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Mathematical analysis of a generalized
epidemic model with nonlinear incidence
function
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Abstract

Background: Though different forms of control measures have been deployed to curtail disease transmission,
which are mostly through vaccination, treatment, isolation, etc., using mathematical models. Therefore, there is a
need to consider the strict compliance or attendance of human individuals to medical awareness program through
media outlets like radio, television, etc. In this work, a generalized mathematical model of two groups of infectious
individuals who are compliant and non-compliant to medical awareness program is studied.

Results: A generalized Susceptible-Exposed-Infected-Recovered (SEIR) model with two groups of infectious
individuals who attend or are compliant and those who do not attend or are non-compliant to medical awareness
program is established. The analytical results of the model shows that the model is positive, well-posed, and
epidemiologically reasonable. The two equilibria and the basic reproduction number Rr of the model is computed
and analyzed and it is shown that the disease-free equilibrium is locally and globally asymptotically stable when
Rr < 1 and the endemic equilibrium is globally stable when Rr > 1. Simulations are carried out by varying some
parameters when Rr is less and above unity. The simulations suggest that control interventions are to be
implemented and medical awareness program scaled up to mitigate the spread of diseases. Furthermore, two
numerical methods of Runge-Kutta and Differential Transform Method (DTM) are employed to obtain the
approximate solutions of the model system equations, and it is observed that the results of the two methods
agreeably compare with each other in terms of efficiency and convergence.

Conclusion: This work should be taken into consideration by health policy makers and bio-mathematicians,
because existing literature only take into consideration, how diseases spread and its management without
considering the impact of strict compliance to consistent awareness program to mitigate the spread of diseases,
which has been considered in this work. The limitation of this work is the unavailability of data on individuals in
disease endemic regions who always and who do not comply with medical awareness programs.
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1 Background
Mathematical models are important techniques that
have been greatly explored to describe the transmission
dynamics of evolving and re-evolving diseases in
epidemiology. The essence of epidemic models is to
understand, prepare for future occurrence of epidemic

breakout, and to implement necessary intervention strat-
egies to curtail the spread of diseases in human and
environment host population. One of the earliest publi-
cations on mathematical models of infectious disease are
the works of [1–3]. The authors discussed on the div-
ision of the human host population into compartments
and epidemic interactions between them. Also, several
mathematical techniques have been employed by authors
to quantitatively and qualitatively describe the dynamics
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of models of many diseases like onchocerciasis [4, 5],
conjunctivitis [6], co-infection of malaria with filariasis
and toxoplasmosis [7, 8], as well as using stability theo-
rems and optimal control analysis to qualitatively and
quantitatively analyse epidemic models [9–11]. Medical
awareness programs through media outlets like radio,
electronic prints, television, and social media are means
of communicating to the human host community to be
aware of how to mitigate disease spread and forestall
healthy living [12, 13]. The basic reproduction number
Rr is an epidemic threshold used to determine the num-
ber of secondary cases of infections arising as a result of
an introduction of an infected individual into a suscep-
tible host population during his or her period of infec-
tion. Rr have been used immensely to describe the
reproductive rate of many diseases [14]. Also, [15]
worked on the analysis of an SEIR epidemic model with
saturated incidence and saturated treatment functions,
while [16] investigated the impact of vaccination strat-
egies for a SISV epidemic model guaranteeing the non-
existence of endemic solutions. In addition, [17] worked
on the SEIR model formulation and compartmental epi-
demic interactions in the human population, while [18]
worked on assessing the inference of the basic
reproduction number Rr in SIR model incorporating
growth scaling parameter, see also [19, 20]. Other works
on SEIR modeling includes [21–24], while the publica-
tions of [25, 26] proved useful to this study by employ-
ing the use of Lyapunov functions to analyze model
stability domain. Numerical methods of Runge-Kutta
and DTM have proved useful in obtaining the conver-
gent approximate solutions of epidemic models, see [27,
28]. In view of the cited publications, we consider the
SEIR epidemic model with two groups of infected indi-
viduals who attend or are compliant to medical aware-
ness program and those who did not attend or are non-
compliant to medical awareness program, with saturated
incidence function. Section 2 discusses the positivity and
invariant region analysis of the model, while the equilib-
ria of the model and basic reproduction number Rr is
obtained. Section 3 involves the local and global stability
of model system at the disease-free and endemic equilib-
rium solutions. Furthermore, we employ the DTM and
Runge-Kutta fourth-order method to obtain the approxi-
mate solutions of the model. The results obtained agree-
ably compare with each other. Also, we performed
simulations involving some parameters of the model
when Rr < 1 and Rr > 1.

2 Model establishment and analytical results
The total human host population denoted N(t), at time
t > 0 is classified into five compartments of susceptible
denoted S(t), which are the individuals who are at risk of
acquiring the disease. Also, people who have been

latently infected but are not yet infectious are denoted
by E(t), symptomatic individuals who did not attend
medical awareness program are denoted by Iu(t), symp-
tomatic individuals who did attend medical awareness
program are denoted by Iv(t), and the recovered individ-
uals are denoted by R(t), so that

N tð Þ ¼ S tð Þ þ E tð Þ þ Iu tð Þ þ Iv tð Þ þ R tð Þ: ð1Þ

The susceptible population is increased by the recruit-
ment of individuals at the rate A, following an effective
contact with infected individuals in the Iu and Iv com-
partment, the force of infection is denoted λ(t), and de-
scribed by the quantity

