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Abstract 

Background: Frontotemporal dementia (FTD) is the second most common type of dementia in individuals aged 
below 65 years with no current cure. Current treatment plan is the administration of multiple medications. This has 
the issue of causing adverse effects due to unintentional drug–drug interactions. Therefore, there exists an urgent 
need to propose a novel targeted therapy that can maximize the benefits of FTD-specific drugs while minimizing its 
associated adverse side effects.

In this study, we implemented the concept of network pharmacology to understand the mechanism underlying FTD 
and highlight specific drug–gene and drug–drug interactions that can provide an interesting perspective in propos-
ing a targeted therapy against FTD.

Results: We constructed protein–protein, drug–gene and drug–drug interaction networks to identify highly con-
nected nodes and analysed their importance in associated enriched pathways. We also performed a historeceptomics 
analysis to determine tissue-specific drug interactions.

Through this study, we were able to shed light on the APP gene involved in FTD. The APP gene which was previously 
known to cause FTD cases in a small percentage is now being extensively studied owing to new reports claiming its 
participation in neurodegeneration. Our findings strengthen this hypothesis as the APP gene was found to have the 
highest node degree and betweenness centrality in our protein–protein interaction network and formed an essential 
hub node between disease susceptibility genes and neuroactive ligand–receptors.

Our findings also support the study of FTD being presented as a case of substance abuse. Our protein–protein inter-
action network highlights the target genes common to substance abuse (nicotine, morphine and cocaine addiction) 
and neuroactive ligand–receptor interaction pathways, therefore validating the cognitive impairment caused by 
substance abuse as a symptom of FTD.

Conclusions: Our study abandons the one-target one-drug approach and uses networks to define the disease 
mechanism underlying FTD. We were able to highlight important genes and pathways involved in FTD and analyse 
their relation with existing drugs that can provide an insight into effective medication management.
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1  Background
Frontotemporal dementia (FTD) is a term given to a 
group of multi-factorial disorders responsible for young-
onset dementia varied by their pathological, genetic and 
clinical heterogeneity [1]. These disorders result in patho-
genic protein accumulation in tiny structures called Pick 

Open Access

Beni-Suef University Journal of
Basic and Applied Sciences

*Correspondence:  jhinukchatterjee@pes.edu
Department of Biotechnology, PES University, Bangalore, India

http://orcid.org/0000-0003-1193-5488
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43088-021-00145-4&domain=pdf


Page 2 of 13Balasubramanian et al. Beni-Suef Univ J Basic Appl Sci           (2021) 10:56 

bodies resulting in selective destruction of brain net-
works, hence giving it the name Pick’s disorder [2]. There 
is no holistic explanation for the variations in FTD but 
recent studies suggest that mutations in different genes 
result in behavioural changes, impaired judgment and 
lack of empathy which varies on a case-to-case basis [3].

Based on the clinical presentation and mutational sta-
tus, FTD can be classified into 3 distinct types: behav-
ioural variant FTD (bvFTD) [4], semantic variant 
primary progressive aphasia (svPPA) and nonfluent vari-
ant primary progressive aphasia (nfvPPA) [5].

In a FTD patient, the current treatment plan is the 
administration of multiple medications to manage the 
physically visible symptoms. This approach is not suit-
able to many patients and has various drawbacks pri-
marily due to unintentional drug–drug interactions. 
In the past two decades, the pharmaceutical industry 
has developed and tested several drugs for psychiat-
ric disorders, including FTD, but it still remains largely 
unclear the interactions between the drugs and their tar-
geted genes and the possible adverse side effects caused 
by the interaction between the drugs themselves [6]. In 
this regard, our study aims to explore the mechanism of 
drug–gene and drug–drug interactions in FTD to suggest 
a novel targeted gene therapy. We used the principle of 
network pharmacology [7] to construct protein–protein, 
drug–gene and drug–drug interaction networks. We also 
identified FTD-specific hub nodes, deciphered enriched 
pathways, isolated potential gene biomarkers and eluci-
dated possible off-target effects.

