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Abstract 

Background: The buckling load as well as the natural frequency under axial load for non-prismatic beam is a 
changeling problem. Determination of buckling load, natural frequency, and elastic deflection is very important in 
civil applications. The current paper used both perturbation method (PM), analytic method, and differential quadra-
ture method (DQM), numerical method, to find buckling load and natural frequency with different end supports. The 
deflection of the beam resting on an elastic foundation under transverse distributed and axial loads is also obtained. 
Both PM and DQM are used for non-prismatic beams with rectangular and circular cross sections in the vibration 
analysis. The comparisons of results obtained from both PM and DQM showed perfect agreement with analytical 
solution for uniform beams with different end supports. The PM and DQM succeeded powerfully for investigating the 
buckling load as well as the natural frequency for non-prismatic beam.

Results: The percentage of relative error between DQM and PM doesn’t exceed than 5% if the gradient of rectan-
gular section height and the gradient of circular section radius are less than 0.6. As the gradient of height and radius 
increase, the maximum deflection decreases and the location of maximum deflection displaced toward the smaller 
moment of inertia.

Conclusions: The PM has not been used for solving the problem of non-prismatic beams resting on elastic founda-
tions subjected to transverse distributed and axial loads. The current research proved the good ability of PM as an ana-
lytical solution for a complicated problem and defined its range of accuracy as compared to DQM. Also, it introduced 
accurate empirical formulae to find both natural frequency and buckling load of non-prismatic beams. These empiri-
cal formulae represent a good achievement in vibration analysis of non-prismatic beams.
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1  Background
The DQM is a numerical technique for initial and/or 
boundary value problems. It was developed by the late 
Richard Bellman and his associates in the early 70 s and, 
since then, the method has been successfully employed 
in a variety of problems in physical and engineering sci-
ences. The DQM has been projected by its proponents 

as a potential alternative to the conventional numeri-
cal solution techniques such as the finite difference and 
finite element methods [1]. Non-prismatic beams resting 
on elastic foundations are important structural elements. 
The dynamic characteristics of such non-prismatic 
beams are of considerable importance in many designs. 
The vibration of non-prismatic beams is formulated as 
a fourth-order differential equation of variable coef-
ficients; it is possible to determine their exact solutions 
[2, 3], using homotopy analysis [2] or the Green’s func-
tions method [3]. However, in most cases, the solution 
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is obtained by approximate methods such as finite dif-
ference [4], DQM [5], boundary element method [6], 
the power series [7, 8], Lagrange multiplier formulation 
[9], coupled displacement field method [10]. Sato [11] 
reported the transverse vibration of linearly tapered 
beams using Ritz method. He studied the effect of end 
restraints and axial load on the natural frequencies.

The PM is a method which relies on there being a 
dimensionless parameter in the problem that is rela-
tively small: ε <  < 1. The PM is used to analyze the non-
linear vibration behavior of imperfect general structures 
under static load. The effects on the linearized and non-
linear vibrations caused by geometric imperfections, a 
static fundamental state, and a nontrivial static state are 
included in the perturbation procedure. The theory is 
applied in the nonlinear vibration analysis of cylindrical 
shells [12]. However, the PM has not been used for solv-
ing the problem of non-uniform beams resting on elastic 
foundations under the action of transverse distributed 
load and axial load. In this paper, the PM is used to obtain 
the non-dimensional frequencies and buckling loads for a 
non-prismatic beam resting on elastic foundations. Also, 
the deflected shape can be obtained by PM.

In the present paper, the concepts of both DQM and 
PM are presented for the vibration analysis of non-pris-
matic Euler–Bernoulli beam. The DQM was widely used 
in vibration analysis of non-prismatic beams. In this paper, 
we used it again to solve the same problem to investigate 
accuracy of PM in analysis of vibration of non-prismatic 
beams. The generated PM results for non-prismatic beam 
also verified with Dua [13]. From the comparison between 
PM and DQM, an empirical formula is investigated to 
find natural frequency and buckling load of non-pris-
matic beams. These empirical formulae represent a good 
achievement in vibration analysis of non-prismatic beams. 
A full parametric study is then performed.