λ tð Þ ¼ β
Iu

1þ ϕ1Iu
þ θIv
1þ ϕ2Iv

� �
: ð2Þ

In (2), λ(t) is the force of infection that takes into ac-
count the high saturation of infected individuals in
the human host community, where β is the transmis-
sion rate of infection and θ is the modification par-
ameter that takes into account the relative
infectiousness of medical awareness non-compliant in-
dividuals to transmit infection at a higher rate than
medical awareness compliant individuals. We adopt a
nonlinear saturated incidence rate in the two groups
of individuals to describe the behavioral change and
crowding effect of infected humans where ϕ1 and ϕ2

measures the inhibitory effect. But if ϕ1 and ϕ2 are
zeros, then the incidence function follows a bilinear
incidence which is commonly adopted in many
models. The population of the susceptible individuals
is further decreased by natural death rate μ. Thus,
the rate of change of the susceptible population is
given by

dS
dt

¼ A − μþ λ tð Þð ÞS: ð3Þ

The population of exposed individuals is increased by
the force of infection λ(t). The compartment is further
on decreased by the development of clinical symptoms,
natural death and the disease-induced mortality at the
rate ϵ, μ and d respectively, so that

dE
dt

¼ λ tð ÞS − ∈þ μþ dð ÞE: ð4Þ

The population of the symptomatic individuals who
did not attend medical awareness program is in-
creased at the rate ϵ. It is decreased by natural recov-
ery rate γo, the rate of emergence of new symptoms
σ, natural death μ1, and disease-induced mortality rate
α1. This is given by
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dIu
dt

¼ ∈E − γo þ μ1 þ α1 þ σ
� �

Iu: ð5Þ

The population of infected individuals who attended
medical awareness program is increased progressively at
the rate σ. The compartment is decreased by recovery
rate γ1, natural death rate μ2, and disease-induced
mortality α2. It is assumed that the disease-induced
mortality rate of individuals who attended medical
awareness program is low in comparison with in-
fected individuals who did not attend medical aware-
ness program, such that α2 < α1. Hence, the rate of
change of this population is given by

dIv
dt

¼ σIu − μ2 þ γ1 þ α2ð ÞIv: ð6Þ

Finally, the population of recovered individuals is gen-
erated by the recovery of individuals who attend and
who did not attend medical awareness program at the
rate γo and γ1, while it is decreased by natural death rate
μ, so that

dR
dt

¼ γoIu þ γ1Iv − μR: ð7Þ

Thus, the model for the transmission dynamics of a
generalized infectious disease with non-linear inci-
dence of two groups of infected individuals who at-
tend and did not attend medical awareness follows a
first order system of ordinary differential equations
given by

dS
dt

¼ A − μþ λ tð Þð ÞS;
dE
dt

¼ λ tð ÞS − ϵþ μþ dð ÞE;
dIu
dt

¼ ϵE − γo þ μ1 þ α1 þ σ
� �

Iu;

dIv
dt

¼ σIu − μ2 þ γ1 þ α2ð ÞIv;
dR
dt

¼ γoIu þ γ1Iv − μR:

ð8Þ

Subject to the initial conditions S(0) = So, E(0) = Eo,
Iu(0) = Iuo, Iv(0) = Ivo, R(0) = Ro.

2.1 Positivity of the model

It is assumed that the initial conditions of the model are
non-negative and it is necessary to show that the solu-
tion of the model is positive.
Theorem 1: Let Ω = {(S, E, Iu, Iv, R) ∈ R+

5 : So > 0, Eo >
0, Iuo > 0, Ivo > 0, Ro > 0}. Then the solutions of S, E, Iu, Iv,
R are positive for t ≥ 0.
Proof: From the model system of differential Eq. (8),

considering the first state equation given by

dS
dt

¼ A − μþ λð ÞS;
so that
dS tð Þ
dt

≥ μþ λð ÞS;
dS tð Þ
S

≥ λþ μð Þdt;
andZ

dS tð Þ
S

≥
Z

λþ μð Þdt:

ð9Þ

Solving (9) using separation of variable and applying
the initial condition S(0) = So, yields

S tð Þ≥Soe − λþμð Þt ≥0: ð10Þ
Also, from the second state equation of (8),

dE
dt

¼ λS − ϵþ μþ dð Þ E: ð11Þ

Simplifying (11) further yields

dE
dt

≥ ϵþ μþ dð ÞE
andZ

dE
E

≥
Z

ϵþ μþ dð Þdt:
ð12Þ

On solving (12) using separation of variable and apply-
ing initial condition E(0) = Eo, yields

E tð Þ≥Eoe
− ϵþμþdð Þt ≥0: ð13Þ

From the third state equation in (8),

dIu
dt

¼ ϵE tð Þ − γo þ μ1 þ α1 þ σ
� �

Iu; ð14Þ

Simplifying (14) further become,

dIu
dt

≥ γo þ μ1 þ α1 þ σ
� �

Iu

andZ
dIu
Iu

≥
Z

γo þ μ1 þ α1 þ σ
� �

d tð Þ:
ð15Þ

Solving (15) using separation of variable and applying
initial condition Iu(0) = Iuo, yields

Iu tð Þ≥ Iuoe − γoþμ1þα1þσð Þt ≥0: ð16Þ
In addition, taking the fourth state equation of (8),

dIv
dt

¼ σIu tð Þ − μ2 þ γ1 þ α2ð ÞIv ð17Þ

whereZ
dIv
Iv

≥ −
Z

μ2 þ γ1 þ α2ð Þdt: ð18Þ
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Solving (18) using separation of variable and applying
initial condition Iv(0) = Ivo, yields

Iv tð Þ≥ Ivoe − μ2þγ1þα2ð Þt ≥0: ð19Þ
Finally, taking the fifth state equation of (8),

dR
dt

¼ γoIu tð Þ þ γ1Iv tð Þ − μR: ð20Þ

The simplification of (20) yields

dR
dt

≥ − μR;

and
dR
R

≥ − μdt;Z
dR
R

≥ −
Z

μdt:

ð21Þ

Solving (21) using separation of variable and applying
initial condition R(0) = Ro, yields

R tð Þ≥Roe
− μt ≥0: ð22Þ

From (10), (13), (16), (19), and (22), it is clear that at
time t > 0, the model solutions are positive.
This completes the proof of the theorem.

