.755875 − 0.12052 39.64029 10 1.857354 4 1.097961 0.342086

25 1.912753 − 0.00494 33.70181 10 2.876191 5 2.187817 0.275064

28 2.115943 − 0.0674 39.43347 9 1.782569 5 1.189993 − 0.92595

30 0.973128 − 0.08618 31.92734 9 1.668818 5 1.518469 0.545341

34 2.635383 − 0.05827 22.21439 10 1.54067 4 2.250008 − 0.38538
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signs, and their mean effects as well. The p values of
the five descriptors (at 95% c.l.) that made up the
model are all < 0.05; this implies that there is a sig-
nificant relationship among the descriptors (as con-
trary to the null hypothesis) and the inhibitory
concentration of the compounds.

4.4 Applicability domain
A graph of leverages for each compound of dataset ver-
sus their standardized residuals (in terms of William’s
plot) was plotted to discover the outliers and the chem-
ical influential values of the model. The domain of ap-
plicability was established within a box at ± 2.5 limits for
the residuals and leverage threshold h * (where h* calcu-
lated to be 0.67). The result shows that except one (1)
compound from the test set (with EC50 of 1.91275), all
the molecules in the dataset are within the box of the
applicability domain of the model. This may be charac-
terized by differences in chemical structures considering
the rest of the compounds highlighted in the dataset.
Figure 6 shows William’s plot.

4.5 Docking studies
A molecular docking study was performed between the li-
gands (compounds) and the target site of S. Sclerotiorum
to investigate the binding affinity of the molecules with
the macromolecular active site of the fungus. All the li-
gands show an interaction with the active site of the S.
sclerotiorum, which is to say they inhibit the activity of the
fungus. Some ligands show high binding energy that varies
from – 6.9 to – 7.5 kcal/mol as presented in Table 8. How-
ever, compound 7 shows the highest docking score of –
7.5kcal/mol. Compound 7 with the lowest binding free en-
ergy, possessed an interaction mode with H-bond of
TYR63 and 2.86621 bond length and hydrophobic inter-
action of TYR107 and PRO101. The interaction between
the compound with the highest docking score and the
binding pocket of the receptor is shown in Fig. 7 while
Fig. 8 is the 2D hydrogen bond interaction of compound 7
with the receptor. Table 9 shows the binding affinity,

Table 7 Pearson’s correlation

ATSc5 ATSm1 nBondsM MDEC-13 ndsN VIF

ATSc5 1 1.196977

ATSm1 0.24955 1 1.350698

nBondsM − 0.12262 0.377168 1 1.296405

MDEC-13 − 0.28008 − 0.20619 0.007194 1 1.179707

ndsN 0.18239 0.114442 − 0.17875 − 0.28875 1 1.156338

Table 8 The standard regression coefficients "bj", the values of
mean effect (MF) and confidence interval (p values)

Descriptors Standard regression
coefficient (bj)

Mean effect (MF) P value
(confidence
interval)

ATSc5 3.742328 − 0.22563 8.14E−05

ATSm1 − 0.05507 − 1.37276 1.96E−05

nBondsM 0.308421 2.130095 4.68E−07

MDEC-13 0.128048 0.135861 0.001867

ndsN 0.199823 0.609916 2.38E−06

Table 6 The experimental, predictive, and the residual activity
for both training set and test sets

