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Abstract

Background: Agmatine (AGM) is known for its protective effects including neuroprotection, nephroprotection,
gastroprotection, cardioprotection, and glucoprotection. Studies have validated the neuroprotective role of AGM as
antidepressant, anxiolytic, locomotive, and antipsychotic agent in psychopathologies. Fluoxetine (FLX) is the most
extensively prescribed antidepressant while methylphenidate (MPD) is the most frequently prescribed psychoactive
stimulant for ADHD (attention deficit hyperactivity disorder) treatment worldwide. The mechanism of action of FLX
and MPD involves reuptake inhibition of serotonin and dopamine and norepinephrine at presynaptic transporters.
Present study was designed to determine the safety and efficacy of AGM administration along with conventional
antidepressant and psychostimulative drugs. The study also aimed to establish underlying mechanism of action of
AGM at monoamine reuptake transporters.

Results: AGM significantly ameliorated locomotion in activity box and open field while anxiolytic behaviors in light/
dark transition box and EPM were also improved (p<0.01). The growth and appetite of animals were enhanced
along with antidepressive behavior in FST (p<0.01). Moreover, co-administration of AGM with FLX or MPD improved
rats’ behaviors as compared to single AGM administration.

Conclusion: Present study determined the significant anxiolytic, locomotor, and antidepressive effects of AGM
compared with FLX and MPD. The study also showed improved behaviors of rats treated with combined doses of
AGM with FLX or MPD along with food intake and body weights. This study has also proposed the potential
mechanism of action of AGM at monoamine receptors that may lead to inhibition of monoamine reuptake
transporters that may lead to increase in 5-HT, D, and NE concentrations at synaptic level.
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1 Background

Agmatine (AGM) is an ubiquitary compound synthe-
sized by the action of arginine decarboxylase (ADC) en-
zyme from the precursor arginine. It is widely known to
exert its neuroprotective effects during neurodegenera-
tion processes such as apoptosis, oxidative stress, inflam-
mation, brain edema, and many other neurological
diseases [1-3]. Endogenous agmatine inside the brain re-
veals anxiolytic, antidepressive, anticonvulsive, antinoci-
ceptive, and neuroprotective effects [4—6]. Furthermore,
AGM levels exhibit potential incorporation in aging pro-
gression and memory- and cognition-related structure of
the brain [7]. AGM is considered as an eligible candidate
that is capable of modulating various target sites simul-
taneously and appropriate therapeutic substance for nu-
merous disorders [8].

Fluoxetine (FLX) is a selective serotonin inhibitor class
of antidepressant possessing high affinity for 5-HT trans-
porter thus tempering synaptic serotonin levels [9]. It is
a widely known antidepressant used to treat depression,
anxiety, and other personality disorders [10]. The mech-
anism involves inhibition of serotonin reuptake into pre-
synaptic terminal that leads to increase extracellular
serotonin levels [11]. Various preclinical studies have
demonstrated the antidepressant effects of FLX in ani-
mal models such as reserpine model, chronic mild stress,
FST model, restraint model, and olfactory bulbectomy.
FLX has also been assessed in anxiety, cognition, and
various other psychological models [12]. FLX inhibits
serotonin reuptake and affects sexual behavior [13] thus
produces antidepressant effects. Long-term FLX treat-
ment induces a constant increase in serotonin levels in
various regions of the brain including the striatum, di-
encephalon, hippocampus, and frontal cortex [14, 15]
while no altering difference on noradrenaline and dopa-
mine were observed [16]. Chronic FLX treatment
prompted neurogenesis in subgranular zone of hippo-
campus, increased cell proliferation, and long-lasting
survival of new granule neurons [17-19].

Methylphenidate (MPD) is the most widely pre-
scribed drug for attention deficit hyperactivity disorder
(ADHD) treatment [20]. Studies on animal models have
found MPD-mediated effects on neurochemistry [21],
behavior [22], development [23], self-administration,
and cross sensitization [24]. MPD acts predominantly
through dopaminergic pathway and slightly alters nor-
epinephrine receptors. It increases dopamine and nor-
epinephrine levels in synapse by inhibiting reuptake of
these neurotransmitters [25, 26]. Study revealed in-
creased activation of the frontal cortex, striatum, and
parietal areas and reduced activation of basal cingulate
in ADHD [27]. It has also been observed that connect-
ivity reduced between ventral striatum and inferior
frontal cortex [27].
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The study was designed to determine the safety and
efficacy of AGM administration along with FLX and
MPD on animal’s moods and behaviors. The study also
aimed to determine the potential mechanism of action
of AGM at monoamine reuptake transporters as de-
scribed in Fig. 1.