Figure 1 shows the schematic diagram for non-prismatic 
beam on elastic foundation subjected to axial load “n” and 
transverse uniform load p(x) . The free vibration of a non-
uniform beam is governed by the following equation

Using the non-dimensional parameters: W = Y
L  , 

X = x
L , Q = nL2

EI0
 , K = kL4

EI0
 ,  P =

p(x)L2

EI0
,�4 =

ρA(x)L4ω2

EI0
 , and 

S(X) = EI(x)
EI0

.
Equation (1) by direct substitution will be reduced to

where W  is non-dimensional transverse deflection, X 
is non-dimensional position along beam length, Q is 
non-dimensional axial load parameter, K  is linear non-
dimensional stiffness of elastic foundation parameter, P 
is non-dimensional transverse distributed load, � is non-
dimensional frequency parameter, I0 is the base mass 
moment of inertia, and S(X) is non-dimensional stiffness 
parameter of the beam.

In the current paper, the beam has a rectangular cross 
section of linear variable height and constant width. The 
height is ho at the base and h1 at the end. The equations of 
non-dimensional height, non-dimensional cross section, 
and non-dimensional stiffness parameters are:

Another case is considered for a beam of circular cross 
section of linear variable radius. The equations of non-
dimensional radius, non-dimensional cross section, and 
non-dimensional stiffness parameters are:

(1)
∂2

∂x2

(

EI(x)
∂2Y

∂x2

)

− ρA(x)ω2Y + n
∂2Y

∂x2
+ kY = p(x)

(2)
S(X) ·

d
4W

dX4
+ 2

dS(X)

dX
·
d
3W

dX3
+

dS2(X)

dX2
·
d
2W

dX2

+ Q
d
2W (X)

dX2
+

(

K −�4

)

·W = P

(3)

H(X) = (1+ γX)

A(X) = Ao(1+ γX)

S(X) = (1+ γX)3

Where : γ =
h1 − ho

ho

Fig. 1 Non-prismatic beam on an elastic foundation subjected to axial and transverse loads—rectangular and circular cross section
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2  Methods
2.1  Perturbation method (PM)
The PM is employed for rectangular cross section as:

By substituting Eqs. (5, 6) in Eq. (2) and considering γ 
as perturbation parameter ε

(4)

R(X) = (1+ γX)

A(X) = Ao(1+ γX)2

S(X) = (1+ γX)4

Where : γ =
R1 − Ro

Ro

(5)

S(X) = 1+ 3γX + 3γ 2X2 + γ 3X3

dS

dX
= 3γ + 6γ 2X + 3γ 3X2

d2S

dX2
= 6γ 2 + 6γ 3X

(6)

S(X) = 1+ 4γX + 6γ 2X2 + 2γ 3X3 + γ 4X4

dS

dX
= 4γ + 12γ 2X + 6γ 3X2 + 4γ 4X3

d2S

dX2
= 12γ 2 + 12γ 3X + 12γ 4X2

(7)

(

1+ 3εX + 3ε2X2 + ε3X3
) d4

dX4

(

Wo + εW1 + ε2W2 + ε3W3 + · · ·

)

+ 2
(

3εX + 6ε2X + 3ε3X2
) d3

dX3

(

Wo + εW1 + ε2W2 + ε3W3 + · · ·

)

+

(

6ε2 + 6ε3X
) d2

dX2

(

Wo + εW1 + ε2W2 + ε3W3 + · · ·

)

+ Q
d2

dX2

(

Wo + εW1 + ε2W2 + ε3W3 + · · ·

)

+

(

K −�2(1+ εX)
)(

Wo + εW1 + ε2W2 + ε3W3 + · · ·

)

=

(

Po + εP1 + ε2P2 + ε3P3 + · · ·

)

(8)

(

1+ 4εX + 6ε2X2 + 2ε3X3 + ε4X4

)

d
4

dX4

(

Wo + εW1 + ε2W2 + ε3W3 + ε4W4 + · · ·

)