2.2 Invariant region
In this section, the model system is analyzed in an in-
variant region and shown to be bounded. The addition
of the whole model system Eq. (8) yields

N ¼ Sþ Eþ Iu þ Iv þ R; ð23Þ
such that

dN
dt

¼ dS
dt

þ dE
dt

þ dIu
dt

þ dIv
dt

þ dR
dt

ð24Þ

and

dN
dt

¼ A − μN − dE − α1Iu − α2Iv: ð25Þ

In the absence of natural and mortality due to disease,
i.e., (d = 0, α1 = 0, α2 = 0), (25) becomes

dN
dt

¼ A − μN : ð26Þ

Integrating both side of (26) yieldsZ
dN

A − μN
≤
Z

dt ð27Þ

and

1
μ

ln A − μNð Þ≤ t: ð28Þ

Simplification of (28) become

A − μN ≥e − μt : ð29Þ
Applying the initial condition, N(0) =No, (29) yields

A =A − μNo. Substituting A =A − μNo into (29) yields

A − μNo≥ A − μNoð Þe − μt : ð30Þ
Further simplification and re-arrangement of (30)

yields

N ≤
A
μ
−
A − μNo

μ

� �
e − μt: ð31Þ

As t→∞ in (31), the population size N→ A
μ implies

that 0≤N ≤ A
μ . Thus, the feasible solution set of the sys-

tem equations of the model start and end in the region

Ω ¼ S; E; Iu; Iv;Rf g∈Rþ5
: N ≤

A
μ

� �
: ð32Þ

Therefore, the basic model (8) is well posed mathem-
atically and epidemiologically reasonable. Hence, it is
sufficient to study the dynamics of the model system (8)
in Ω.

2.3 Equilibria
To find the disease-free equilibrium solutions, the right-
hand side of the model system (8) is equated to zero,
evaluating it at when there is no disease in the system,
i.e., E = Iu = Iv = 0. Therefore, the disease-free equilib-
rium solutions are given by

Eo ¼ S; E; Iu; Iv;Rð Þ ¼ A
μ
; 0; 0; 0; 0

� �
: ð33Þ

The endemic equilibrium is denoted E∗∗ = (S∗∗, E∗∗, Iu
∗∗,

Iv
∗∗, R∗∗) and it occurs when a disease persist in the hu-

man host population. Therefore

E�� ¼ S��;E��; Iu��; Iv��;R��ð Þ ¼
 
S� ¼ A

m1
; E� ¼ λA

m2m3
; I�u ¼ λϵA

m1m2m3
;

I�v ¼
λσϵA

m1m2m3m4
;R� ¼ 1

μ
λϵγoA

m1m2m3
þ λσϵγ1A

m1m2m3m4

� �!
:

ð34Þ
Where m1 = (λ + μ), m2 = (ϵ + μ + d), m3 = (γo + μ1 +

α1 + σ), m4 = (μ2 + γ1 + α2).

2.4 Basic reproduction number (Rr)
We want to show how the threshold that governs the
spread of a disease, called the basic reproduction num-
ber is obtained.
Theorem 2.
Define Xs = {X = 0| Xi, i = 1, 2, 3, …}, in order to obtain

Rr, new infections are distinguished from other changes
in the populations. Such that, Fi(x) is the rate of new
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manifestations of clinical symptoms in compartment i.
Also, let Vþ

i be the rate at which individuals move out
of compartment i. Then xi = Fi(x) −Vi(x), i = 1, 2, 3, …. ,
and V iðxÞ ¼ V −

i − Vþ
i . F is a non negative matrix and V

is a non-singular matrix.
Proof: We applied the next generation matrix method

to the model equations starting with newly infective
classes given by

dE
dt

¼ λ tð ÞS −m2E;

dIu
dt

¼ εE −m3Iu;

dIv
dt

¼ σIu −m4Iv:

9>>>>>=
>>>>>;

ð35Þ

The rate of new clinical symptoms is given by

F ¼
βS

Iu
1þ ϕ1Iu

þ θIv
1þ ϕ2Iv

� �
0
0

0
BB@

1
CCA ð36Þ

And the rate of transfer terms of individuals is given
by

V ¼
m2E

ϵE −m3Iu
σIu −m4Iv

0
B@

1
CA: ð37Þ

The Jacobian matrices of F and V evaluated at disease-
free equilibrium solution (33) are given by

F ¼
0 0

βA
μ

0 0 0
0 0 0

0
B@

1
CA ð38Þ

and

V ¼
m2 0 0
ϵ m3 0
0 σ m4

0
@

1
A: ð39Þ

The inverse of V is given by

V − 1 ¼

1
m2

0 0

ϵ
m2m3

1
m3

0

ϵσ
m2m3m4

σ
m4

1
m4

0
BBBBB@

1
CCCCCA ð40Þ

and

FV − 1 ¼
λAϵσ

μm2m3m4

λAσ
μm3m4

λA
μm4

0 0 0
0 0 0

0
B@

1
CA: ð41Þ

The eigenvalues of FV−1 in (41) are given by

λ1 ¼ λ2 ¼ 0
and

λ3 ¼ λA∈σ
μm2m3m4

:
ð42Þ

The dominant eigenvalue in (42) is λ3. Therefore, the
basic reproduction number Rr is given by

Rr ¼ λAϵσ
μm2m3m4

: ð43Þ

The threshold in (43) measures the rate at which new
cases of infection arises, when a typical infected individ-
ual is introduced into a susceptible population of
humans during their course of infection.

