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and adipocytokine signalling pathway 
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Abstract 

Background:  One of the most common hormonal disorders in women of reproductive age is polycystic ovary syn-
drome (PCOS). In recent years, it has been found that insulin resistance is a common metabolic abnormality in women 
with PCOS and leads to an elevated risk of type 2 diabetes mellitus. To explore the differentially expressed genes 
(DEGs) that regulate these kinds of metabolic risks in PCOS women, we chose the gene expression profile of GSE8157 
from the gene expression omnibus (GEO) database.

Results:  Using the GEO2R tool, we identified a total of 339 DEGs between the case and the control sample groups. 
Gene ontology and Kyoto encyclopedia of gene and genome pathway enrichment analysis were subsequently con-
ducted. High connectivity, betweenness centrality, bottleneck centrality, closeness centrality, and radiality measures 
were used to rank the ten hub genes. Furthermore, the overlap of these genes resulted in the development of two 
key genes, AR and STK11. The AMPK and adipocytokine signaling pathways are the two main pathways that these 
DEGs are involved.

Conclusions:  The backbone genes, hub genes and pathways identified would assist us in further exploring the 
molecular basis of developing risk of type 2 diabetes mellitus in PCOS women and thus provide diagnostic or thera-
peutic clues.
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1 � Background
Polycystic ovary syndrome (PCOS) is a metabolic and 
reproductive disorder that affects between 4 and 18% 
of reproductive-age women [1] and in the general 
population, it is estimated around 21.27% [2]. Insulin 
resistance, hormonal imbalances, and metabolic disor-
ders are common symptoms of PCOS, which increase 

the risk of type 2 diabetes mellitus (T2DM), cardio-
vascular disease (CVD), and infertility [3] and affect 
the quality of life [4]. According to Rotterdam and 
Androgen Excess Society criteria, the prevalence of 
PCOS in India is 22.5% and 10.7%, respectively. About 
52.6% of women were observed with mild PCOS as a 
typical phenotype [5]. PCOS is a multifactorial disor-
der with a genetic component, even though the exact 
cause is unknown. Compared to prevalence in the gen-
eral population, approximately 20–40% of first-degree 
female relatives of women with PCOS develop PCOS 
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themselves [6]. However, up to 70% of women with 
PCOS are undiagnosed [7]. Indeed, due to its appar-
ent similarity with many other pathologies, includ-
ing Cushing’s syndrome, obesity, congenital adrenal 
hyperplasia, ovarian and adrenal neoplasms, and its 
optimal diagnosis is often hampered [8].

One of the most common symptoms of PCOS is 
androgen hypersecretion. It is known as hyper-andro-
genism, and it’s the second most common symptom 
of PCOS. This condition affects anywhere from 17 
to 83% of women [9]. The heterogeneity and com-
plexity of PCOS make conventional approaches to 
understanding the disease, such as finding a specific 
gene or pathway, ineffective. Numerous studies have 
revealed several potential genes, proteins, and metab-
olites implicated in the pathogenesis of PCOS using 
various methods such as genomics, transcriptomics, 
metabolomics, and bioinformatics [10–13]. Due to the 
complexity of PCOS, candidate gene techniques are 
inadequate to comprehend its molecular function. A 
systems biology method, which combines experimen-
tal and computational biology to better understand 
complex biological systems, could investigate several 
interacting genes and their products that contribute 
to PCOS. The data produced by experimental meth-
ods and available in databases and publications are 
analyzed and integrated using computational systems 
biology. In the case of PCOS, one of the first studies to 
use a computational approach was published in 2009, 
when researchers built a protein network from seven 
transcriptomics data to understand better the disease’s 
mechanism [14, 15]. Recent study findings have indi-
cated that genes (APCO3, ADCY2, C3AR1, HRH2, 
GRIA1, MLNR and TAAR2) played a crucial role in the 
formation and progression of PCOS and that microar-
ray data may be used to identify new biomarkers and 
therapeutic targets for PCOS [16].

In this research study, the differentially expressed 
genes (DEGs) were investigated using Gene Expres-
sion Omnibus (GEO) data and bioinformatics analysis 
tool. The feature and pathway enrichment analysis for 
DEGs were then examined. We also developed a gene 
interaction network for the DEGs and identified major 
signaling pathways and genes associated with them. 
Furthermore, since the interaction between genes and 
signaling networks has played a vital role in PCOS 
production and progression, the interaction was devel-
oped to investigate further the relationship between 
genes and signaling networks in PCOS. Overall, our 
systematic research may provide insights to explore 
the molecular basis of developing risk of T2DM in 
PCOS women.