+ 2

(

4ε + 12ε2X + 6ε3X2 + 4ε4X3

)

d
3

dX3

(

Wo + εW1 + ε2W2 + ε3W3 + ε4W4 + · · ·

)

+

(

12ε2 + 12ε3X + 12ε4X2

)

d
2

dX2

(

Wo + εW1 + ε2W2 + ε3W3 + ε4W4 + · · ·

)

+ Q
d
2

dX2

(

Wo + εW1 + ε2W2 + ε3W3 + ε4W4 + · · ·

)

+

(

K −�2(1+ εX)

)(

Wo + εW1 + ε2W2 + ε3W3 + · · ·

)

=

(

Po + εP1 + ε2P2 + ε3P3 + ε4P4 + · · ·

)

where 0 ≤ ε ≤ 1.
The solution will be presented for non-uniform rec-

tangular cross section; for zero-order perturbation,

For first-order perturbation,

For second-order perturbation,

For third-order perturbation,

(9)d4Wo

dX4
+ Q

d2Wo

dX2
+

(

K −�4
)

Wo = Po

(10)

d4W1

dX4
+ Q

d2W1

dX2
+

(

K −�4
)

W1

= −3X
d4Wo

dX4
− 6

d3Wo

dX3
+�4XWo

(11)

d4W2

dX4
+ Q

d2W2

dX2
+

(

K −�4
)

W2

= −6
d2Wo

dX2
− 12X

d3Wo

dX3
− 3X2 d

4Wo

dX4

+�4XW1 − 6
d3W1

dX3
− 3X

d4W1

dX4
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The left-hand side of Eqs. (8–12) is the same ordinary dif-
ferential equation and its complementary solution is:

where Ci1,Ci2,Ci3,Ci4 are constants, i = 0, 1, 2, 3 and

(12)

d4W3

dX4
+ Q

d2W3

dX2
+

(

K −�4
)

W3

= −6X
d2Wo

dX2
− 6X2 d

3Wo

dX3
− X3 d

4Wo

dX4

− 6
d2W1

dX2
− 12X

d3W1

dX3
− 3X2 d

4W1

dX4

+�4XW2 − 6
d3W2

dX3
− 3X

d4W2

dX4

(13)
WiC = Ci1 cosh (m1X)+ Ci2 sinh (−m1X)

+ Ci3 cosh (m2X)+ Ci4 sinh (−m2X)

Assuming that the transverse load is a sine load across 
the beam length, the particular solutions for zero and first 
order are:

where

(14)
m1 =

√

√

√

√

−Q +

√

Q2 − 4
(

K −�4
)

2

m2 =

√

√

√

√

−Q −

√

Q2 − 4
(

K −�4
)

2

(15)WoP =
Po sin (πX)

π4 − Qπ2 +
(

K −�4
)

(16)

W1P = φ13e
m1X + φ14e

−m1X + φ15e
m2X + φ16e

−m2X

+ φ17 cos(πx)+ φ18x sin(πx)

φ13 =
(

c01 + c11f1(x)
)

,φ14 =
(

c02 + c12f2(x)
)

,φ15 =
(

c03 + c13f3(x)
)

φ16 =
(

c04 + c14f4(x)
)

,φ17 = f5,φ18 = f6

f1(x) = A

[

(

�4 − 3m4
1

)x2

2
− 6m3

1x

]

+

[

−A

2m1

+
2m2C

m2
1
−m2

2

]

[(

�4 − 3m4
1

)

x − 6m3
1

]

+

[

A

4m2
1

−
4m1m2C
(

m2
1
−m2

2

)2

]

[(

�4 − 3m4
1

)]

f2(x) = −A

[

(

�4 − 3m4
1

)x2

2
− 6m3

1x

]

+

[

−A

2m1

+
2m2C

m2
1
−m2

2

]

[(

�4 − 3m4
1

)

x − 6m3
1

]

+

[

−A

4m2
1

−
4m1m2C
(

m2
1
−m2

2

)2

]

[(

�4 − 3m4
1

)]

f3(x) = C

[

(

�4 − 3m4
1

)x2

2
− 6m3

1x

]