3 Stability analysis of the model system equilibria
3.1 Local stability of the disease-free equilibrium
Theorem 2: The disease-free equilibrium solution Eo
(33) is locally asymptotically stable if Rr < 1.
Proof: The Jacobian matrix of system (8) at the

disease-free equilibrium solution Eo of (33) is given by

J Eoð Þ ¼

−m1 0 0 0 0
λ −m2 0 0 0
0 εo −m3 0 0
0 0 σ −m4 0
0 0 γo γ1 − μ

0
BBB@

1
CCCA: ð44Þ

The eigenvalues obtained in (44) yield

− μ;
m1 ¼ − λþ μð Þ;
m2 ¼ − ∈þ μþ dð Þ:

9=
; ð45Þ

The remaining characteristics polynomial is given by

λ2 þ λ m3 þm4ð Þ þm3m4 ¼ 0: ð46Þ
It is observed that (46) has strictly negative real root if

and only if m3 > 0 and m4 > 0, and m3 > m4. Also, m3 is
positive and for m4 to be positive, 1−Rr must be positive
which leads to Rr < 1. Therefore, the disease-free equilib-
rium Eo (33) of model (8) is locally asymptotically stable
if Rr < 1.

3.2 Global stability of disease-free equilibrium
Theorem: The disease free equilibrium solution Eo (33)
of model system (8) is globally asymptotically stable
whenever Rr < 1.
Proof: A Lyapunov function is derived for the model

system such that
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F ¼ ϵm4 þ σ
m2m3

� �
Eþ m4 þ σ

m3

� �
Iu þ Iv: ð47Þ

Where

Ḟ ¼ ϵm4 þ σ
m2m3

� �
dE
dt

þ m4 þ σ
m3

� �
dIu
dt

þ dIv
dt

ð48Þ

and

Ḟ ¼ ϵm4 þ σ
m2m3

� �
βS −m3Eð Þ þ m4 þ σ

m3

� �

ϵEþm3Iuð Þ þ σIu −m4Ivð Þ:
ð49Þ

Since A
μ in (33), further simplification becomes

Ḟ ≤
ϵm4 þ σ
m2m3

� �
βA
μ

−m3E

� �
þ m4 þ σ

m3

� �

ϵEþm3Iuð Þ þ σIu −m4Ivð Þ
ð50Þ

and

Ḟ ¼ λAϵ m4 þ σð Þ
μm2m3

þ σ − m4 þ σð Þð ÞIu −m4Iv:

ð51Þ

Therefore

Ḟ ¼ m4 Rtr −
λAϵ

μm2m3
Iu þ Iv

� �
: ð52Þ

Since all the parameters and variables of the model
system (8) are nonnegative, it follows that Ḟ ≤ 0 for Rr <
1 with Ḟ = 0 if and only if E = Iu = Iv = 0. Hence, Ḟ is a
Lyapunov function in Ω. Therefore, the largest compact
invariant subset of the set where Ḟ = 0 is the singleton
{(E, Iu, Iv) = (0, 0, 0)}. Thus, it follows, from the La-Salle’s
invariant principle [19], that as t→ ∞ ,

E; Iu; Ivð Þ→ 0; 0; 0ð Þ: ð53Þ

Therefore the disease-free equilibrium (33), of model
(8) is globally asymptotically stable if Rtr < 1.

3.3 Global stability of endemic equilibrium
Theorem: If Rr > 1, the endemic equilibrium solution
(34) of the model system (8) is globally asymptotically
stable.
Proof: A Lyapunov function candidate of the form

L tð Þ ¼ S − S� − S�Loge
S
S�

� �

þ E − E� − E�Loge
E
E�

� �

þ Iu − I�u − Loge
Iu
I�u

� �

þ Iv − I�v − I�vLoge
Iv
I�v

� �

þ R − R� − R�Loge
R
R�

� �
ð54Þ

is derived, such that the time derivative of (54)
becomes

dL
dt

¼ S − S�

S

� �
dS
dt

þ E − E�

E

� �
dE
dt

þ Iu − Iu�

Iu

� �
dIu
dt

þ Iv − Iv�

Iv

� �
dIv
dt

þ R − R�

R

� �
dR
dt

; ð55Þ

so that

dL
dt

¼ S − S�

S

� �
A −m1Sð Þ þ E − E�

E

� �

� λS −m2Eð Þ þ Iu − Iu�

Iu

� �
ϵE −m3Iuð Þ

þ Iv − Iv�

Iv

� �
σIu −m4Ivð Þ þ R − R�

R

� �
� γoIu þ γ1Iv − μR
� �

: ð56Þ

and

dL
dt

¼ S − S�

S

� �
A −m1 S − S�ð Þð Þ þ E − E�

E

� �

� λ S − S�ð Þ −m2 E − E�ð Þð Þ þ Iu − Iu�

Iu

� �
� ϵ E − E�ð Þ −m3 Iu − Iu

�ð Þð Þ
� Iv − Iv�

Iv

� �
−m4 þ R − R�

R

� �
� γo Iu − Iu

�ð Þ þ γ1 Iv − Iv
�ð Þ − μ R − R�ð Þ� �

:

ð57Þ

Further simplification of (57) yields
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dL
dt

¼ S − S�ð Þ2
S

 !
A

S − S�ð Þ −m1

� �

þ E − E�ð Þ2
E

 !
λ S − S�ð Þ
E − E�ð Þ −m2

� �

þ Iu − Iu�ð Þ2
Iu

 !
ϵ E − E�ð Þ
Iu − Iu�ð Þ −m3

� �

þ Iv − Iv�ð Þ2
Iv

 !
σ Iu − Iu�ð Þ
Iv − Iv�ð Þ −m4

� �

þ R − R�ð Þ2
R

 !