This study is important as it identifies specific cognitive, 
behavioural and genetic biomarkers responsible for FTD 
[8]. This can help future investigators in designing clinical 
trials and in the recommendation of precision medicine. 
Based on the type of FTD presented, a physician can sug-
gest an effective treatment that takes into account genetic 
variability and individual neuropathology.

2  Methods
2.1  Data retrieval
The DrugBank database (version 5.1.8) [9] is a com-
prehensive drug database that provides information 
about drugs and their associated gene targets, indica-
tions and pathways. Other relevant information such 
as the chemical, pharmaceutical, mechanism of action, 
pharmacodynamics, toxicity, clinical trials and absorp-
tion, distribution, metabolism, excretion and toxicity 
(ADMET) properties of drugs are also listed.

To identify drugs related to FTD, "frontotemporal 
dementia" was used as a search term. For each drug, the 
information about its Food and Drug Administration 
(FDA) status, number of targets, target genes, Universal 

Protein Resource (UniProt) ID of the target genes and 
DrugBank ID was retrieved.

NeuroDNet [10] an open-source platform that hosts a 
collection of disease models was used to collect the list of 
susceptible genes, their UniProt IDs and associated dis-
orders linked to these genes.

2.2  Functional enrichment analysis
Functional enrichment analysis is a method used to iden-
tify pathways of statistical significance. This method rec-
ognizes the overrepresented genes and the sub-systems 
associated with it. This gives us a biological insight into 
the intersecting pathways that could be affected when a 
drug is administered. WebGestalt, a Web-based Gene Set 
Analysis Toolkit [11] was used to interpret and analyse 
the significantly enriched molecular pathways associated 
with the target genes.

To perform enrichment analysis, the following steps 
were followed:

•Homo sapiens, overrepresentation analysis (ORA), 
pathway and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) were chosen as the organism of interest, method 
of enrichment analysis, functional database category and 
functional database name, respectively. Gene symbol was 
chosen as the gene ID type, and the list of target genes 
retrieved from DrugBank was imported into WebGestalt 
in Text (tab-delimited) format.

•Protein coding genome was selected as the reference 
gene set for enrichment analysis.

•The Benjamini–Hochberg (BH) procedure was used to 
control the false discovery rate (FDR) at 0.05.

The enrichment results were displayed in the form of a 
bar chart (default) and a table in the decreasing order of 
enrichment ratio. The p-value and FDR values were set to 
0.05 as a threshold for significance. The volcano plot is a 
−log10 FDR v/s + log2 enrichment value plot that can be 
downloaded to visualize the significantly enriched gene 
sets. Each gene set from the table was then downloaded 
in the form of a.csv file for further analysis.

2.3  Protein–protein interaction using STRING
To analyse the biological interaction between the target 
genes and the disease susceptibility genes, protein–pro-
tein interaction (PPI) network was constructed using the 
STRING (Search Tool for the Retrieval of Interacting 
Genes) v11 database. STRING is a biological database 
consisting of physical and functional protein–protein 
interactions derived from public text collections, experi-
mental data, co-expression and genomic context predic-
tions. A text file containing the gene targets (DrugBank) 
and the disease susceptibility genes (NeuroDNet) was 
imported into STRING [12].
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The network was constructed based on the interac-
tion data provided from text mining, experiments, data-
bases, co-expression, neighbourhood, gene fusion and 
co-occurrence. The target genes of the drugs represent 
the nodes and the interactions between them represent 
the edges in the PPI network. STRING also provides 
the functional enrichments in a network that include a 
list of biological processes, molecular functions, cellu-
lar components, protein domains, etc. Each function is 
also provided with a count in the network, strength of 
interaction and the FDR. The Network Stats provided 
by STRING consists of the number of nodes, number of 
edges, average node degree, average local clustering coef-
ficient, expected number of edges and the PPI enrich-
ment p-value. A very low p-value indicates statistical 
significance. The biological significance of the network 
can be assessed by comparing the observed number of 
edges and the expected number of edges with a p value 
of 0.05 as threshold. If the observed edge count is way 
higher than the expected edge count, it indicates that the 
proteins are biologically connected as a group and do not 
belong to a random set of proteins of similar size.