S/n pEC50 Predicted pEC50 Residuals

1 0.748188 1.482858 0.73467

2 0.70757 0.832323 − 0.12475

3 1.238046 1.134367 0.103679

4 0.919078 0.96808 0.049002

5 1.161368 1.243926 − 0.08256

6 2.180986 1.718259 0.462726

7 0.342423 0.624095 0.281672

8 1.139879 1.237404 − 0.09753

9 1.235528 1.523985 − 0.28846

10 1.227887 0.923353 0.304534

11 1.209515 1.289041 − 0.07953

12 1.143015 1.225679 − 0.08267

13 0.94939 1.653117 0.703727

14 1.11059 1.036822 0.073768

15 1.113943 1.233488 − 0.11955

16 2.474508 2.458433 − 0.01607

17 2.150756 1.710297 0.44046

18 1.557507 1.54401 0.013497

19 2.232488 1.811596 − 0.42089

20 1.033424 1.033728 − 0.0003

21 0.755875 1.097961 0.342086

22 1.164353 1.398481 − 0.23413

23 1.532754 1.232789 0.299966

24 0.544068 0.603402 − 0.05933

25 1.912753 2.187817 0.275064

26 0.944483 0.873949 0.070533

27 1.834421 1.768216 0.066205

28 2.115943 1.189993 − 0.92595

29 2.439806 2.413539 0.026267

30 0.973128 1.518469 0.545341

31 0.875061 1.092392 − 0.21733

32 0.462398 1.057623 − 0.59523

33 1.884795 2.171681 − 0.28689

34 2.635383 2.250008 − 0.38538

35 1.751279 2.012284 − 0.26101

36 2.074085 2.026278 0.047807

37 2.121888 2.01996 0.101928
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Table 9 Ligands, binding affinity, H-bond, and hydrophobic interaction between high binding score compounds and receptor

Ligands Binding affinity (kcal/mol) Hydrogen bond Hydrophobic interaction

Amino acid Bond distance (Å)

1 − 7.0 VAL6 3.00958 TYR107,PRO101, VAL6

2 − 7.0 TRP24,ASN22, ASN20 3.01414, 2.40177,
2.19411

TRP24,TRP24, TRP24,TYR37

5 − 7.1 ASN113,GLN121 2.58292,2.0082 THR111,LYS147, ALA140

7 − 7.5 TYR63 2.86621 TYR107,PRO101

13 − 7.0 ASN113,GLN121,SER117 2.53428,1.91709
3.41568

THR111,LYS147,
ALA140

24 − 7.4 GLY58,VAL6 2.96167,3.07231 GLY5,GLY58,ASP59,PRO101,VAL6

30 − 6.9 ASN22,ASN20 2.32547,2.16498 TRP24,TRP24, TYR37

31 − 7.1 ASN22,ASN20 2.13643,2.13056 TRP24,TRP24, TRP24

Table 10 Designed compounds
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hydrogen bond, and hydrophobic interaction of the high
docking score compounds.

4.6 Design
In this study, an optimization method of structure-based
drug design approach was employed to design new anti-
fungal compounds with a better activity using com-
pound 7 as a scaffold (which has binding free energy/
docking score of − 7.5kJ/mol). On the bases of the inter-
action between the compound and the receptor, four (4)
derivatives of the compound were designed through
structural modification of the compound as understood
from its docking analysis. All the proposed compounds
were docked using autodock vina and their binding free
energies were recorded. All the designed compounds
were found to be more potent than the scaffold (com-
pound 7) with docking scores of – 7.7, – 7.8, – 7.7, and
also – 7.7 kJ/mol as represented in Table 10. The name,
structure, and binding affinity of the designed com-
pounds are represented in Table 10 above.

5 Conclusion
This research involves a QSAR and molecular docking
studies on 37 compounds of pyrazole-furan and
pyrazole-pyrrole carboxamide derivatives against S. scler-
otiorum. Density function theory (DFT) was used for
molecules optimization, while Generic Function Ap-
proximation (GFA) was employed in generating the built
model. Out of four models built, the first model was
identified to be the optimal with the following statistical
parameters; R2 = 0.83485, R2

adj = 0.793563, cross-
validated R2 = 0.74037, and external R2 = 0.58479. A de-
crease in negative descriptors (like ATSc5 and ATSm1)
and an increase in positive descriptors (like nBondsM,
MDEC-13, and ndsN) will improve the activity of the
compounds against S. sclerotiorum. According to the
docking scores, most of the ligands (compounds) show
good inhibitory activity against S. sclerotiorum. However,
ligand 6 showed a higher binding affinity of – 7.5 kcal/
mol. This compound has a strong affinity with the
macromolecular target point of the S. sclerotiorum
(2x2s), producing hydrogen bond as well as the hydro-
phobic interaction at the target point of amino acid resi-
due. QSAR model gave an idea of ligand-based design
while the molecular docking gave an insight on
structure-based design of the more potent compounds
against S. sclerotiorum in which four (4) compounds 7a,
7b, 7c, and 7d were designed and discovered to be of
high quality and have greater binding affinity compared
to the one obtained from the literature (compound 7).
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