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Abstract

Background: The present pandemic situation due to coronavirus has led to the search for newer prevention,
diagnostic, and treatment methods. The onset of the corona infection in a human results in acute respiratory illness
followed by death if not diagnosed and treated with suitable antiretroviral drugs. With the unavailability of the
targeted drug treatment, several repurposed drugs are being used for treatment. However, the side-effects of the
drugs urges us to move to a search for newer synthetic- or phytochemical-based drugs. The present study
investigates the use of various phytochemicals virtually screened from various plant sources in Western Ghats, India,
and subsequently molecular docking studies were performed to identify the efficacy of the drug in retroviral
infection particularly coronavirus infection.

Results: Out of 57 phytochemicals screened initially based on the structural and physicochemical properties, 39
were effectively used for the docking analysis. Finally, 5 lead compounds with highest hydrophobic interaction and
number of H-bonds were screened. Results from the interaction analysis suggest Piperolactam A to be pocketed
well with good hydrophobic interaction with the residues in the binding region R1. ADME and toxicity profiling
also reveals Piperolactam A with higher LogS values indicating higher permeation and hydrophilicity. Toxicity
profiling suggests that the 5 screened compounds to be relatively safe.

Conclusion: The in silico methods used in this study suggests that the compound Piperolactam A to be the most
effective inhibitor of S-protein from binding to the GRP78 receptor. By blocking the binding of the S-protein to the
CS-GRP78 cell surface receptor, they can inhibit the binding of the virus to the host.
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1 Background
COVID-19, an infectious disease caused by Severe Acute
Respiratory Syndrome Corona Virus-2 (SARS-CoV-2)
has become an unexpected threat to the human popula-
tion. With the exponential raising of the infection by
followed increasing mortality rate day by day, the World
Health Organization ((WHO)) has reported active cases
14,348,858 and death of 603,691 humans on 20th July
2020 [1]. The threat has forced a major responsibility to

scientific society in the search for new diagnostic
methods, treatment, and preventive solutions. Existing
repurposed drugs have been neglected by the medical
community due to associated side effects [2].
CoV belongs to the family Coronaviridae with a large

RNA genome of 30 kb, positive-sensed and non-
segmented [3]. The virion structure contains four parts
of protein which are Spike proteins (S-proteins), mem-
brane proteins (M-proteins), envelope proteins (E-pro-
teins), and nucleocapsid proteins (N-proteins). Of these
S-proteins play a major role in transfer of virion particles
from the virus to the host cells using ACE2 receptor [4].
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Although various literature has highlighted the import-
ance of other proteins; the S-protein is currently well
studied and has been as a potent drug target [5]. The S-
protein exhibit in a homo-trimeric state with N-terminal
glycosylation in which the S-polypeptide chain cleaved
into two subunits S1 and S2 (Fig. 1) [3]. The S1 subunit
with the larger receptor binding domain and the S2 sub-
unit which induces the membrane fusion polypeptides
forming the six helix bundle which results in complete
fusion and insertion of viral genome to the host cell
cytosol [6]. Hence, structural analysis on the S-protein
could reveal possible mechanisms by which the viral rep-
lication could be terminated/controlled [7].
Till date, many studies are involved in targeting ACE2

receptor (angiotensin converting enzyme-2), an amino
peptidase which found to act as a cellular gateway for
the entry of viral RNA into the cells using the S-proteins
present in the surface of the virus [5, 8]. But ACE2 re-
ceptor is not only the gateway present on cell membrane
to carry this virion into the cells, there are other cellular
surface proteins which could also take this role. One
such protein is glucose regulated protein 78 (GRP78)
residing in lumen of endoplasmic reticulum (ER), a heat
shock protein with a molecular weight of 78 kDa and a
molecular chaperone present in all eukaryotic cells. The
major role of GRP78 is protein folding, unfolding, and
resisting aggregation of proteins in cytosol [9]. The ER-
protein when overexpressed escape the KDEL motif re-
ceptors which responsible for retention in ER due to its
saturation or down regulation and get translocated in
the cell membrane and act as cell surface GRP78 recep-
tor (CS-GRP78 receptor) which pose the potential threat
to our system for viral entry. Hypoxia, glucose starva-
tion, and tumor causes ER stress which thus upregulate
the GRP78 genes and result in over production of
GRP78 [10]. Misfolded protein accumulation also results
in overexpression of this protein mostly reported in neu-
rodegenerative disorders and conditions like Alzheimer,
Parkinson’s disease, and prion protein disease [11].
CS-GRP78 acts as a multifunctional receptor and