+

[

−C

2m2

+
−2m1A

m2
1
−m2

2

]

[(

�4 − 3m4
1

)

x − 6m3
1

]

+

[

C

4m2
2

+
4m1m2A
(

m2
1
−m2

2

)2

]

[(

�4 − 3m4
1

)]

f4(x) = −C

[

(

�4 − 3m4
1

)x2

2
− 6m3

1x

]

+

[

−C

2m2

+
−2m1A

m2
1
−m2

2

]

[(

�4 − 3m4
1

)

x − 6m3
1

]

+

[

−C

4m2
2

+
4m1m2A
(

m2
1
−m2

2

)2

]

[(

�4 − 3m4
1

)]

f5 =
4m1π

(

m2
1
− π2

)2
+

4m2π
(

m2
2
− π2

)2
+

6Poπ
3

π4 −Qπ2 +
(

K −�4
)

f6 =
6Po

π4 −Qπ2 +
(

K −�4
)

(

�4 − 3π4

)

[

−2m1

m2
1
+ π2

+
−2m2

m2
2
+ π2

]

A =
1

2m1

(

m2
1
−m2

2

)

C =
1

2m2

(

m2
2
−m2

1

)
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where

(17)W2P =
1

k −�4



































































�

u1 − Q
�

u′′1 + 2m1u
′
1 +m2

1u1

��

em1X

+

�

u2 − Q
�

u′′2 + 2m2u
′
2 +m2

2u2

��

em2X

+

�

u3 − Q
�

u′′3 + 2m3u
′
3 +m2

3u3

��

em3X

+

�

u4 − Q
�

u′′4 + 2m4u
′
4 +m2

4u4

��

em4X

−Q ∗ u5

�

π2x cos (πx)− 2π sin (πx)
�

−Q
�

2πu′6x cos (πx)+
�

u′′6 − π2u6

�

sin (πx)
�



































































u1 = −3xφ1 − 6φ7 + x�4φ13 − c01

(

3x2m4
1 + 12xm3

1 + 6m2
1

)

u2 = −3xφ2 − 6φ8 + x�4φ14 − c02

(

3x2m4
2 + 12xm3

2 + 6m2
2

)

u3 = −3xφ3 − 6φ9 + x�4φ15 − c03

(

3x2m4
3 + 12xm3

3 + 6m2
3

)

u4 = −3xφ4 − 6φ10 + x�4φ16 − c04

(

3x2m4
4 + 12xm3

4 + 6m2
4

)

u5 = −3φ5 − 6φ11 +�4φ17 +
12π3Po

u6 = −3φ6 − 6φ12 +�4φ18 +
12π3Po

φ1 = m4
1φ13 + c11

(

4m3
1f

′
1 + 6f ′′1

)

φ2 = m4
2φ14 + c12

(

4m3
2f

′
2 + 6f ′′2

)

φ3 = m4
3φ15 + c13

(

4m3
3f

′
3 + 6f ′′3

)

φ4 = m4
4φ16 + c14

(

4m3
4f

′
4 + 6f ′′4

)

φ5 = π4f5 − 4π3f6

φ6 = π4f6

φ7 = m3
1φ13 + 3c11

(

m2
1f

′
1 +m1f

′′
1

)

φ8 = m3
2φ14 + 3c12

(

m2
2f

′
2 +m2f

′′
2

)

φ9 = m3
3φ15 + 3c13

(

m2
3f

′
3 +m3f

′′
3

)

φ10 = m3
2φ16 + 3c14

(

m2
4f

′
4 +m4f

′
4

)

φ11 = −π3f6

φ12 = π3f5 − 3π2f6
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The total non-dimensional lateral deflection is:

The natural frequency and buckling load can be cal-
culated as:

For a free non-prismatic beam on elastic foundation:

For a non-prismatic beam subjected to axial load:

Applying the boundary conditions to obtain four lin-
ear equations in the constants  Ci1,Ci2,Ci3,Ci4 in the 
form of:

To have a non-trivial solution of Eq.  (20), determi-
nant of  [G]4∗4 must be equal to zero. This will lead 