2 Methods

2.1 Animal and drug administration

Six- to 8-week-old male albino Wistar rats (120-180 g)
were purchased from Dow University of Health and Sci-
ences, Karachi. Rats were acclimatized for 3 days in sep-
arate cages under 12:12 h light/dark cycle, temperature
25 + 1 °C, and free access to water and food. All experi-
ments were approved by the Institutional Advanced
Studies and Research Board (BASR/03367/Sc.) and per-
formed in strict accordance with the National Institute
of Health Guide for Care and Use of Laboratory Animals
(NIH Publication no. 85-23, revised 2011). Agmatine
sulfate salt and fluoxetine hydrochloride were purchased
from Merck (Sigma-Aldrich). Methylphenidate (Ritalin-
Novartis) along with AGM and FLX were dissolved in
distilled water and administered orally by stainless steel
oral gavage. Water was given as vehicle to control ani-
mals. After 28 days of treatment, animals were humanly
decapitated for brain and blood sample collection.

2.2 Experimental design

Thirty-six male rats were divided randomly into 6
groups each that receive the following treatments: (a)
water (control), (b) agmatine (100 mg/Kg p.o.), (c) FLX
(20 mg/Kg (p.o.), (d) MPD (10 mg/Kg p.o.), (¢) AGM+
FLX (100+20 mg/Kg), (f) AGM+MPD (100+10 mg/Kg)
for 28 days daily. All behaviors were recorded 24 h post
drug administration as given in Fig. 2.

2.3 Behavioral estimations

2.3.1 Body weight and food intake

Weighed amount of fresh standard rodent diet cubes
were given to each animal separately. Leftover diet in
cage hooper was weighed so that effect of drugs on feed-
ing and satiety can be observed. Body weights of each
rat were observed separately to determine the effect of
AGM and other drugs on growth of animals.

2.3.2 Light dark activity

Light/dark transition test is known for analyzing anxiety
in rodents. The apparatus consists of two chambers of
equal size made up of transparent and black opaque
Plexiglas (20 x 30 x 30 cm). The partition dividing the
compartment has a 10 x 10-cm door in the middle of
the wall through which rat can move from one chamber
to another. Single animal was positioned in the mid of
bright chamber fronting towards opposite side from the
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Fig. 1 Potential mechanism of action of agmatine as monoamine reuptake inhibitor. Agmatine (AGM) may block serotonin reuptake transporter
(SERT) found on presynaptic neuron. This leads to increase in serotonin (5-HT) levels at synaptic cleft thus induces cellular response at post-
synaptic neuron. AGM may also inhibit dopamine reuptake transporter (DAT) and norepinephrine reuptake transporter (NET) at pre-synapse.
Similar to serotonin, inhibition of DAT and NET leads to elevated levels of dopamine (D) and norepinephrine (NE) at synaptic cleft. The
mechanism of action of AGM at monoamine reuptake transporters is similar to fluoxetine (FLX) and methylphenidate (MPD) at SERT, DAT, and
NET, respectively. Consequently, monoamines bind to their specific post-synaptic receptors efficiently and lead to improved mood and anxiolytic

and learning behaviors

middle wall opening. Behaviors measured were entries
and time spent in light box for 05 min.

2.3.3 Elevated plus maze

Elevated plus maze has been commonly endorsed to ob-
serve anxiety in rats. The apparatus consists of plus-
shaped four arms in which two arms are open (50 x 10
cm) and two arms are closed (50 x 20 ¢cm) with 15-cm
high opaque walls. Open-arm edges were 25-cm high to
avoid fall of rat. The maze was elevated 100 cm above
the ground. Each rat is positioned at the center of the
maze facing enclosed arm. Time spent and entries in
open arms were observed in 5-min test period.

2.3.4 Activity box test

The simplest locomotive assessment is to observe activ-
ity of animals in home cages. Behavioral observations
over a period of 24 h in novel environment can be used

to assess anxiety, cardiac rhythm, and exploration [28,
29]. Extent of exploration, anxiety, and locomotion was
measured in familiar environment of rats via activity
box. The apparatus consists of (26 x 26 x 26 c¢cm) trans-
parent Perspex walls with ground covered with saw
chips. Fifteen minutes of habituation of animal is
followed by 10 min observation of cage crossings.