2 � Methods
2.1 � Microarray data
GEO (http://​www.​ncbi.​nlm.​nih.​gov/​geo) is a public data 
repository in functional genomics for high-throughput 
gene expression data, chips, and microarrays [17]. One 
gene expression dataset [GSE8157] was retrieved from 
GEO. Based on the platform’s annotation information, 
the probes are converted into appropriate gene symbols. 
Muscle PCOS pioglitazone, muscle PCOS after pioglita-
zone, muscle PCOS control, and muscle PCOS case were 
among the 43 samples in the GSE8157 data collection.

2.2 � Identifying DEGs
The DEGs were identified using GEO2R (http://​www.​
ncbi.​nlm.​nih.​gov/​geo/​geo2r/), an R-based web applica-
tion available in the GEO database [18]. The DEGs were 
calculated using |logFC|≥ 1.0 and a t test with a p < 0.05 
significance level.

2.3 � Gene ontology (GO) enrichment and KEGG pathway 
analysis of the DEGs

The DAVID tool was used to perform comprehensive 
analysis and visualization of a functionally enriched set 
of genes [19]. The GO terms and Kyoto encyclopedia of 
gene and genome (KEGG) pathways were combined to 
develop the functionally organized GO/pathway term 
network. Statistical test-enrichment, correlation test-
Bonferroni step-down, and p ≤ 0.05 parameters were set 
for protein/gene list enrichment analysis.

2.4 � Construction of gene interaction network
NetworkAnalyst (http://​www.​netwo​rkana​lyst.​ca/), a 
multifunctional online software, was used to analyze the 
DEGs and construct the visualized signal network based 
on the interaction source from SIGnaling 2.0 (SIGnal-
ing Network Open Resource) and also used to analyze 
path and module investigations, as well as protein–drug 
interactions.

Further, a gene interaction network of seed genes 
consisting of their direct neighbors in the network was 
constructed. The Cytoscape 3.3.0 tool [20] was used 
to visualize these gene interaction networks, and the 
network node attributes were calculated using default 
parameters. An extended giant network was constructed 
from the DEGs under consideration and also sub-net-
works. This study aimed to explore a systems-level of 
mechanism in the pathway that links PCOS to T2DM. 
For the topological study, nodes in the giant network 
with high betweenness centrality (BC) values and metrics 
relating to network theory were considered.

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.networkanalyst.ca/
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2.5 � Identification of hub proteins
The Cytohubba is a Cytoscape plugin used to find the 
gene interaction network’s hub genes and generate the 
subnetwork from the giant network. This tool provides 
11 topological analysis methods, where we employed five 
methods (degree, radiality centrality, closeness centrality, 
BC and bottleneck) to identify hub or bottleneck genes in 
the network [21].

2.6 � Centrality analysis of protein interaction network
Centrality criteria such as connectivity degree (D), BC, 
and closeness centrality (CC) were used to evaluate the 
nodes of the giant network and subnetwork, the first two 
centrality measures of the above are basic in network the-
ory [22, 23]. A node with a high BC significantly impacts 
the network’s flow, and it plays an important role in 
detecting bottlenecks. The other parameters like average 
clustering coefficient, mean shortest path length, neigh-
bourhood centrality distribution, closeness centrality and 
diameter are also used to characterize a network [22]. 
The average degree represents the mean of all degree val-
ues of nodes in a network. We use the NetworkAnalyser 
plugin in Cytoscape software [24] to characterize the 
node parameters and network measurements.

2.7 � Subnetwork with all the shortest paths
Few pairs of candidate genes, even in a giant network, 
are not directly connected, thus leading to the creation of 

sub-networks. Here, the sub-network of the genes asso-
ciated with PCOS linked with T2DM was constructed. 
All the shortest paths between every pair of candidate 
gene(s) directly or indirectly connected were considered 
for calculation using NetworkAnalyzer.

2.8 � Backbone network based on high BC values
The proteins with high BC and connectivity between 
them are involved in constructing the backbone net-
work. In this study, 5% of the high BC values from the 
total nodes of the giant network were set as a critical 
point [25, 26]. Usually, the centrality of the nodes in a 
network is measured using BC, and they constitute most 
of the shortest paths in the network. The communication 
among all other nodes in the network will be controlled 
and functionally monitored by these backbone network 
nodes.