The interaction network obtained was updated by 
removing disconnected nodes and by increasing the 
confidence score to 0.700 (high confidence) to reduce 
the number of false positives. The resulting network was 
imported into Cytoscape [13] and was analysed based on 
the node degree and betweenness centrality values using 
the network analyser plug-in of Cytoscape.

A high node degree represents a greater interaction 
with other nodes, and a high betweenness centrality 
(based on shortest paths) indicates a better reach and 
connection within the network. These nodes can be clas-
sified as hub nodes that form bridges between clusters 
in a network. These hub nodes play an important role in 
network architecture and targeting them can result in the 
impairment of the entire network.

2.4  Drug–gene network analysis and visualization using 
Cytoscape

Cytoscape 3.8.2 is an open-source, publicly available tool 
written in Java that is used for network representation 
and analysis.

To visualize the drug–target interactions for the 
enriched categories, a Python script was written to read 
the.csv files downloaded for each enriched gene set from 
WebGestalt as mentioned earlier. The script mapped the 
UniProt IDs from each gene set with the respective tar-
get drugs from DrugBank as columns into individual.csv 
files. Each resultant.csv file was imported as networks 
into Cytoscape. The genes were chosen as source nodes 
and the drugs as target nodes. The edges correspond 
to the interaction between the nodes. The individual 

networks were merged and analysed based on the node 
degree and betweenness centrality. The "Style" option was 
used to change the shape of the drugs and gene targets to 
ellipse and round rectangle, respectively. The node colour 
was changed to match the node degree based on continu-
ous mapping. The darker-coloured nodes represented a 
higher node degree while the lighter-coloured nodes rep-
resented a lower node degree.

2.5  Historeceptomics approach
To further evaluate the region of action of multi-target 
drugs and multi-drug combinations, a historeceptom-
ics analysis was performed. Historeceptomics is a bioin-
formatics method that integrates tissue specificity with 
drug–target data.

One can narrow down the common tissues targeted by 
the FTD drugs and make an educated guess about pos-
sible drug–drug interaction at the tissue level using the 
historeceptomics profiler. Historeceptomics profiler [14] 
is a tool that assigns a historeceptomics (HR) score to 
each target–tissue pair of the input drug and ranks them 
based on the drug’s likeness to elicit a phenotype in that 
tissue. The top five drugs with the highest node degrees 
were fed as input to the tool. The output table lists the 
possible targets (proteins/drug receptors) for the specific 
drug, corresponding tissues displaying the drug activity, 
target gene, its UniProt ID and the source of the drug 
(ChEMBL/DrugBank). The score section of the table 
consists of the Z-score (observed gene expression value 
in said tissue when compared with the mean of the gene 
expression values in other tissues), intensity (raw gene 
expression value), HR score (an amalgamation of drug–
target affinity and tissue expression values, a higher score 
indicates the higher likeness of the drug to bind to that 
tissue) and the p value of the HR score. The common tar-
get tissues of the five drugs were tabulated and taken for-
ward for further analysis.

2.6  Drug–drug association network
To analyse the adverse drug–drug interactions among 
the FTD drugs, drug interactions for each drug were 
collected from the Drug Interaction Lookup tool by 
DrugBank.

A Python script was written to extract only the inter-
actions with the FTD drugs present in our drug list. The 
results were used to construct a drug–drug interaction 
network in Cytoscape. The drugs depicted as nodes while 
the edges depicted the adverse drug–drug interactions. 
The colours of the nodes were changed to reflect the node 
degree. The darker-coloured nodes represented more 
interactions in the network while the lighter-coloured 
nodes represented fewer interactions in the network.
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3  Results
From the DrugBank database, 55 FTD-related drugs 
along with their 87 gene targets were retrieved. Among 
these 55 drugs, 31 drugs are approved, 40 are still in the 
investigational stage, 2 are in the experimental stage 
and 3 are withdrawn. The details of the 55 FTD-related 
drugs, their DrugBank IDs, FDA approval status and 
the number of targets are given in Table  1. Based on 
the frequency of interaction, ACHE, DRD2, ADRA1A, 
HRH1 and BCHE were the top five target genes inter-
acting with the largest number of FTD-related drugs.