2.3.5 Forced swim test

Forced swim test is known as a fundamental test to
examine depression-like behavior. FST apparatus com-
prises of a transparent glass chamber (12-cm diameter
and 22-cm height). The cylinder was filled up to 10
cm with water (25 °C). Each rat was placed into the
apparatus, and struggling of rat was monitored for 5
min. The cylinder was filled with clean water after
each test.
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2.3.6 Open field activity

Open field test is an uncomplicated and simple assess-
ment of behaviors that does not require training to ani-
mals. The apparatus consisted of 76 x 76 cm square area
with 42-cm high opaque plastic walls. The floor was di-
vided into 25 equal squares. Rat was placed in the center
box of arena and exploration; anxiety and ambulation
were observed in 5 min examination.

2.4 Statistical analysis

All obtained data were considered as two-way ANOVA
repeated measure designs SPSS version 20, followed by
Newman Keuls post hoc test. The results are described
as mean + SD. Significance was considered as p value <
0.05.

3 Results

3.1 Body weight

Data in Fig. 3 was analyzed by two-way ANOVA that ex-
plained the significant effects of days (F (4, 30) =
386.462, p<0.01), treatment (F (5, 30) = 212.348, p<0.01)
and days x treatment (F (20, 30) = 26.212, p<0.01). Post
hoc analysis determined that body weight increased sig-
nificantly after the 14th (p<0.05), 21st, and 28th (p<0.01)
day administration of AGM and decreased after the 1st
administration of FLX (p<0.05) and MPD (p<0.01). FLX
co-administered with AGM increased significantly body

weight after the 7th (p<0.05), 14th, 21st, and 28th (p<
0.01) days of administration, while MPD + AGM after
the 1st, 7th, 14th, 21st, and 28th (p<0.01) administration
increased body weight significantly when compared with
water-treated controls. When treatments were compared
with their first administration, water after the 28th (p<
0.05) day; AGM after the 21st and 28th (p<0.01) days;
FLX after the 14th, 21st, and 28th (p<0.01) days; and
MPD after the 1st, 14th, 21st, and 28th (p<0.01) days of
administration increased significantly body weight. How-
ever, co-administration of FLX and AGM after the 14th,
21st, and 28th (p<0.01) administration increased body
weight significantly when compared with their first ad-
ministration. However, body weight was significantly de-
creased after the 1st, 7th, 14th, 21st, and 28th (p<0.01)
administration of FLX and MPD when compared with
AGM-treated animals.

3.2 Food intake

Data in Fig. 4 was analyzed by two-way ANOVA that ex-
plained the significant effects of days (F (4, 30) =
250.104, p<0.01), treatment (F (5, 30) = 124.216, p<0.01),
and days x treatment (F (20, 30) = 85.593, p<0.01). Post
hoc analysis determined that food intake increased after
the 7th and 21st (p<0.01) administration of AGM. How-
ever, decreased food intake was observed after the 14th
(p<0.01) day of AGM treatment, 21st (p<0.01) day of
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Fig. 3 Body weight: values are expressed as means + SD (n=6). Significant differences by Newman-Keuls test: *p<0.01, **p<0.05 from water-
treated control group to drug-treated groups. +p<0.01, ++p<0.05 from drug’s 1st administration. #p<0.01, ##p<0.05 from AGM-treated animals to
FLX- and MPD-treated animals following two-way ANOVA

FLX, and after the 1st, 7th, 14th, 21st, and 28th (p<0.01)
administration of MPD while co-administration of AGM
with MPD after the 1st (p<0.05), 14th, and 28th (p<0.01)
administration decreased food intake significantly.

When compared with the first administration, signifi-
cantly increased food intake was observed after the 14th
(p<0.01) and 28th (p<0.05) days in water control and in
AGM after the 7th (p<0.05) and 21st (p<0.01) days of
administration. Similar results were observed in MPD-
treated animals after the 7th and 28th (p<0.01) and 21st
(p<0.05) administration and after the 14th, 21st, and
28th (p<0.01) of FLX and AGM co-administration. MPD
and AGM co-treated animals have shown increased food

intake after the 7th (p<0.05) and 21st (p<0.01) days.
Food intake was observed significantly decreased after
the 7th, 14th, and 21st (p<0.01) administration of FLX
and the 1st, 7th, 14th, 21st (p<0.01), and 28th (p<0.05)
administration of MPD when compared with AGM-
treated animals.