3 � Results
3.1 � Identification of DEGs
The GEO2R method was used to identify DEGs from 
the data set that revealed AMPK, a pathway link-
ing PCOS to diabetes. Based on the preliminary data, 
the inclusion criteria were considered p < 0.05 and 
|logFC|≥ 1.0  (Fig.  1). A total of 339 DEGs were identi-
fied that constituted extended network and subsequent 
giant network extracted from extended network is com-
posed of 318 nodes connected via 340 edges. Out of 339 

Fig. 1  Volcano map of all DEGs, screening criteria: P < 0 .05 and |logFC|≥ 1. Red and blue colour represents up-regulated and down-regulated DEGs, 
respectively. FC fold-change, DEGs differentially expressed genes



Page 4 of 11Gollapalli et al. Beni-Suef Univ J Basic Appl Sci           (2022) 11:23 

DEGs from extended network, 18 were up-regulated 
and 321 were down-regulated genes after the analysis of 
GSE8157 (Fig. 2).

3.2 � GO functional enrichment and pathway analysis
The DAVID tool was used to perform GO functional 
enrichment analysis on both up-and down-regulated 
DEGs. The histograms of top GO functional enrich-
ment analyses of down-regulated genes in DAVID 
(standard cut-off p < 0.05) are shown in Fig. 3. The up-
regulated DEGs are predominantly enriched in cell 
shape, cytoskeleton structure, and actin cytoskeleton 

organization in biological process analysis. Down-reg-
ulated genes mainly were involved in biological pro-
cesses (Fig.  3A and Additional file  1: Table  S1) like 
negative regulation of transcription, DNA-template, 
multicellular organism development, cellular response 
to DNA damage stimulus, cell surface receptor sign-
aling pathway, axon guidance, glucose homeostasis, 
smoothened signaling pathway, negative regulation of 
cell growth, intracellular receptor signaling pathway, 
and phospholipase C-activating G-protein coupled 
receptor signaling pathway. The up-regulated DEGs are 
related to cellular components are mainly enriched in 
the ruffle. Down-regulated DEGs (Fig. 3B) are related to 

Fig. 2  Heatmap plot displayed in a grid where each row represents a gene and each column represents a sample considered in differentially 
expression of genes detected in comparison of control and case samples of PCOS women using BART-bioinformatics array research tool
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adherens junction, chromatin, stress fiber, Golgi stack, 
an integral component of the plasma membrane and 
cell projection (Additional file 1: Table S1).

Furthermore, up-regulated DEGs are primarily 
enriched in poly(A) RNA binding in molecular function 
(MF) analyses, which refers to binding to a sequence 
of adenylyl residues in an RNA molecule, such as the 
poly(A) tail, a sequence of adenylyl residues at the 3’ end 
of eukaryotic mRNA. The down-regulated DEGs are 
associated with molecular functions (Additional file  1: 
Table  S1) like RNA polymerase II transcription factor 
activity, ligand-activated sequence-specific DNA bind-
ing, p53 binding, acrosin binding, RNA polymerase II 
core promoter proximal region sequence-specific DNA 
binding, transferase activity, transferring glycosyl groups, 
GKAP/Homer scaffold activity, transcriptional activa-
tor activity, RNA polymerase II core promoter proximal 
region sequence-specific binding, protein binding, ster-
oid hormone receptor activity, and actin filament binding 
(Fig. 3C).

3.3 � Enrichment analysis of KEGG pathways
The up-regulated DEGs had no significant pathways 
enriched. Still, the down-regulated DEGs enriched the 
AMPK signaling pathway, alanine, aspartate, glutamate 
metabolism, neuroactive ligand-receptor interaction, 

butanoate metabolism, and adipocytokine signaling 
pathways. The findings of the KEGG pathway enrich-
ment analysis of down-regulated genes (DAVID bar 
diagrams) are shown in Fig. 3D.

3.4 � Construction of gene interaction network
The giant DEGs gene interaction network generated by 
NetworkAnalyst consists of 318 nodes with 340 edges 
(Fig.  4). The centrality parameter study of each node 
from giant networks, including degree (D), BC, and CC, 
is illustrated in Additional file  1: Table  S2. The largest 
degree and high BC in the giant network were 74 and 
0.565, respectively. The giant network is characterized 
by a limited number of strongly connected nodes, and 
some nodes have relatively few requirements, as is typi-
cal of biological networks.