From NeuroDNet, a list of 7 FTD susceptible genes 
were retrieved. Among these, the most prevalent are 
Microtubule Associated Protein Tau (MAPT) and 
Granulin Precursor (GRN) as they represent the auto-
somal dominant inheritance of FTD as given in Table 2.

Using WebGestalt, top 10 enriched pathways were 
generated. Based on the enrichment ratio, nico-
tine addiction (ratio = 55.419) had the highest over-
lap between the observed and expected genes, 
followed by neuroactive ligand–receptor interaction 
(ratio = 18.889) and cocaine addiction (ratio = 18.096), 
whereas based on the expect value, neuroactive ligand–
receptor interaction ranked 1. Out of the 10 pathways, 
3 pathways were related to substance abuse (nicotine, 
morphine and cocaine addictions) which suggests that 
substance abuse  and prescription medications such 
as antinicotinic medication may act on pathways that 
contribute to cognitive impairment and result in symp-
toms of dementia and its sub-types [15]. A study also 
highlighted that exposure to multiple types of strong 
anticholinergic drugs is associated with an increased 
risk of dementia [16].

Neuroactive ligand–receptor interaction had the most 
number of genes (59) as it is involved in neuronal devel-
opment. The p values range from (0.00 to 1.0915e−10) 
and FDR values from (0.00 to 3.5582e−09). The FDR cor-
rection factor removes the false positives. The very low 
p-values for the 10 biological pathways indicate that the 
genes grouped into them are not random but specific to 
the pathway. These pathways can be viewed in the KEGG 
database. The result of the enrichment analysis is given in 
Table 3.

The false discovery rate (FDR) and p-values were esti-
mated by the Benjamini–Hochberg procedure. The 
enrichment ratio is calculated as the number of observed 
genes by the number of expected genes in each of the 
individual enriched gene sets obtained from KEGG.

To evaluate whether our genes in the PPI network were 
related, we compared the expected number of edges with 
the observed number of edges. The observed value (404) 
was significantly higher than the expected value (55) with 
the PPI enrichment p value < 1.0e−16, indicating that 

the target genes were interconnected and not by random 
chance.

Protein–protein interaction network showed that the 
disease susceptibility genes such as MAPT and PSEN1 
interact with APP with a high confidence score of 0.949 
and 0.998, respectively. MAPT in turn interacts with 
the rest of the disease susceptibility genes (C9orf72, 
CHMP2B, GRN, PSEN1, TARDBP and VCP) mak-
ing APP an essential link between disease susceptibil-
ity genes and drug target genes, especially neuroactive 
ligand–receptors. The target genes common to substance 
abuse (nicotine, morphine and cocaine addiction) and 
neuroactive ligand–receptor interaction pathways are 
the GABAergic genes and ionotropic glutamate receptor 
genes as shown in Fig. 1.

On analysing the network in Cytoscape, it was found 
that the APP gene had the highest node degree (31) and 
betweenness centrality (0.45) and formed an important 
PPI hub in the network. Other genes with high node 
degrees include HTR3A, DRD2, HTR1A, CHRM2 and 
GABRG2.

The individual drug–gene tables created for each of 
the 10 enriched pathways were imported and merged as 
networks in Cytoscape. From the Style settings, the gene 
target and drug node shapes were changed to round rec-
tangle and ellipse, respectively, via discrete mapping. 
On analysing the merged network, few important sta-
tistics are as follows: number of nodes = 89, number of 
edges = 149 and average number of neighbours = 3.641.

It was observed that the drugs memantine (node 
degree = 29, BC = 0.54) and quetiapine (node degree = 26, 
BC = 0.39) had the highest node degree and betweenness 
centrality and hence, stood out in the merged network. 
Other drugs with high node degree include clonazepam, 
donepezil, risperidone, propiomazine and trazodone.