3.3 Light/dark transition test

3.3.1 Light/dark transition test (time spent)

Obtained data from Fig. 5a was analyzed by two-way
ANOVA that explained the effects of days (F (4, 30) =
3796.738, p<0.01), treatment (F (5, 30) = 316.151, p<
0.01), and days x treatment (F (20, 30) =154.937, p<0.01)
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Fig. 4 Food intake: values are expressed as means + SD (n=6). Significant differences by Newman-Keuls test: *p<0.01, **p<0.05 from water-treated
control group to drug-treated groups. +p<0.01, ++p<0.05 from drug’s 1st administration. #p<0.01, ##p<0.05 from AGM-treated animals to FLX-
and MPD-treated animals following two-way ANOVA

to be significant. Post hoc analysis determined that time
spent increased after the 1st (p<0.05), 7th, 14th, 21st,
and 28th (p<0.01) days of AGM administration and after
the 7th, 14th, 21st, and 28th (p<0.01) days of FLX ad-
ministration while MPD and combined dose of AGM
with FLX and MPD after the 1st, 7th, 14th, 21st, and
28th (p<0.01) administration significantly enhanced time
spent in light compartment when compared with water-
treated controls.

When compared with the first administration, AGM
after the 7th (p<0.05), 14th, 21st, and 28th (p<0.01) ad-
ministration and FLX and combined dose of FLX and
AGM after the 7th, 14th, 21st, and 28th (p<0.01) admin-
istration increased time spent in light box, whereas

MPD and co-treatment of MPD and AGM after the
14th, 21st, and 28th (p<0.01) administration increased
time spent significantly in light box. Time spent was ob-
served significantly increased after the 14th, 21st, and
28th (p<0.01) administration of FLX and 1st and 7th (p<
0.01) administration of MPD when compared with
AGM-treated animals.

3.3.2 Light/dark transition test (entries)

All obtained results from Fig. 5b were analyzed by two-
way ANOVA that explained the significant effects of
days (F (4, 30) = 1465.233, p<0.01), treatment (F (5, 30)
= 193.362, p<0.01), and days x treatment (F (20, 30) =
97.432, p<0.01). Post hoc analysis determined that AGM
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Fig. 5 a Light/dark transition test (time spent): values are expressed as means + SD (n=6). Significant differences by Newman-Keuls test: *p<0.01,
**p<0.05 from water-treated control group to drug-treated groups. +p<0.01, ++p<0.05 from drug’s 1st administration. #p<0.01, ##p<0.05 from
AGM-treated animals to FLX- and MPD-treated animals following two-way ANOVA. b Light/dark transition test (entries): values are expressed as
means £ SD (n=6). Significant differences by Newman-Keuls test: *p<0.01, **p<0.05 from water-treated control group to drug-treated groups. +p<
0.01, ++p<0.05 from drug’s 1st administration. #p<0.01, ##p<0.05 from AGM-treated animals to FLX- and MPD-treated animals following
two-way ANOVA

after the 7th, 14th, 21st, and 28th (p<0.01) administra-
tion significantly increased entries in light compartment,
while FLX after the 14th, 21st, and 28th (p<0.01) and
MPD after the 7th, 14th, 21st, and 28th (p<0.01) admin-
istration increased entries in light box. Similarly, co-
administration of FLX and AGM after the 1st (p<0.05),
7th, 14th, 21st, and 28th (p<0.01) and MPD + AGM
after the 1st, 7th, 14th, 21st, and 28th (p<0.01) adminis-
tration significantly enhanced entries in light compart-
ment when compared with water-treated controls on
same day.

Furthermore, AGM and MPD after the 14th, 21st, and
28th (p<0.01) administration; FLX after 21st and 28th
(p<0.01) treatment and co-administration of AGM with
FLX; and MPD after the 7th, 14th, 21st, and 28th (p<
0.01) administration increased entries significantly in
light box when compared with their first administration.
Entries were observed significantly increased after the
14th (p<0.01) administration of FLX and increased after
the 21st and 28th (p<0.01) administration of MPD when
compared with AGM.