(18)

W3P
= T1

[

e
m1XG1 + e

−m1XG2 + e
m2XG3 + e

−m2XG4

]

+ Re

(

e
iπXT1G5

)

+ Im

(

e
iπXT1G6

)

+ Re

(

e
iπXT1G7

)

+ Im

(

e
iπXT1G8

)

+ Im

(

e
iπXT1G9

)

T1 = α1

(

1− α2(D +m1)
2 + α3(D +m1)

4
)

,α1 =
1

K −�4

G1 = F1ψ1 + F2φ13 + F2c01,G2 = F4ψ2 + F5φ14 + F6c02

G3 = F7ψ3 + F8φ15 + F9c03,G4 = F10ψ4 + F11φ16 + F12c04

G5 = F13ψ5,G6 = F13ψ6,G7 = F14φ17,G8 = F14φ18

G5 =
Po

π4 − Qπ2 +
(

K −�4
)F15

F1 = −3X(D +m1)
4 − 6(D +m1)

3 +�4X

F2 = −3X2(D +m1)
4 − 12X(D +m1)

3 − 6(D +m1)
3

F3 = −X3(D +m1)
4 − 6X2(D +m1)

3 − 6X(D +m1)
3

F4 = −3X(D −m1)
4 − 6(D −m1)

3 +�4X

F5 = −3X2(D −m1)
4 − 12X(D −m1)

3 − 6(D −m1)
3

F6 = −X3(D −m1)
4 − 6X2(D −m1)

3 − 6X(D −m1)
3

F7 = −3X(D +m2)
4 − 6(D +m2)

3 +�4X

F8 = −3X2(D +m2)
4 − 12X(D +m2)

3 − 6(D +m2)
3

F9 = −X3(D +m2)
4 − 6X2(D +m2)

3 − 6X(D +m2)
3

F10 = −3X(D −m2)
4 − 6(D −m2)

3 +�4X

F11 = −3X2(D −m2)
4 − 12X(D −m2)

3 − 6(D −m2)
3

F12 = −X3(D −m2)
4 − 6X2(D −m2)

3 − 6X(D −m2)
3

F13 = −3X(D + iπ)4 − 6(D + iπ)3 +�4X

F14 = −3X2(D + iπ)4 − 12X(D + iπ)3 − 6(D + iπ)3

F15 = −X3(D + iπ)4 − 6X2(D + iπ)3 − 6X(D + iπ)3

(18)W = Wo + εW1 + ε2W2 + ε3W3 + · · ·

(19)
m1 = m2 = ±iβ�,m3 = m4 = ±β�,β

4
� = �4 − K

m1 = m2 = 0,m3 = m4 = ±iβQ,β
2 = Q

(20)[G]4∗4[C]4∗1 = 0

the critical value of β , and then, we can find the non-
dimensional frequency and buckling load parameters 
for non-prismatic beam as

where �o and Qo are the non-dimensional frequency and 
buckling load parameters for uniform beam.

2.2  Differential quadrature method (DQM)
The DQM requires to divide the domain of the problem 
into N pointes. Then, the derivatives at any point are 
approximated by a weighted linear summation of all the 
functional values along the domain, as follows [14–16]:

where Aij represented the weighting coefficient and N 
is the number of grid points in the whole domain. The 
weighting coefficient can be determined by making use of 
Lagrange formula as follows:

where

By applying Eq.  (28) at N grid points, the following 
algebraic formulations to compute the weighting coeffi-
cients Aij can be obtained.