Two distinct clusters were identified with donepezil as 
the bridge drug between the two. Donepezil is an essen-
tial enzyme blocker used as a drug to restore the balance 
of neurotransmitters. It is one of the popular drugs, in 
combination with memantine, to treat dementia-related 
disorders. Clonazepam and memantine act as source 
drugs for GABA and GRN genes. GABA genes are inhibi-
tory neurotransmitters while GRN genes are involved in 
neuronal proliferation and development. Heterozygous 
mutations in the GRN genes are a primary cause of FTD. 
Quetiapine, risperidone, propiomazine and trazodone 
form the source nodes for many target genes like the adr-
energic, serotonergic and acetylcholine receptors. These 
drugs play a primary role in treating the neuropsychiatric 
symptoms in dementia and observing their interactions 
with target genes would be helpful in proposing a novel 
targeted gene therapy. The drug–target gene interaction 
network is displayed in Fig. 2.
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Table 1 Summary of frontotemporal dementia drugs, FDA status and number of targets based on DrugBank annotation

Sl. No DrugBank ID Generic name FDA status # Targets

1 DB00556 Perflutren Approved -

2 DB12401 Bromperidol Approved, investigational No annotation

3 DB01043 Memantine Approved, investigational 7

4 DB00372 Thiethylperazine Approved, withdrawn 1

5 DB00699 Nicergoline Approved, investigational 1

6 DB01381 Ginkgo biloba Approved, investigational, nutraceutical 6

7 DB01068 Clonazepam Approved, illicit 3

8 DB00777 Propiomazine Approved 6

9 DB00656 Trazodone Approved, investigational 8

10 DB00620 Triamcinolone Approved, vet approved 1

11 DB08842 Acetylcarnitine Approved, investigational -

12 DB00674 Galantamine Approved 4

13 DB00382 Tacrine Approved, investigational, withdrawn 3

14 DB06016 Cariprazine Approved, investigational 6

15 DB12710 Perazine Approved, investigational No annotation

16 DB12867 Benperidol Approved, investigational No annotation

17 DB01121 Phenacemide Approved 1

18 DB00377 Palonosetron Approved, investigational 1

19 DB00122 Choline Approved, nutracitical 8

20 DB00889 Granisetron Approved, investigational 1

21 DB08870 Brentuximab vedotin Approved, investigational 1

22 DB00904 Ondansetron Approved 5

23 DB00433 Prochlorperazine Approved, vet approved 4

24 DB00843 Donepezil Approved 8

25 DB00989 Rivastigmine Approved, investigational 2

26 DB01209 Dezocine Approved, investigational 2

27 DB11584 Pipradrol Approved 1

28 DB01224 Quetiapine Approved 24

29 DB00734 Risperidone Approved, investigational 13

30 DB09210 Piracetam Approved, investigational -

31 DB11239 Aluminium sulphate Approved -

32 DB13668 Ipidacrine Experimental No annotation

33 DB12969 Methylinositol Investigational No annotation

34 DB11756 Solanezumab Investigational No annotation

35 DB12034 Gantenerumab Investigational No annotation

36 DB04859 Zanapezil Investigational 1

37 DB13084 Pyritinol Investigational No annotation

38 DB12958 Prothipendyl Investigational No annotation

39 DB06106 AIT-034 Investigational No annotation

40 DB12311 CP1-1189 Investigational No annotation

41 DB05432 DAS-431 IV Investigational 1

42 DB12930 Opipramol Investigational No annotation

43 DB12555 Nelotanserin Investigational 1

44 DB16214 Landipirdine Investigational No annotation

45 DB06504 S-8510 Investigational No annotation

46 DB11758 Cenicriviroc Investigational No annotation

47 DB05180 LX6171 Investigational -

48 DB06465 FK-960 Investigational No annotation

49 DB08831 2-deoxyglucose Experimental, investigational -
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Table 1 (continued)

Sl. No DrugBank ID Generic name FDA status # Targets

50 DB06247 CX516 Investigational 1

51 DB05814 GPI-1485 Investigational 1

52 DB05450 Smilagenin Investigational No annotation

53 DB12613 Davunetide Investigational No annotation

54 DB04892 Phenserine Investigational 3

55 DB12129 Tideglusib Investigational, withdrawn 1

Table 2 Summary of frontotemporal dementia susceptible genes and their associated disorders retrieved from NeuroDNet

FTD susceptible genes Associated disorders UniProt ID

C9orf72 Amyotrophic lateral sclerosis (OMIM: 105400)
Frontotemporal dementia (OMIM: 600274)

Q96LT7

CHMP2B Frontotemporal dementia (OMIM: 600274) Q9UQN3

GRN Multiple sclerosis (OMIM: 126200)
Frontotemporal dementia (OMIM: 600274)