3.4 Elevated plus maze

3.4.1 Elevated plus maze (time spent)

Data in Fig. 6a was analyzed by two-way ANOVA that
explained the significant effects of days (F (4, 30) =
1870.219, p<0.01), treatment (F (5, 30) = 143.645, p<
0.01), and days x treatment (F (20, 30) = 168.143, p<
0.01). Post hoc analysis determined that AGM after the
7th and 14th (p<0.05) and 21st and 28th (p<0.01) ad-
ministration and FLX after the 14th, 21st, and 28th (p<
0.01) administration increased significant time spent in
open arms, while MPD after the 7th (p<0.05), 14th, 21st,
and 28th (p<0.01) and co-administration of AGM with
FLX after the 1st and 7th (p<0.05), 14th, 21st, and 28th
(p<0.01) and AGM with MPD after the 1st (p<0.05), 7th,
14th, 21st, and 28th (p<0.01) administration significantly
increased time spent in open arms when compared with
water-treated controls.

When compared with first administration, AGM
after the 7th and 21st (p<0.05) and 28th (p<0.01) ad-
ministration whereas FLX, MPD, co-administration of
AGM with FLX and MPD after 14th, 21st, and 28th
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Fig. 6 a EPM (time spent): values are expressed as means + SD (n=6). Significant differences by Newman-Keuls test: *p<0.01, **p<0.05 from
water-treated control group to drug-treated groups. +p<0.01, ++p<0.05 from drug’s 1st administration. #p<0.01, ##p<0.05 from AGM-treated
animals to FLX- and MPD-treated animals following two-way ANOVA. b EPM (entries): values are expressed as means + SD (n=6). Significant
differences by Newman-Keuls test: *p<0.01, **p<0.05 from water-treated control group to drug-treated groups. +p<0.01, ++p<0.05 from drug’s 1st
administration. #p<0.01, ##p<0.05 from AGM-treated animals to FLX- and MPD-treated animals following two-way ANOVA

(p<0.01) days of administration increased time spent
significantly in open arms. Time spent in open arms
were observed significantly increased after the 21st
and 28th (p<0.01) administration of FLX and after the
21st (p<0.01) day of MPD administration when com-
pared with AGM-treated animals.

3.4.2 Elevated plus maze (entries)

Data in Fig. 6b was analyzed by two-way ANOVA that
explained the significant effects of days (F (4, 30) =
282.783, p<0.01), treatment (F (5, 30) = 440.298, p<0.01),
and days x treatment (F (20, 30) = 24.557, p<0.01). Post
hoc analysis determined that entries in open arms in-
creased after the 1st, 21st, and 28th (p<0.05) AGM ad-
ministration, while FLX, MPD, and co-administration of
AGM with FLX and MPD have shown significant in-
creased time spent in open arms after the 1st, 7th, 14th,
21st, and 28th (p<0.01) administration when compared
with control animals.

Number of entries increased in control after the 14th
and 28th (p<0.01) days while in AGM after 21st (p<0.05)
and 28th (p<0.01) administration when compared with
first administration, whereas FLX after the 14th (p<0.05),
21st, and 28th (p<0.01) and MPD after the 14th, 21st, and

28th (p<0.01) days of administration have shown in-
creased number of entries. Co-administration of AGM
with FLX and MPD has shown significant increased en-
tries after the 7th, 14th, 21st, and 28th (p<0.01) adminis-
tration as compared to the first administration.

Entries in open arms were observed significantly in-
creased after the 1st (p<0.05), 7th, 14th, 21st, and 28th
(p<0.01) administration of FLX and MPD when com-
pared with AGM-treated animals.