binds plenty of proteins and other compounds and acti-
vates several pathways which have negative impact on
the cells like apoptosis [12]. Several studies reveal that
this protein has been responsible for many types of viral
entry. In entry of CoxsackieVirus A9 CS-GRP78 in-
volved as the co-receptor along with MHC Class 1 mol-
ecule on cell surface [13]. GRP78 studies reported an
important host cell factor in the entry of Japanese En-
cephalitis Virus into the host cells [14]. Studies report
that along with Dipeptidyl-peptidase 4 (DPP4), CS-
GRP78 involved in the entry of MERS-CoV and reported
that introduction of MERS-CoV into cells upregulate the
GRP78 genes. Upregulation of GRP78 genes results in
overproduction of GRP78 which help in both viral entry

and development [15]. Conditions in which the primary
receptor expression in host is low CS-GRP78 act as the
main alternate door for the viral entry. Thus, inhibiting
or reducing CS-GRP78 mediated entry of SARS-CoV-2
is essentially equivalent to inhibiting the ACE2 mediated
receptor entry [16]. Protein-protein docking studies
established the possible binding site where these two
proteins could form complex with good HADDOCK
Score, PRODIGY Binding affinity, H-bonds, and hydro-
phobic interaction. It would be a good approach, if we
could block the region of S-protein which is responsible
for binding to the CS-GRP78 receptor.
Considering the pandemic situation, several health

organization, and nations in the aim of developing anti-
viral agents are repurposing drugs like Lopinavir (HIV),
Hydroxychloroquinone (Malaria) against COVID [17,
18]. In general, repurposed pose variable target mecha-
nisms and lack effectiveness for coronavirus strain. On
the other hand, antiviral drugs also exhibit adverse side
effects, which directly and indirectly affect human health
[19]. To overcome this shortfall, the development of
plant-based drugs and treatment strategies with minimal
side-effects are expected [20]. Potentially phytochemi-
cals, which serves as an infinite resource for drug devel-
opment and novel pharmacophore may be benefited as a
therapeutic agent against corona viruses. Their thera-
peutic applications against diverse viruses can be ex-
plained by various antiviral mechanisms such as
inhibition of replication process [21] and blocking the
binding of virus to the host [22].
Ancient Indian traditional techniques used several

plant parts to treat various infections and disease condi-
tions [23]. Plant parts used in the treatment was experi-
mentally proven to pose effective medicinal properties,
further studies on their crude extract and compounds
extracted from the plant proved that the extracts are
contained with secondary metabolites like alkaloids, fla-
vonoids, phenols, and chalcones and were termed as
phytochemicals. A large number of phytochemicals pose
antimicrobial, antiviral, and antioxidant properties [24].
These plant parts which were used to treat the disease
or infection were later experimentally proven for their
medicinal properties [25]. Several literature studies and
promising diverse biological assays reveal that a large
amount of phytochemicals can be utilized as an effective
treatment for retroviral infections. Recently, phytochem-
icals are used as an inhibitory material for viral infection
including HIV, influenza, common cold, etc. [26, 27].
In this study, an attempt has been made to virtually

screen potential phytochemicals with high effectiveness
particularly from plants originated from Western Ghats,
India. Intensive literature survey has been made prior to
the screening of phytochemicals. Effectiveness of the
screened compounds were validated based on the in
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silico docking technique by binding to the S-protein of
SARS-CoV-2 and ranked based on the interaction ana-
lysis between the protein-receptor complex.

2 Methods
2.1 Computational platform
All computational analyses were performed on Linux
Mint 18 platform in a Dell T20 server on Intel Xeon
Quad Core 3.2 Hz.

2.2 Receptor preparation
The SARS-CoV-2 S-protein (PDB ID: 6X6P at 3.2 Å)
with the spike glycoprotein was downloaded from RCSB
Protein Bank (PDB). The protein is a trimeric viral
fusion protein with subunits S1 and S2. S1 contains the
receptor binding protein (RBD) responsible for host cell
receptor binding and the S2 subunit facilitates the mem-
brane fusion between the viral and host cell membranes.
The viral protein contains 1274 amino acids and weighs
434.87 kDa. For the purpose of the study, we utilized
only Chain A from the S-protein for docking analysis.
Protein visualization and manipulation of the structures
was done using UCSF Chimera [28].

2.3 Binding-site preparation
The prediction of binding site was done with respect to
the available literature [29] and then verified based on
the presence of hydrophobic regions on the surface of
the protein. For the purpose of the study, we utilized the
same binding site between the S-protein and CS-GRP78,
since our main aim is to block the binding of S-protein
to the ER protein [29]. The hydrophobicity of the pro-
tein is calculated using GRAVY server [30]. The S-
protein contains four hydrophobic regions in the recep-
tor binding domain (RBD) ranging from 318 to 510 as of
the S1 subunit. The binding energy values obtained from
protein binding energy prediction (PRODIGY) [29].