P28799

MAPT Supranuclear palsy (OMIM: 601104)
Dementia, frontotemporal (OMIM: 600274)
Dementia (OMIM: 600,274)
Supranuclear palsy, progressive atypical (OMIM: 260,540), Pick disease (OMIM: 172,700), Parkinson 
disease (OMIM: 168,600), tauopathy and respiratory failure (OMIM: 157,140), amyotrophic lateral 
sclerosis (OMIM: 105,400)
Frontotemporal dementia (OMIM: 600274)

P10636

PSEN1 Frontotemporal dementia (OMIM: 600274)
Disease (OMIM: 172700)
Amyotrophic lateral sclerosis (OMIM: 105400)
Alzheimer disease (OMIM: 104300)
Cardiomyopathy dilated 1U (OMIM: 613694)
Acne inversa (OMIM: 613737)
Frontotemporal dementia (OMIM: 600274)

P49768

TARDBP Amyotrophic lateral sclerosis (OMIM: 105400)
Frontotemporal dementia (OMIM: 600274)
Frontotemporal dementia (OMIM: 600274)

Q13148

VCP Frontotemporal dementia (OMIM: 600274)
Amyotrophic lateral sclerosis (OMIM: 105400)

P55072

Table 3 Enriched KEGG pathways in target genes of FTD drugs as identified by WebGestalt

Gene Set Description Size Expect Ratio p value FDR

hsa04080 Neuroactive ligand–receptor interaction 277 2.9 19.9 0 0

hsa04024 cAMP signalling pathway 199 2.1 10.3 0 0

hsa04020 Calcium signalling pathway 183 1.9 11.2 0 0

hsa05032 Morphine addiction 91 0.9 18.4 0 0

hsa05033 Nicotine addiction 40 0.4 58.3 0 0

hsa04727 GABAergic synapse 88 0.9 16.9 4.4E−16 2.4E−14

hsa04726 Serotonergic synapse 115 1.2 12.9 4.0E−14 1.9E−12

hsa04723 Retrograde endocannabinoid signalling 148 1.6 10.7 1.5E−13 6.2E−12

hsa04742 Taste transduction 83 0.9 13.5 5.1E−11 1.8E−09

hsa05030 Cocaine addiction 49 0.5 19.0 6.5E−11 2.1E−09
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The top 5 drugs with the highest node degree in the 
drug–target gene interaction network were subjected 
to historeceptomics analysis and the results were ana-
lysed as given in Table  4. It was found that memantine 
and clonazepam primarily target different regions of the 
brain such as the amygdala, cerebellum and occipital 
lobe, while quetiapine and donepezil target the heart and 
the skeletal muscles. Risperidone, on the other hand, tar-
geted the thymus and the cells of the immune system.

Using the Drug Interaction Lookup tool from Drug-
Bank, drug–drug interactions were visualized in 
Cytoscape. Based on the highest node degree, quetia-
pine (58), propiomazine (52), ondansetron (48), trazo-
done (46), risperidone (46) and donepezil (46) were the 
drugs with the highest interaction. This indicates that a 
combination of these drugs taken together could result in 
multiple adverse drug–drug interactions and severe side 
effects.

Another cause of concern is off-target effects. Off-
target effects refer to adverse effects as a result of drugs 
binding to an unrelated region of interest either due to 
resemblance to the predicted target or by modulating 
other targets. The top 6 hub drugs bind to various regions 
in the body: quetiapine, donepezil and propiomazine 
(skeletal and heart muscles), ondansetron and risperi-
done (thymus and liver) and trazodone (brain and liver) 
and when administered as a combination may result in 
off-target effects. Therefore, a thorough understanding 
of the mechanism of each drug and its interaction with 
other drugs is required to minimize adverse effects and 
to maximize the efficacy of the drugs. The drug–drug 
interaction network is displayed in Fig. 3.