3.5 Activity box test

Data obtained from Fig. 7 was analyzed by two-way
ANOVA that explained the significant effects of days (F
(4, 30) = 3271.290, p<0.01), treatment (F (5, 30) =
326.036, p<0.01), and days x treatment (F (20, 30) =
130.137, p<0.01). Post hoc analysis determined that cage
crossings increased significantly after the 1st and 7th (p<
0.05), 14th, 21st, and 28th (p<0.01) administration of
AGM and the 1st (p<0.05), 7th, 14th, 21st, and 28th (p<
0.01) administration of FLX. Similar increase in cage
crossings were observed in MPD as well as co-
administration of AGM with FLX and MPD and after
the 1st, 7th, 14th, 21st, and 28th (p<0.01) administration
when compared with controls. Furthermore, increased
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numbers of cage crossings were observed in controls
after the 21st (p<0.05) and 28th (p<0.01) administration
and in AGM after the 14th, 21st, and 28th (p<0.01) ad-
ministration. Animals treated with FLX and FLX +
AGM combined doses has shown increased cage
crossings after the 7th, 14th, 21st, and 28th (p<0.01)
administration, while MPD after the 7th (p<0.05),
14th, 21st, and 28th (p<0.01) administration and co-
treatment of MPD and AGM after 14th, 21st, and
28th (p<0.01) day increased numbers of box crossed
significantly when compared with their first adminis-
tration. Number of cage crossings was observed sig-
nificantly increased after the 7th (p<0.05) and 28th
(p<0.01) administration of FLX and 21st and 28th (p<

0.01) administration of MPD when compared with
AGM-treated animals.

3.6 Forced swim test

Data in Fig. 8 was analyzed by two-way ANOVA that ex-
plained the significant effects of days (F (4, 30) =
1305.458, p<0.01), treatment (F (5, 30) = 104.353, p<
0.01), and days x treatment (F (20, 30) = 20.990, p<0.01).
Post hoc analysis determined that AGM after the 28th
(p<0.01) administration significantly increased struggling
time. Similarly, AGM co-treatment with FLX and MPD
after the 1st, 7th, 14th, 21st, and 28th (p<0.01) adminis-
tration increased duration of struggling in FST when
compared with controls. Struggling time increased after
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the 28th (p<0.05) day in controls and after the 21st (p<
0.05) and 28th (p<0.01) AGM administration when com-
pared with first administration. FLX and MPD has
shown increased struggling after the 28th (p<0.01) ad-
ministration while co-administration of FLX and AGM
after the 21st and 28th (p<0.01) administration and
MPD and AGM after the 21st (p<0.05) and 28th (p<
0.01) administration increased struggling significantly
when compared with their first administration.

3.7 Open field test
All results obtained from Fig. 9 were analyzed by two-
way ANOVA that explained the significant effects of

days (F (4, 30) = 2444.642, p<0.01), treatment (F (5, 30)
= 2093.791, p<0.01), and days x treatment (F (20, 30) =
99.996, p<0.01). Post hoc analysis determined that box
crossed increased in all groups of animals (p<0.01) in-
cluding AGM, FLX, MPD, and co-administration of
AGM with FLX and MPD after the 1st, 7th, 14th, 21st,
and 28th (p<0.01) when compared with water-treated
controls.

Increased number of boxes crossed were observed in
animals treated with AGM, FLX, and combined FLX
and AGM after the 7th (p<0.05), 14th, 21st, and 28th
(p<0.01) administration. While MPD treatment has
shown increased box crossed after the 7th, 14th, 21st,
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FLX- and MPD-treated animals following two-way ANOVA

and 28th (p<0.01) administration and MPD and AGM
after the 14th, 21st, and 28th (p<0.01) days when com-
pared with the first administration. Square crossed was
observed significantly increased after the 21st and 28th
(p<0.01) administration of FLX and 1st, 7th, 14th, 21st,
and 28th (p<0.01) administration of MPD when com-
pared with AGM-treated animals.

4 Discussion

The present study was designed to determine the com-
parative effects of AGM with standard antidepressant
and psychostimulant drugs namely FLX and MPD re-
spectively in various behavioral paradigms with specific
doses for 28 days. Various preclinical studies validated