� γo Iu − Iu�ð Þ
R − R�ð Þ þ γ1 Iv − Iv�ð Þ

R − R�ð Þ − μ
� �

ð58Þ

and

dL
dt

¼ A S − S�ð Þ
S

þ λ S − S�ð Þ E − E�ð Þ
E

þ ϵ E − E�ð Þ Iu − Iu�ð Þ
Iu

þ σ Iu − Iu�ð Þ Iv − Iv�ð Þ
Iv

þ γo Iu − Iu�ð Þ R − R�ð Þ
R

þ γ1 Iv − Iv�ð Þ R − R�ð Þ
R

−
m1 S − S�ð Þ2

S
−
m2 E − E�ð Þ2

E

−
m3 Iu − Iu�ð Þ2

Iu
−
m4 Iv − Iv�ð Þ2

Iv

−
μ R − R�ð Þ2

R
:

ð59Þ

Hence, by collecting positive terms together and nega-
tive terms together in (59) becomes

dL
dt

¼ B1 - B2: ð60Þ

Where

B1 ¼ A S − S�ð Þ
S

þ λ S − S�ð Þ E − E�ð Þ
E

þ ϵ E − E�ð Þ Iu − Iu�ð Þ
Iu

þ σ Iu − Iu�ð Þ Iv − Iv�ð Þ
Iv

þ γo Iu − Iu�ð Þ R − R�ð Þ
R

þ γ1 Iv − Iv�ð Þ R − R�ð Þ
R

ð61Þ

And

B2 ¼ m1 S − S�ð Þ2
S

þm2 E − E�ð Þ2
E

þm3 Iu − Iu�ð Þ2
Iu

þm4 Iv − Iv�ð Þ2
Iv

þ μ R − R�ð Þ2
R

: ð62Þ

Thus if B1 < B2, then dL
dt ≤ 0. Note that, dL

dt = 0 if and
only if ðS ¼ S� E ¼ E�; Iu ¼ I�u; Iv ¼ I�v ; R ¼ R�Þ .
Therefore, the largest compact, invariant set in ½ðS�; E�;
I�u; I

�
V ;R

� ) ∈Ω: dL
dt = 0] is the singleton set E∗∗, where E∗∗

is the endemic equilibrium solution (34) of the model
system (8). By La-Salle’s invariant principle [20], E∗∗ is
globally asymptotically stable in Ω if B1 < B2.

3.4 Approximate solution of the SEIR epidemic model
In this section, the approximate solution of the model sys-
tem (8) is obtained, using the Runge-Kutta fourth order
and DTM. The concept of DTM was first proposed by
Zhou [28] for solving linear and nonlinear initial value
problems in electrical circuit analysis. The method in
many instances have been adopted to solve series of
models based on differential equations. The concept of
DTM is derived from the Taylor series expansion. This
method requires that a system of differential equations to-
gether with its initial and boundary conditions are trans-
formed into recurrent power series solutions.
Taylor series expansion of a function f(x) about the

point x = 0 is given by

f xð Þ ¼
X∞

n¼1

1
k!

fk cð Þ x − cð Þk
� 	

¼ 0: ð63Þ

For all x ∈ (c − r, c + r) such that x = c converges to f(x).
Definition 1: The differential transformation F(k) of a

function f(x) is defined as

F kð Þ ¼ 1
k!

dk f xð Þ
dtk

 !
k¼0

: ð64Þ

Definition 2: It follows from Eqs. (63) and (64) that the
differential inverse transformation f (x) of F (k) is given
by

f xð Þ ¼
X∞

k¼0

tk

k!
dk f tð Þ
dtk x¼xo

: ð65Þ

Using (63)–(64), the following basic operations of
DTM [26, 28] is tabulated below;
If S(k), E(k), Iu(k), Iv(k), and R(k) denote the differen-

tial transformation of S(t), E(t), Iu(t), Iv(t), and R(t) re-
spectively, then the following recurrence relation of
model system (8) are given by
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S k þ 1ð Þ ¼ 1
k þ 1

Aδ kð Þ − μS kð Þ − β
X∞

m¼1

S mð ÞIu k −mð Þ
δ kð Þ þ ϕ1Iu kð Þ þ

S mð ÞIv k −mð Þ
δ kð Þ þ ϕ2Iv kð Þ

� �� �
;

E k þ 1ð Þ ¼ 1
k þ 1

− ϵþ μþ dð ÞE kð Þ þ β
X∞

m¼1

S mð ÞIu k −mð Þ
δ kð Þ þ ϕ1Iu kð Þ þ

S mð ÞIv k −mð Þ
δ kð Þ þ ϕ2Iv kð Þ

� �� �
;

Iu k þ 1ð Þ ¼ 1
k þ 1

ϵE kð Þ − γo þ μ1 þ α1 þ σ
� �

Iu kð Þ� �
;

Iv k þ 1ð Þ ¼ 1
k þ 1

σIu kð Þ − μ2 þ γ1 þ α2ð ÞIv kð Þð Þ;

R k þ 1ð Þ ¼ 1
k þ 1

γoIu kð Þ þ γ1Iv kð Þ − μR kð Þ� �
:

ð66Þ

Applying the values of variables and parameters in
Table 1 together with the initial conditions of the model,
yields the following results given by