4  Discussion
Out of the 55 FTD-related drugs retrieved from Drug-
Bank, the drugs with the highest interaction with tar-
get genes were memantine, quetiapine, donepezil, 
risperidone and clonazepam. The expression of these 
target genes was significantly enriched in the brain, 
lymph, thymus, heart, liver and thyroid indicating the 
multi-target effect of these drugs. With the use of multi-
target drugs comes the drawback of off-target effects. 
For effective drug management, it is crucial to select the 

right combination of target drugs and achieve the right 
balance between them while eliminating undesired target 
activity, especially in the case of targets belonging to the 
same family (kinase inhibitors) or having the same func-
tional domain [17].

We performed pathway enrichment analysis to gener-
ate the top 10 enriched pathways of which 3 belonged to 
substance abuse. We also generated a PPI network that 
displayed the target genes common to substance abuse 
(nicotine, morphine and cocaine addiction) and neuroac-
tive ligand–receptor interaction pathways to understand 
the relation between the pathways. The common target 
genes were the GABAergic and ionotropic glutamate 
receptor genes primarily responsible for cognition and 
behaviour. Our findings suggest that certain character-
istics of the behavioural variant FTD (bvFTD) such as 
behavioural disinhibition and impulsivity could be mani-
fested by substance misuse. Previous studies show alco-
hol and drug use as components preceding, following or 
accompanying bvFTD, thus substantiating our hypoth-
esis. The past decade has seen a rise in substance abuse in 
the older population prone to cognitive disorders ranging 
from prescription misuse to illegal substance use. Clini-
cal treatment providers are therefore being encouraged 
to monitor substance use patterns in all FTD sub-types 
[18].

Our study also highlights the importance of the APP 
gene in FTD which forms an essential link between dis-
ease susceptibility genes and drug target genes. Earlier 
studies restricted the role of the APP gene to inherited 
FTDs but are now being extensively studied with new 
reports claiming its participation in neurodegeneration 
and cognitive impairment. A reduction in APP-derived 
peptides is now known to affect the amyloidogenic path-
way, neuropsychological performance, cortical thickness 
and cortical gene expression profiles in frontotemporal 
lobar degeneration [19]. Our findings strengthen this 
hypothesis as the APP gene was found to have the high-
est node degree (31) and betweenness centrality (0.45) in 
our PPI network connecting various cholinergic, dopa-
mine, opioid and adreno receptors that play an important 
role in neurodegeneration. The APP gene also behaves 
as a biomarker in identifying specific cognitive and 

Fig. 1 Protein–protein interaction (PPI) network created using STRING. The nodes represent proteins and the edges represent protein–protein 
association. The edge confidence is set to high (0.700), and disconnected nodes are hidden in the network. The nodes common to the most 
enriched pathways, i.e., substance abuse receptors and neuroactive ligand–receptors, are highlighted. Nodes in blue represent nicotine addiction, 
nodes in green represent cocaine addiction, nodes in yellow represent morphine addiction and nodes in red represent neuroactive ligand–receptor 
interaction. The edges are coloured based on the following types of interactions: known interactions (turquoise—from curated databases, purple—
experimentally determined), predicted interactions (bright green—gene neighbourhood, red—gene fusions, dark blue—gene co-occurrence) and 
others (yellow—text mining, black—co-expression, light blue—protein homology).The filled nodes show that the 3D structure of the protein is 
known or predicted

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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behavioural aspects of FTD. In this regard; it would be 
interesting to observe the APP–phenserine interaction 
in the drug–gene network. Phenserine has a low node 
degree in the drug–drug interaction network, making it 
an ideal candidate to effectively manage the symptoms of 
FTD while minimizing its associated adverse side effects.

Effective medication administration is key in the symp-
tomatic management of FTD due to its varying clinical 
presentations and its overlap with other neurodegen-
erative syndromes such as amyotrophic lateral sclerosis 
(ALS), Parkinson’s and Alzheimer’s. Previous therapies 
include N-methyl-D-aspartic acid (NMDA) receptor 
antagonists, cholinesterase inhibitors, selective serotonin 
reuptake inhibitors, antipsychotics, dopamine modulat-
ing therapeutics, antiepileptic agents, etc. failed at vari-
ous stages. Each therapy had its drawbacks either due 
to major drug interactions or adverse side effects with 
little to no symptomatic improvement. The relationship 
between FTD and neurodegenerative disorders such as 
ALS and Parkinson’s has gained recognition over the past 
few years with over 15% of FTD patients displaying signs 
of ALS. Recent advances in understanding the underlying 