FLX impact on 5-HT neurotransmission that involves
the modulation of physiological mechanisms including
food intake, sleep, aggression, body temperature, vomit-
ing, fear, and sexual behaviors [12]. MPD inhibits the re-
uptake of norepinephrine and dopamine at presynaptic
neuron. It blocks the respective transporters of neuro-
transmitters and consequently concentration of dopa-
mine and norepinephrine in the synaptic cleft [30].
Present study described the effects of AGM on body
weight in comparison with other selected drugs. Signifi-
cant increase in body weight was observed in AGM-
administered group from their first dose and in compari-
son with FLX and MPD in weekly administration while
maximum increase in body weight was demonstrated by
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both co-administered groups of AGM with FLX and
with MPD. Body weight was also observed to be en-
hanced in MPD and AGM co-treated animals when
compared with FLX and AGM co-administrated groups.
MPD decreases hunger and appetite that results in re-
duced food intake and weight loss in rats and humans
[31, 32]. Increased food intake and appetite was ob-
served in AGM-administered animals in weekly assess-
ment as observed in Fig. 4. MPD-induced loss of
appetite was also revealed in the present study while co-
administered FLX and AGM resulted in increased food
intake when compared with AGM, FLX, and co-treated
MPD and AGM groups. MPD-treated animals exhibited
hyperactivity assessed by distance traveled in open field
test; furthermore, effects of MPD increased in late weeks
that described sensitization impact of MPD. Results have
shown the effects of AGM on locomotion and explor-
ation in open field paradigm in comparison with FLX
and MPD and co-administration. Increased total num-
bers of square crossed were observed in AGM-treated
animals from first administration while total number of
boxes crossed was enhanced in co-treated groups of
AGM with FLX significantly. BALB/c mice demon-
strated that chronic FLX treatment increased time spent
in the central region of the open field box specifically in
the first few minutes of test cutoff time [33]. Increase in
crossings and rearing behaviors were observed in rats
treated with AGM that leads to significant behavioral al-
ternations [34]. In the present study, significant increase
in cage crossings was observed in AGM-treated animals,
whereas animals treated with AGM and FLX produced
most significant effects when compared with any other
drug-treated animal group.

Acute administration of AGM (80 mg/Kg) or chronic
treatment (20 mg/kg or 10 mg/kg, for 3 days) signifi-
cantly improved light—dark transitions in rats in the
light—dark transition test [35]. Chronic treatment of FLX
and buspirone in teleost species demonstrated improved
time spent in light compartment of light/dark transition
box [36]. Present study described the effects of AGM in
comparison with other drugs on anxiety assessed in
light/dark transition box. Increased time spent in light
box was observed in animals treated by AGM and its co-
administered animal groups. Improved time spent in
light compartment is observed after weekly assessment
in FLX and co-treated FLX and AGM groups. Data ob-
tained has described enhanced effects of both co-
administered drugs with AGM on the total numbers of
entries in light box, while MPD significantly improved
entries in light compartment when compared with FLX-
and AGM-treated animals. Present study revealed the
significant anxiolytic effects of both FLX and MPD co-
administration with AGM in light/dark transition test.
Study showed that chronic AGM treatment increased
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percentage of entries and time in open arms of EPM
paradigm [34]. MPD treatment revealed anxiolytic ef-
fects in EPM test [22] while FLX acute administration
induces anxiogenic-like activity in EPM that is typical
clinical effect of the FLX first phase treatment [37].
Similar results were observed in EPM test that described
the effects of AGM in comparison with FLX and MPD
and their co-administration with AGM. Improved time
spent in open arms was observed in AGM-treated ani-
mals from first day of administration. FLX and MPD in-
creased time spent significantly when compared with
AGM administration whereas, co-administration of FLX
and AGM demonstrated most enhanced activity of ani-
mals in EPM test. Present study revealed significant in-
creased entries in open arms of EPM in both co-treated
groups of AGM with FLX and MPD, while treatment
with FLX and MPD exhibited comparatively improved
entries in open arms of EPM. Studies validated the
anxiolytic effects of AGM in mice exposed to chronic
stress by decreasing the duration of immobility and en-
hancing the swimming interval in stressed mice [34].
Present study revealed anxiolytic and antidepressant ef-
fects of AGM and comparative drugs in FST. Struggling
duration increased in AGM-treated animals from first
administration while AGM co-treatment with FLX and
MPD animals demonstrated enhanced struggling in ani-
mals compared with other animal groups. Study showed
antidepressant effects of FLX in FST proposing that en-
hanced serotonin neurotransmission may increase swim-
ming behavior as it also decreases immobility time [38].

5 Conclusion

Present study revealed the anxiolytic, locomotor, and anti-
depressive behavioral effects of AGM compared with FLX
and MPD. However, rats when treated with combined
doses of AGM with FLX or MPD showed improved be-
haviors along with food intake and body weights. Study
determined the safe and efficient administration of AGM
along with conventional antidepressant and psychostimu-
lative drugs. This study has also proposed the potential
mechanism of action of AGM at monoamine receptors
that may lead to inhibition of monoamine reuptake trans-
porters. This may lead to increase in 5-HT, D, and NE
concentrations at synaptic level.
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