(21)� = �o

(

1+ ε + ǫ2 + ǫ3
)
1/4

Rectangular

(22)� = �o

(

1+ ε + ǫ2 + ǫ3 + ǫ4
)
1/4

Circular

(23)Q = Qo

(

1+ ε + ǫ2 + ǫ3
)

Rectangular

(24)Q = Qo

(

1+ ε + ǫ2 + ǫ3 + ǫ4
)

Circular

(25)

fx(xi) =
df

dx

∣

∣

∣

∣

xi

=

N
∑

j=1

Aij · f
(

xj
)

, i = 1, 2, . . . ,N

(26)gk(x) =
M(x)

(x − xk) ·M(1)(xk)
, k = 1, 2, . . .N

(27)M(x) = (x − x1)(x − x2) . . . (x − xN )

(28)M(1)(xi) =

N
∏

k=1,k �=i

(xi − xN )

(29)Aij =
1

xi − xj

N
∏

k=1,k �=i,j

(xi − xk)
(

xj − xk
) , j �= i
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(30)Aii =

N
∑

k=1,k �=i

1

xi − xk

For calculating the weighting coefficients of mth order

The accuracy of DQM is affected by choosing of the 
number, N, and type of the sampling points, xi. The opti-
mal selection of the sampling points in the vibration 
problems, is the normalized Gauss–Chebyshev–Lobatto 
points [12, 13],

Applying the DQM scheme to the non-dimensional 
governing Eq. (8) yields:

where Wi is the functional value at the grid points Xi , C(2)
ij , 

C
(3)
ij  and C(4)

ij  are the weighting coefficient matrices of the 

(31)

⌊

A(m)
⌋

=

⌊

A(1)
⌋

·

⌊

A(m−1)
⌋

=

⌊

A(m−1)
⌋

·

⌊

A(1)
⌋

m = 2, 3, . . . ,N − 1

(32)

X(i) =
1

2

[

1− cos

(

i − 1

N − 1
π

)]

, i = 1, 2, 3, . . . ,N

(33)

S(Xi)





N
�

j=1

C
(4)
ij Wj



+ 2 ∗ S(1)(Xi)





N
�

j=1

C
(3)
ij Wj





+ S(2)(Xi)





N
�

j=1

C
(2)
ij Wj



+ Q





N
�

j=1

C
(2)
ij Wj





+

�

K −�4
�

Wi = P(Xi) i = 1, 2, 3, . . . ,N

Table 1 Comparison between present DQM, PM, and analytical 
values for the first three non-dimensional frequencies of uniform 
beams

Non-dimensional 
frequency

Ω1 Ω2 Ω3

Analytical (C-C) 4.730 7.853 10.996

DQM (C-C) 4.730 7.853 10.996

PM (C-C) 4.730 7.853 10.996

Analytical (C-S) 3.927 7.069 10.210

DQM (C-S) 3.927 7.069 10.210

PM (C-S) 3.927 7.069 10.210

Table 2 Comparison between DQM and numerical values for 
the first three non-dimensional frequencies of non-uniform 
beams

Non-dimensional frequency
S(X) = (1+ γ X)

Ω1 Ω2 Ω3

DQM (C-S), γ = −1 3.277 5.631 8.080

Du et al. [11] (C-S), γ = −1 3.277 5.630 8.082

DQM (C-S), γ = 0.5 4.124 7.451 10.737

Du et al. [11] (C-S), γ = 0.5 4.114 7.444 10.746

Table 3 Results of PM and DQM for the non-dimensional frequencies of clamped–clamped non-prismatic rectangular beam

Non-dimensional 
frequency

γ = 0 γ = 0.2 γ = 0.4 γ = 0.6 γ = 0.8 γ = 1

PM (C-C), Ω1 4.730 4.999 5.340 5.745 6.200 6.689

DQM (C-C), Ω1 4.730 5.002 5.385 5.983 6.952 8.428

PM (C-C), Ω2 7.853 8.300 8.865 9.538 10.294 11.106

DQM (C-C), Ω2 7.853 8.305 8.940 9.933 11.542 13.992

PM (C-C), Ω3 10.996 11.622 12.413 13.355 14.413 15.551

DQM (C-C), Ω3 10.996 11.628 12.518 13.909 16.161 19.593

Table 4 Results of PM and DQM for the non-dimensional frequencies of clamped–clamped non-prismatic circular beam