mechanism behind FTD have led to the development of 
novel targeted therapies at the gene level. Mutations in 
MAPT (tau) and GRN (progranulin) genes are respon-
sible for FTD-associated Parkinsonism while mutations 
in the C9orf72 gene are responsible for FTD-ALS. As 
emphasized earlier, our findings display the APP gene 
as an important hub linking disease susceptible genes 
(C9orf72, CHMP2B, GRN, MAPT, PSEN1, TARDBP 
and VCP) with neuroactive ligand receptors making it an 
important gene to be targeted in developing a potentially 
disease-modifying FTD therapy [20].

A major limitation in clinical trials is the lack of infor-
mation on genetic variability and drug–gene interactions. 
In the current world of polypharmacy, developing physi-
ologically based pharmacokinetic (PBPK) and drug–
drug–gene interaction (DDGI) models can help in the 
real-time prediction of drug interactions and their pos-
sible outcomes [21]. Our study can assist future investi-
gators in incorporating these factors in building reliable 
models to test clinical studies.

With the advancement in precision medicine, 
attempts on targeted therapeutics are made based on 

Fig. 2 Drug–gene interaction network visualized using Cytoscape. The nodes represent drugs and target genes and the edges represent drug–
gene association. To differentiate between the two kinds of nodes, the drug nodes are shaped like an ellipse and the target gene nodes are shaped 
in a round rectangular fashion. The darker nodes are hub nodes that play an essential role in connecting node clusters in the network. Memantine 
(node degree = 29, betweenness centrality = 0.54) and quetiapine (node degree = 26, betweenness centrality = 0.39) form important hub nodes as 
they target GABAergic and acetylcholine receptors with donepezil as the bridge drug for the two clusters
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an individual’s genetic risk variant and type of FTD 
[22]. These include tau-targeting therapy for bvFTD 
patients, progranulin-related therapies for GRN muta-
tion, antisense therapeutics to reduce C9orf72 repeat 
expansions, etc. On the clinical forefront, a future per-
spective of this study could involve the use of neuro-
imaging alongside specific biomarkers in classifying 
homogenous groups for testing targeted therapies [23].

With the increase in drug databases, future work can 
also involve the creation of a custom database that is 
regularly updated on FDA-approved drugs. Addition-
ally, study can be expanded from FTD-related drugs to 
other related disorders such as ALS, Parkinson’s and 
Alzheimer’s to observe the similarity in the drug–gene 
network and identify sub-phenotypes.

5  Conclusions
Recent advances in the understanding of FTD have 
shown genetic factors to play an important role in its 
onset and progression. A complete framework of drug–
gene and drug–drug interactions can help in the identi-
fication of potential biomarkers for innovative clinical 
trials. In this regard, our study gives an insight into the 
underlying mechanism of frontotemporal dementia-
related drugs, their mode of action on target genes and 
possible drug–drug interactions.

We identified 55 FTD-related drugs, 87 gene targets and 
7 FTD susceptible genes from databases such as DrugBank 
and NeuroDNet. An enrichment and PPI network analysis 
revealed the gene targets overrepresented in neuroactive 
ligand–receptors and substance abuse systems (nicotine, 

Fig. 3 Drug–drug interaction network visualized using Cytoscape. The nodes represent drugs and the edges represent drug–drug association. The 
darker nodes are hub nodes with high node degree. These drugs may eventually result in adverse side effects when administered as a combination. 
Quetiapine (node degree = 58) and propiomazine (node degree = 52) are the drugs that had the highest interaction in this FTD drug interaction 
network
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cocaine and morphine) demonstrating that neuropsy-
chiatric drugs do not function independently but rather 
forms an interacting network. We also identified the APP 
gene as an important hub node that forms an essential link 
between disease susceptibility genes and drug target genes.

In addition, we proved the off-target effects commonly 
seen in neuropsychiatric drugs by displaying their multi-
target behaviour via a historeceptomics analysis. Our study 
shows that the network-based method is useful and might 
help in the development of an effective drug management 
approach from a computational biology perspective.
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