2.4 Screening for phytochemicals
Phytochemicals with antiviral, antimicrobial, and anti-
oxidant properties were screened based on the previous
literature and were sorted, filtered based on their geo-
graphical origin [31–33]. More than 100 compounds

were initially screened. 3D and 2D structures were
downloaded from PUBCHEM database [34] and drug-
bank.ca [35] in both SDF and Simplified Molecular Input
Line Entry System (SMILES) format [36] for further
screening procedures. In order to select the potential
drug-like compounds, several filters were applied on the
structures.
Initially, LIPINSKI rule of five (RO5) was applied to

screen potential drug-like compounds [37]. Drug-like
compounds screened from RO5 was further fed into
SWISS-ADME server for screening based on the
pharmacokinetics, drug-likeliness, and medicinal chem-
istry friendliness of small molecules [38]. In addition, the
physicochemical properties and the drugability of the
selected compounds were also predicted with SWISS-
ADME server. Hydroxychloroquinone (HCQ) (PUB-
CHEM ID: 3652), a well-known retro viral drug was
used as a standard throughout the studies [39].

2.5 Multiple ligand docking
For the purpose of study, Autodock was employed for
docking simulations [40]. Initially, water molecules and
hetero atoms were removed from the structures [41].
Addition of gasteiger charges and H-bond was carried
out prior to the docking protocol. A grid box of 25 × 22
× 19 Å was assigned on the surface of the receptor with
respect to the identified active site. In this present study,
multiple ligands have been screened against the receptor.
Multiple ligand docking was carried out using PyRx in
the Autodock environment [42]. The docked structures
were analyzed for root mean square deviation (RMSD),
lowest energy conformer, and hydrogen bond (HB)
interaction. 2D protein-ligand interaction profile was ob-
tained using Protein Plus Server [43, 44] and Protein
Ligand Interaction Profiler [45].

2.6 Physicochemical property of the bound ligand
To validate the bound ligand with the receptor, the
physicochemical and pharmacokinetic properties of the
drug are analyzed using SWISS-ADME server [38]. The
toxicity profile is analyzed using admetSAR 2.0 [46],
which provides information on the ADMET properties.

Table 1 Dock Scores obtained from Autodock Pyrex of Screened Ligands

Ligand Binding energy
(kcal/mol)

Molecular weight
(g/mol)

Rotatable bonds HB acceptor HB Donar TPSA ( Å2)

Tanshinone I -8.9 276.29 0 3 0 47.28

Ellipticine -8.4 246.31 0 1 1 28.68

Anabsinthin -8.4 496.64 0 6 1 82.06

Camptothecin -8.3 348.35 1 5 1 81.42

Piperolactam A -8.3 265.26 1 3 2 62.32
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Screened compounds were subjected to Ghose filter [47]
and Muegge Filter [48].

3 Results
In the present study, 57 phytochemicals were initially
screened based on their structural and physicochemical
properties, later only 39 compounds were utilized for
the docking analysis based on the various filters utilized
during the course of the study. Binding sites were ini-
tially chosen based on the literature survey made on the
target protein 6X6P. Potential binding sites were further
selected based on the hydrophobic index obtained from
GRAVY server. Results from GRAVY server indicate
significant values for the four-binding region R1-R4 as −
0.24, − 0.3, − 0.28, and − 0.08, respectively. Binding sites
were also considered based on their predicted binding
energy by PRODIGY. Results from PRODIGY for the
four binding regions R1–R4 are − 12.4, − 9.8, − 10.1,

and – 14 kcal/mol, respectively. Region 4 (R4) [− 9.8
kcal/mol] and Region 1 (R1) [− 12.4 kcal/mol] of the S-
protein pose a higher hydrophobicity. However, R1 was
considered for the potential binding site.
Prior to the actual binding, the ligands are screened

based on the RO5 and SWISS-ADME filters. Among
the 39 finally screened compounds, only 5 com-
pounds exhibited docking energy values above − 8.9
to 8.3 kcal/mol for SARS-CoV-2 S-protein Region
1 (Fig. 2). Among them, Tanshinone I exhibited an
average docking score of − 8.9 kcal/mol and Pipero-
lactam A with a docking score of − 8.3 kcal/mol
ranked the strongest both in terms of binding energy
and HB interaction. A list of all other ranked ligands
based on the binding energy is listed in the Table 1.
The standard ligand, HCQ resulted in a docking score
of − 4.7 kcal/mol and was used to compare other
phytochemicals docked with the S-protein.