Non-dimensional 
frequency

γ = 0 γ = 0.2 γ = 0.4 γ = 0.6 γ = 0.8 γ = 1

PM (C-C), Ω1 4.730 5.001 5.361 5.829 6.405 7.073

DQM (C-C), Ω1 4.730 5.003 5.394 6.009 6.979 8.411

PM (C-C), Ω2 7.853 8.303 8.900 9.677 10.633 11.743

DQM (C-C), Ω2 7.853 8.306 8.956 9.976 11.586 13.965

PM (C-C), Ω3 10.996 11.626 12.462 13.550 14.889 16.443

DQM (C-C), Ω3 10.996 11.631 12.541 13.969 16.224 19.554
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second-, third- and fourth-order derivatives. The result is 
a linear system of equations of N unknowns that can be 
written in a matrix form as

Four boundary conditions are needed to solve the 
problem. For clamped and simply supported end condi-
tions, the discrete boundary conditions using the DQM 
can be written as:

(34)[Go]N∗N [w]N∗1 = �[Ro]N∗N [w]N∗1

(35)W1 = 0

where n0, n1 may be taken either 1 or 2; value of 1 repre-
sents simply supported and value of 2 represents clamped 
end. the boundary condition can be written in a matrix 
form as

Combining governing Eqs.  (33) and boundary condi-
tions (34), we get

; introducing the Lagrange multiplier approach [17], 
Eq. (40) can be modified to square matrix as

(36)
N
∑

k=1

C
(n0)
1,k ·Wk = 0

(37)WN = 0

(38)
N
∑

k=1

C
(n1)
N ,k ·Wk = 0

(39)[G1]4∗N [w]N∗1 = [R1]4∗N [w]N∗1

(40)
[

[Go]N∗N

[G1]4∗N

]

[w]N∗1 = υ

[

[Ro]N∗N

[R1]4∗N

]

[w]N∗1

(41)

[

[Go] [G1]
T

[G1] 0

]

(N+4)∗(N+4)

[

w
l

]

(N+4)∗1

= υ

[

[Ro] [R1]
T

[R1] 0

]

(N+4)∗(N+4)

[

w
l

]

(N+4)∗1

Table 5 Comparison between PM and DQM for the non-dimensional buckling parameter of clamped–clamped non-prismatic 
rectangular beam

Non-dimensional buckling 
parameter

γ = 0 γ = 0.2 γ = 0.4 γ = 0.6 γ = 0.8 γ = 1

PM (C-C), Q1 39.478 49.269 64.113 85.905 116.540 157.914

DQM (C-C), Q1 39.478 49.295 64.655 89.466 130.670 198.959

PM (C-C), Q2 88.826 110.855 144.254 193.286 262.216 355.306

DQM (C-C), Q2 88.826 110.914 145.475 201.300 294.007 447.657

PM (C-C), Q3 157.914 197.076 256.452 343.620 466.161 631.655

DQM (C-C), Q3 157.914 197.181 258.622 357.866 522.679 795.835

Table 6 Results of DQM and PM for the non-dimensional buckling parameter of clamped–clamped non-prismatic circular beam

Non-dimensional buckling 
parameter

γ = 0 γ = 0.2 γ = 0.4 γ = 0.6 γ = 0.8 γ = 1

PM (C-C), Q1 39.478 49.332 65.124 91.021 132.711 197.392

DQM (C-C), Q1 39.478 49.352 65.536 93.837 144.604 234.740

PM (C-C), Q2 88.826 110.998 146.528 204.798 298.599 444.132

DQM (C-C), Q2 88.826 111.042 147.457 211.134 325.359 528.165

PM (C-C), Q3 157.914 197.329 260.494 364.086 530.843 789.568

DQM (C-C), Q3 157.914 197.408 262.146 375.349 578.415 938.960
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where l is the Lagrange multiplier and υ is the Eigen-
value to be obtained. Rewrite Eq. (41) in the form

Solve the Eigen-value problem in Eq. (42) to find non-
dimensional frequency parameter and non-dimensional 
buckling load parameter. This approach can be used to 
easily implement any boundary condition without modi-
fying weighting coefficients of the DQM.