S 1ð Þ ¼ − 17:768; E 1ð Þ ¼ 16:089; Iu 1ð Þ
¼ − 5:322; Iv 1ð Þ ¼ 27:500;R 1ð Þ
¼ − 2:162; S 2ð Þ ¼ − 10:330;E 2ð Þ
¼ 9:559; Iu 2ð Þ ¼ 1:496; Iv 2ð Þ
¼ 5:710;R 2ð Þ ¼ 1:513; S 3ð Þ ¼ 0:878; E 3ð Þ
¼ 0:778; Iu 3ð Þ ¼ − 0:252; Iv 3ð Þ
¼ − 1:591;R 3ð Þ ¼ 0:946: ð67Þ

Substituting the values in (67) into (66) yields, the re-
currence relation given by the following;

S tð Þ ¼
X∞
k¼1

tk S kð Þ ¼ S 0ð Þ þ tS 1ð Þ þ t2S 2ð Þ þ t3S 3ð Þ þ…;

E tð Þ ¼
X∞
k¼1

tk E kð Þ ¼ E 0ð Þ þ tE 1ð Þ þ t2E 2ð Þ þ t3E 3ð Þ þ…;

Iu tð Þ ¼
X∞
k¼1

tk Iu kð Þ ¼ Iu 0ð Þ þ tIu 1ð Þ þ t2Iu 2ð Þ þ t3Iu 3ð Þ þ…;

Iv tð Þ ¼
X∞
k¼1

tk Iv kð Þ ¼ Iv 0ð Þ þ tIv 1ð Þ þ t2Iv 2ð Þ þ tÊIv 3ð Þ þ…;

R tð Þ ¼
X∞
k¼1

tk R kð Þ ¼ R 0ð Þ þ tR 1ð Þ þ t2R 2ð Þ þ tÊR 3ð Þ þ…;

:

ð68Þ
The closed form solutions when k = 3, in (68) is given

by

S tð Þ ¼ 50 − 17:768t − 10:330t2 þ 0:878t3 þ…;
E tð Þ ¼ 20þ 16:089t þ 9:5585t2 þ 0:778t3 þ…;
Iu tð Þ ¼ 10 − 5:322t þ 1:496t2 − 0:252t3 þ…;
Iv tð Þ ¼ 7þ 27:500t þ 5:710t2 − 1:591t3 þ…;
R tð Þ ¼ 3þ 2:162t þ 1:513t2 − 0:946t3 þ…:

ð69Þ
Also, the idea of Runge-Kutta method was con-

ceived by Carl Runge and Wilhem Kutta. This work
employs the Runge-Kutta fourth-order method be-
cause of its accuracy and faster convergence, which
have been employed to solve several problems in dif-
ferential equations applied to science, engineering,
economics etc. The numerical scheme for this method
is given by

ynþ1 ¼ yn þ
1
6

z1 þ 2z2 þ 2z3 þ z4ð Þ: ð70Þ

Where

z1 ¼ hf xn; ynð Þ;
z2 ¼ hf xn þ 1

2
h; yn þ

1
2
z1

� �
;

z3 ¼ hf xn þ 1
2
h; yn þ

1
2
z2

� �
;

z4 ¼ hf xn þ h; yn þ z3ð Þ:

9>>>>>>=
>>>>>>;

ð71Þ

Applying the Runge-Kutta scheme to the model sys-
tem (8) yields

Snþ1 ¼ Sn þ 1
6

q1 þ 2q2 þ 2q3 þ q4ð Þh
Enþ1 ¼ En þ 1

6
y1 þ 2y2 þ 2y3 þ y4ð Þh

Ivnþ1 ¼ Ivn þ 1
6

x1 þ 2x2 þ 2x3 þ x4ð Þh
Iunþ1 ¼ Ivn þ 1

6
u1 þ 2u2 þ 2u3 þ u4ð Þh

Rnþ1 ¼ Rn þ 1
6

v1 þ 2v2 þ 2v3 þ v4ð Þh

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð72Þ

Where

Table 1 The meanings of variables and parameters of the SEIR
model (8)

Symbols Meanings of Variables and Parameters Values

A Recruitment rate of Humans 0.781 day−1

β Disease transmission rate 0.05 day−1

ϕ1 Emergence of disease symptoms in Iu class 0.312 day−1

ϕ2 Emergence of disease symptoms in Iv class 0.120 day−1

μ Natural death rate 0.002 day−1

ϵ Transition rate from E to Iu 0.006 day−1

d Disease related death 0.11 day−1

μ1 Natural death in Iu class 0.0132 day−1

μ2 Natural death in Iv class 0.0012 day−1

α1 Disease induced mortality in Iu class 0.12 day−1

α2 Disease induced mortality in Iv class 0.21 day−1

γ1 Recovery rate in Iu class 0.134 day−1

γ2 Recovery rate in Iv class 0.123 day−1

σ Infectious transition from Iu to Iv 0.3 day−1

θ Modification parameter 0.0021 day−1

S Susceptible Humans 50 day−1

E Exposed Humans 20 day−1

Iu Infected human who attend awareness
program

10 day−1

Iv Infected human who did not attend
awareness program

7 day−1

R Recovered humans 3 day−1
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q1 ¼ A − μSn − β
Iun

1þ ϕ1Iun
þ θIvn
1þ ϕ2Ivn

� �
Sn;

y1 ¼ β
Iun

1þ ϕ1Iun
þ θIvn
1þ ϕ2Ivn

� �
Sn − ϵþ μþ dð ÞEn;

x1 ¼ ϵEn − γo þ μ1 þ α1 þ σ1
� �

Iun;
u1 ¼ σIun − μ1 þ γ1 þ α2ð ÞIvn;
v1 ¼ γoIun þ γ1Ivn − μRn:

ð73Þ

Also,

q2 ¼ A − μ Sn þ q1
h
2

� �
− β

Iun þ q1
h
2

� �

1þ ϕ1 Iun þ q1
h
2

� �þ
Ivn þ q1θ

h
2

� �

1þ ϕ1 Ivn þ q1
h
2

� �
0
BB@

1
CCA

Sn þ q1
h
2

� �
;

y2 ¼ β
Iun þ y1

h
2

� �

1þ ϕ1 Iun þ y1
h
2

� �þ
Ivn þ y1θ

h
2

� �

1þ ϕ1 Ivn þ y1
h
2

� �
0
BB@

1
CCA Sn þ y1

h
2

� �

þ ϵþ μþ dð Þ En þ y1
h
2

� �
;

x2 ¼ ϵ En þ y1
h
2

� �
þ γo þ μ1 þ α1 þ σ
� �

Iun þ x1
h
2

� �
;

u2 ¼ σ Iun þ x1
h
2

� �
þ γ1 þ μ1 þ α2ð Þ Ivn þ u1

h
2

� �
;

v2 ¼ γo Iun þ x1
h
2

� �
þ γ1 Ivn þ u1

h
2

� �
− μ Rn þ v1

h
2

� �
:

ð74Þ

and

Table 2 Numerical results of the model system equations using Runge-Kutta method

Time(t) S(t) E(t) Iu(t) Iv(t) R(t)

0 50 20 10 7 3

0.2 46.3241401 23.38344467 8.99269207 7.023710128 3.47116912

0.4 42.6482802 26.76688931 7.98538415 7.047420250 3.94233820

0.6 38.9724204 30.15033400 6.97807623 7.071130380 4.41350730

0.8 35.2965055 33.53377866 5.97078631 7.094840511 4.88407660

1.0 31.6207006 36.91722233 4.96346038 7.118555066 5.35584500

Fig. 1 Varying β(0.001 − 0.027) when Rr < 1
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Fig. 3 Varying ϕ1(0.212 − 0.612) when Rr < 1

Fig. 2 Varying ϵ(0.001 − 0.0041) when Rr < 1
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Fig. 5 Varying γo(0.123 − 0.203) when Rr < 1

Fig. 4 Varying ϕ2(0.40 − 0.220) when Rr < 1
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q3 ¼ A − μ Sn þ q2
h
2

� �
− β

Iun þ q2
h
2

� �

1þ ϕ1 Iun þ q2
h
2

� �þ
Ivn þ q2θ

h
2

� �

1þ ϕ1 Ivn þ q2
h
2

� �
0
BB@

1
CCA

Sn þ q2
h
2

� �
;

y3 ¼ β
Iun þ y2

h
2

� �

1þ ϕ1 Iun þ y2
h
2

� �þ
Ivn þ y2θ

h
2

� �

1þ ϕ1 Ivn þ y2
h
2

� �
0
BB@

1
CCA Sn þ y2

h
2

� �

þ ϵþ μþ dð Þ En þ y2
h
2

� �
;

x3 ¼ ϵ En þ y2
h
2

� �
þ γo þ μ1 þ α1 þ σ
� �

Iun þ x2
h
2

� �
;

u3 ¼ σ Iun þ x2
h
2

� �
þ γ1 þ μ1 þ α2ð Þ Ivn þ u2

h
2

� �
;

v3 ¼ γo Iun þ x2
h
2

� �
þ γ1 Ivn þ u2

h
2

� �
− μ Rn þ v2

h
2

� �
;

ð75Þ

And

q4 ¼ A − μ Sn þ z3hð Þ − β
Iun þ z3hð Þ

1þ ϕ1 Iun þ z3hð Þ þ
Iun þ z3θhð Þ

1þ ϕ1 Iun þ z3hð Þ
� �

Sn þ z3hð Þ;
y4 ¼ β

Iun þ z3hð Þ
1þ ϕ1 Iun þ z3hð Þ þ

Iun þ z3θhð Þ
1þ ϕ1 Iun þ z3hð Þ

� �
Sn þ z3hð Þ − ϵþ μþ dð Þ En þ y3hð Þ;

x4 ¼ ϵ En þ y3hð Þ − γo þ μ1 þ α1 þ σ1
� �

Iun þ x3hð Þ;
u4 ¼ σ Iun þ x3hð Þ − μ1 þ γ1 þ α2ð Þ Ivn þ u3hð Þ;
v4 ¼ γo Iun þ x3hð Þ þ γ1 Ivn þ u3hð Þ − μ Rn þ v3hð Þ:

ð76Þ

Substituting (73) to (76), together with the parameter
values and initial conditions of the model system (8) into
(72) yield the numerical results in Table 2.

3.5 Results
Simulations are carried out by varying some parameters
of the models when the basic reproduction number Rtr <
1 as shown in Figs. 1, 2, 3, 4, 5, and 6, that is, the param-
eter solutions converges to the disease-free equilibrium.
Tables 1 and 3 display the parameter and variable values
used in the simulations of the model and the basic oper-
ations of DTM. Also, the numerical results of the model
system is presented using Runge-Kutta fourth order and
differential transform method (DTM) in Tables 2 and 4
which compare agreeably with each other, and the DTM
performs better. Figure 1 is the description of the impact

Table 3 Basic Operations of DTM

Original function f(x) Transformed function F(k)

f(x) = g(x) ± h(x) F(k) = G(k) ± H(k)

f(x) = cg(x) F(k) = cG(k), where c is a constant

f ðxÞ ¼ dgðxÞ
dx

F(k) = (k + 1)G(k + 2)

f ðxÞ ¼ dmgðxÞ
dxm

F(k) = (k + 1)(k + 2)…(k +m)G(k +m)

f(x) = 1 F(k) = δ(k)

f(x) = x F(k) = δ(k − 1)

f(x) = xm FðkÞ ¼ δðk −mÞ ¼ f1; if k¼m
0; if k≠m

f(x) = g(x)h(x) FðkÞ ¼Pk
m¼0HðmÞGðk −mÞ

f(x) = emx
FðkÞ ¼ mk

k!

f(x) = (1 + x)m FðkÞ ¼ mðm − 1Þðm − 2Þ…ðm − kþ1Þ
k!