Table 2 HB Interaction with the Screened Ligands

Ligands Hydrogen bonds Hydrogen Bond Interaction Distance H-A (A2)

Tanshinone I 1 ASN A: 343 2.3

Ellipticine 0 - -

Anabsinthin 1 ASP A:364 2.68

Camptothecin 2 GLY A:339, ASP A:364 2.83,3.21

Piperolactam A 2 ASP A:364, ASP A:364 1.99, 2.05

Hydroxychloroquine 2 355 A:ARG,466 A:ARG 2.27,2.37

Fig. 1 3D structure of 6X6P (Spike Protein, Trimeric structure) with chain A (Red), chain B (green), and chain C (magenta). Binding region 1 with
its amino acids is highlighted
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The HCQ-S-protein complex has two HB interac-
tions with ARG355 and TYR396 which contribute to
the hydrophobic interactions. In comparison with
HCQ, Tanshinone I has the highest binding affinity of
− 8.9 kcal/mol compared to all other compounds and
has one HB of distance 2.38 Å with the acceptor
atom O2 of ASN343. Tanshinone I also formed a
good hydrophobic interaction with the neighboring
amino acids viz., PHE338, PHE342, VAL367, LEU368,
and PHE374 (Table 2), whereas the second lead com-
pound Piperolactam A with binding affinity − 8.3
kcal/mol is found to form two HB interaction with
the S-protein in which both bonds are from ASP364
to the compound with a distance of 1.99 Å and 2.05
Å (Fig. 3).
Compounds with good ADME parameters are suitable

for the drug discovery process. Analysis of the lipophilic-
ity of the screened compounds showed positive values

which indicates enhanced rate of adsorption [49] as de-
scribed in supplementary material.

4 Discussion
In this present study, although during the selection
and validation of the predicted binding sites, both Re-
gion R1 and R4 resulted as potential binding sites
among the four predicted sites. Based on the hydro-
phobicity index, R4 is marked with higher index
values; however, the site fails to show minimum inter-
action with the known receptor CS-GRP78 [10]. The
binding affinity of R4 is – 14 kcal/mol which is much
lower than the R1 with − 12.4 kcal/mol. Based on the
binding affinity values, R1 is considered to be a po-
tential binding site for the screened ligands. The
binding site involves the residues of ASN343,
ASP364, GLY339, ARG355, and ARG466. Additional

Fig. 2 Virtually screened ligands from PubChem compounds

Fig. 3 Piperolactam A docked with S-protein. a Surface image of Piperolactam A docked with the Region 1 of 6X6P S-protein. b 2D Interaction
map of the Piperolactam A with the S-protein. Interaction profiles indicate two H-bond with ASP364
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amino acids at the active site are PHE338, VAL367,
LEU368, PHE342, PHE337, and TYR396 (Fig. 1).
With respect to screened ligands, the hydrophilicity

factor (LogS) of Camptothecin (− 3.49) and Pipero-
lactam A (− 3.87) showed higher LogS values (high
permeation and hydrophilicity) than the other screened
compounds [50]. Among the screened compounds, Ellipti-
cine (− 5.05) showed a less LogS value indicating a poor
permeation. Similarly, anabsinthin acts a good substrate for
P-glycoprotein, which is highly susceptible to changes in
pharmacokinetics by acting as either P-glycoprotein inducer
or inhibitors [51]. Thus, anabsinthin could cross the blood-
brain barrier (BBB) and it may render the compound func-
tionally inactive [52]. Further, anabsinthin could not satisfy
Ghose rule [47] of drug-likeness with three violations and
Muegge rule [48] of drug-likeness with one violation. Piper-
olactam A showed a good pharmacokinetics property with
good GI absorption, cross BBB, affects only two cyto-
chrome P450 enzymes compared to others and is also not a
substrate for P-glycoprotein. The phytochemical compound
Piperolactam A has synthetic accessibility of 2.02 which
makes it at ease of synthesis of the compound in spite of an
alert in the Brenk filter. Whereas Camptothecin was found
with no violations but its synthetic accessibility is of higher
value than that of Piperolactam A. Toxicity analysis is es-
sential for a drug to know the potential hazard to be pro-
duced by it. The predicted toxicity profile from our study
reveals that all the compounds are relatively safe.
Results from the docking analysis suggest that the

Piperolactam A pocketed well with good hydropho-
bic interaction with residues PHE338, PHE342, and
VAL367as well (Fig. 3). Based on the results ob-
tained, the study suggests use of Piperolactam A as a
potential antiretroviral drug against SARS-CoV-2.
Piperolactam, an aristolactam isolated from Piper
betle Linn and its abundant availability in Western
Ghats [53].

5 Conclusion
In this study, five phytochemical compounds with anti-
retroviral properties were screened against the receptor
6X6P. These compounds displayed appreciable pharma-
cokinetic and physicochemical properties. ADMET ana-
lyses of these compounds reveal that the compound
Piperolactam A from Piperaceae family to be most ef-
fective in the inhibition of S-protein from binding to the
CS-GRP78 receptor.

6 Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s43088-021-00095-x.
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