(42)
[

[Go] [G1]
T

[G1] 0

][

[Ro] [R1]
T

[R1] 0

]−1[
w
l

]

= γ

[

w
l

]

3  Results
3.1  Verification for prismatic beams
The present PM and DQM results for uniform beam 
with different end support, listed in Table  1, are iden-
tical as compared with the analytical solution in [15]. 
It is clear that there is a very good agreement between 
the present results and the previous analytic solu-
tion for uniform beam. On the other hand, the results 
of non-dimensional frequency obtained from the pre-
sent DQM for non-uniform beam, listed in Table 2, are 
compared to numerical values obtained in [11] giving a 
good agreement with error less than 0.5%.
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Fig. 3 Deflection of clamped–clamped non-prismatic beam
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3.2  Results of vibration parameters for non-prismatic 
beams

The DQM is applied with different numbers of grid 
points. The optimum number of grid points is found to 
be 15 points. After 15 grid points, the results of DQM are 
fixed [16]. The DQM showed good ability for the analy-
sis of non-prismatic beam with different end supports. 
The results of non-dimensional frequency and buckling 
parameters are obtained using the present PM and DQM 
for clamped–clamped ends, and different values of γ 
are presented in Tables 3, 4, 5 and 6. The results showed 
agreement between results for < 0.6 . If γ = 1 , the rela-
tive error reached about 20%. The accuracy of the PM 
depends on the value of γ , so as γ increases, the effect of 
neglected terms affects the results of PM.

Figure 2 presents the percentage relative error between 
the PM and DQM for the first non-dimensional fre-
quency of non-prismatic beam calculated by the follow-
ing equation:

3.3  Deflection for non-prismatic beams
The deflection of non-prismatic beam with circular cross 
section under the effect of constant vertical load is plot-
ted for two different cases of end supports and different 
values of  γ as shown in Figs. 3 and 4. As γ increases, the 
maximum deflection decreases and the location of maxi-
mum deflection displaced toward the smaller moment of 
inertia as predicted. 

4  Discussion
Results of DQM and PM for uniform beams, as shown in 
Table 1, showed perfect agreement with analytical solu-
tion for non-dimensional frequency parameter. DQM 
results for non-uniform beams, as shown in Table  2, 
proved its perfect ability in prediction of non-dimen-
sional frequency parameter as compared with numerical 
results given in [11]. The error for listed cases is less than 
0.1%. Good results of DQM required fifteen discretiza-
tion points.

Both methods are used to predict non-dimensional fre-
quency and buckling parameters for non-uniform beams 
with rectangular or circular cross sections, as shown in 
Tables  3, 4, 5 and 6. All cases have clamped–clamped 
ends. The results showed good ability of PM in predic-
tion of non-dimensional frequency and non-dimensional 
buckling load when the height or the radius increasing 
ratios are less than 60%. The results of PM are not reliable 
for higher increasing ratio of height or radius.

%Absolute relative error =

∣

∣

∣

∣

�DQM −�PM

�DQM

∣

∣

∣

∣

× 100

Deflection results for clamped–clamped (Fig.  3), 
clamped–simply supported (Fig. 4), non-uniform beams 
subjected to a constant uniform load showed good ability 
of PM in prediction of lateral deflection and the effect of 
radius increasing ratio on the location of maximum lat-
eral deflection along the beam length. As the increasing 
ratio of radius increases, the location of maximum lat-
eral deflection moves toward the position of maximum 
height. Maximum deflection decreases as the increasing 
ratio of radius increases.

5  Conclusions
The present paper presents two mathematical techniques 
to investigate the buckling load as well as the natural fre-
quency under axial and transverse load for non-prismatic 
beams. The deflection of the beam resting on an elastic 
foundation under transverse distributed and axial loads 
is also obtained for different end supports. From the pre-
sent study, the following points could be concluded:

• The PM and DQM succeeded powerfully for inves-
tigating the buckling load as well as the natural fre-
quency for non-prismatic beam.

• The percentage of relative error between DQM and 
PM doesn’t exceed than 5% for γ < 0.6.

• As γ increases, the maximum deflection decreases 
and the location of maximum deflection displaced 
toward the smaller moment of inertia.
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