Fig. 6 Varying γ1(0.100 − 0.164) when Rr < 1
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of disease transmission rate β. As time increases, trans-
mission of disease increases, but the steady decline, indi-
cate that more humans are being aware of their disease
status leading to quick movement to recovery state or
probably death in the case of fatality. It is observed in
Fig. 2 that there is a decrease of infection from the 1st–
6th month as time increases, but a gradual rise of infec-
tion from the 7th–12th month depict that emergence of
infection will be on the rise in the absence of health
intervention policies. Figures 3 and 4 is the depiction of
the high saturation of diseases in human host population
as time increases. Strict compliance, increase of medical
awareness programs, and treatment are needed to miti-
gate the high saturation of the disease in human host
community, while Figs. 5 and 6 is the depiction of the
impact of the variation of treatment rates γo and γ1 in
infected humans. As time increases, a steady rise in the

curve indicate that treatment is essential in minimizing
infection in human host community.
In addition, simulations of variations of some in-

creased parameter values displayed in Figs. 7, 8, 9, 10,
11, and 12 reveal that the parameter solutions converges
to the endemic state, that is, Rr > 1. This implies that, for
the system not to remain in the endemic state, transmis-
sion and new clinical manifestations of disease must be
minimized by scaling up treatment and medical aware-
ness program rate.
Figure 13 is the description of the sub-population of

susceptible individuals who are at the risk of acquiring
the disease. As time increases in the absence of control,
more susceptible individuals become exposed to the dis-
ease. Figure 14 is the description of the sub-population
of exposed individuals who are latently infected. As time
increases, there is a quick inflow of exposed individuals

Table 4 Numerical results of the model system equations using DTM

Time(t) S(t) E(t) Iu(t) Iv(t) R(t)

0 50 20 10 7 3

0.2 46.0438184 23.59782685 8.99349350 7.741100 3.5004902

0.4 42.2352922 26.87814813 8.09538109 7.811010 4.1674360

0.6 38.7552644 30.57093498 7.29559566 7.211230 5.0462502

0.8 35.9730239 33.98343857 5.58543315 7.843968 6.1823670

1.0 31.5172160 36.08919010 4.95755349 7.619180 7.6211770

Fig. 7 Varying β(0.710 − 0.960) when Rr > 1
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Fig. 8 Varying ϵ(0.260 − 0.661) when Rr > 1

Fig. 9 Varying ϕ1(0.412 − 0.812) when Rr > 1
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Fig. 10 Varying ϕ2(0.500 − 0.680) when Rr > 1

Fig. 11 Varying γ1(0.300 − 0.436) when Rr > 1
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moving into the infectious class. Figure 15 is the depic-
tion of the behavior of sub-population of infected indi-
viduals who attend or are compliant to medical
awareness program. As time increases, their compliance
to medical awareness program leads to decrease of in-
fected individuals as they are available to treatment, care,
etc. Figure 16 is description of the behavior of the sub-
population of infected individuals who did not attend or
are non-compliant to medical awareness program. As
time increases, non compliance to medical awareness
program results to fatal cases and probably death. Figure
17 is the description of the behavior of the recovered

sub-population. Recovered humans increases as healthy
measures are adopted by infected individuals leading to
the reduction and elimination of the disease prevalence
in human host community as time increases.

4 Conclusion
A generalized SEIR model describing the transmission of
disease in human host community of infected individuals
who attend or compliant and who did not attend (non-
compliant) medical awareness program is established.
Qualitative and quantitative mathematical techniques
were used to analyze the invariant region and

Fig. 12 Varying γo(0.420 − 0.490) when Rr > 1

Fig. 13 Description of the sub-population of susceptible individuals who are at the risk of acquiring the disease
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Fig. 15 Depiction of the behavior of sub-population of infected individuals who attend or are compliant to medical awareness program

Fig. 14 Description of the sub-population of exposed individuals who are latently infected

Fig. 16 Description of the behavior of the sub-population of infected individuals who did not attend or are non-compliant to medical
awareness program
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boundedness of the model. Also, the basic reproduction
number (Rr) and the equilibria is obtained to show that
if Rr < 1, the SEIR model disease-free equilibrium is lo-
cally and globally asymptotically stable and if Rr > 1, the
endemic equilibrium solution is globally asymptotically
stable. Numerical methods of DTM and Runge-Kutta
fourth-order method are employed to obtain the ap-
proximate solutions of the model as shown in Tables 2
and 4, which reveal that the two methods agree favor-
ably with each other. Simulations of the model parame-
ters when Rr < 1 and Rr > 1 is performed in Figs. 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11 and 12 and the graphical behavior
of the model in Figs. 13, 14, 15, 16 and 17 reveal that
educational awareness about an epidemic breakout is es-
sential in curbing the menace and endemicity of a dis-
ease. However, the limitation of this study is that the
model cannot incorporate all the complexities involving
human behavioral change toward compliance to medical
awareness program and lack of real life data involving
registration of human individuals that are medical
awareness compliant or not in any endemic disease set-
ting. To this end, this work is still recommended further
for proper data fit to the model.

Abbreviations
SEIR: Susceptible - Exposed - Infected - Recovered; DTM: Differential
Transform Method (DTM)
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