3.5 � Selection of hub genes
Here, Cytohubba was used to predict the hub proteins, 
based upon the five classical methods of Cytohubba, 
the top 10 hub proteins selected by ranked methods 
in Cytohubba (Additional file  1: Table  S3). Finally, 
two central genes were identified by overlapping the 
first ten genes, as shown in Fig.  5. The AR (Androgen 

Fig. 3  The results of top down regulate DEG’s GO functional enrichment study. A biological process, a cellular component, a molecular function, 
and KEGG pathways are all examples of biological processes
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receptor) and STK11 (Serine/threonine-protein kinase) 
are selected as hub genes based on five ranked methods.

3.6 � Key nodes of the backbone network
The backbone network for the signaling network 
was constructed from 16 nodes with a high BC value 
(Table 1). In the backbone network, AR is located at the 
center with the BC value, which controls the informa-
tion flow in the backbone network (Fig.  6). AR has 15 
first neighbors like STK11, DYRK1A, TWIST2, TP73, 
MYCN, THRA, NFYA, NR4A3, PDX1, FST, SMARCA4, 
SIRT5, NRF1, REST, and RAD51. AR plays a crucial 
role in the origins of PCOS. Identifying and confirming 
the locations of AR-mediated actions and the molecular 
mechanisms involved in PCOS development is critical to 
providing the knowledge required for the future develop-
ment of innovative, mechanism-based interventions for 
PCOS treatment.

4 � Discussion
Genomic analysis, which is the study of the structure, 
function, and expression of genes in an organism, is one 
of the methodologies used to explain the molecular basis 
of PCOS and its consequences. We used published gene 
expression profile data and a bioinformatics analysis tool 
to investigate DEGs in PCOS skeletal muscle. Our sys-
tematic analysis would help to understand the molecular 
complications of PCOS associated with diabetes. This 
study is complemented by knowledge of PCOS-related 
disorders to the PCOS pathway network to establish 
the mechanistic interactions between PCOS and other 
diseases.

The etiopathology of PCOS has not been fully under-
stood despite a vast amount of research being progressed 
and to date, no effective systemic or targeted therapy 
exists. A large amount of data from transcriptomic or 
genome-wide associated studies on PCOS patients are 
publicly available. These data profiles can be used to com-
prehensively understand the pathophysiology of PCOS 
and its accelerated risks in the patients. An integrated 
GEO analysis and systems biology approaches analyze 

Fig. 4  Extended interactome of gene interaction network from DEGs in a PCOS women with risk of T2DM. Seed proteins in network are highlighted 
in orange color and corresponding nodes connected with seed proteins in green color



Page 7 of 11Gollapalli et al. Beni-Suef Univ J Basic Appl Sci           (2022) 11:23 	

gene expression data extracted from the microarray or 
RNA-seq methods. In the present study, the R software-
based GEO2R is used to analyze differentially expressed 
genes. The GEO2R uses GEOquery and limma R pack-
age (from Bioconductor project) to compare original 
submitter-supplied processed data tables. Here, the gene 
expression profile of GSE8157 was analyzed by using a 
wide variety of bioinformatics methods. We explored 
the DEGs in the skeletal muscle of women with PCOS 
regulating a common metabolic abnormality and leading 
to increased risk of T2DM. We identified a total of 339 
DEGs between the PCOS cases and control samples, in 
which 18 genes were up-regulated and 321 were down-
regulated. A series of bioinformatics tools were used for 
this data analysis to predict the key genes and molecular 
pathways associated with the PCOS linking to the risk of 
T2DM.

The GO analysis has shown that the up-regulated 
genes mainly participate in the biological process like 
regulation of cell shape (GO:0008360; genes: FGD6, 
BRWD1, FMNL3, MYH9), cytoskeleton organization 
(GO:0007010; genes: FGD6, BRWD1, FMNL3) and actin 
cytoskeleton organization (GO:0030036; genes: FGD6, 
FMNL3). The cellular components (CC) enriched include 
ruffle membrane (GO:0001726; genes: FGD6, MYH9). 
The molecular functions (MF) enriched was poly(A) 
RNA binding (GO:0003723; genes: IMP3, PSIP1, MAG-
OHB, MYH9). However, the down-regulated DEGs 
were mainly found in the biological process, like glucose 
homeostasis, negative regulation of cell growth, intra-
cellular receptor signaling pathway, and phospholipase 
C-activating G-protein coupled receptor signaling path-
way. Recent studies have primarily focused on the expres-
sion, quantification, and genetic polymorphisms of PCOS 

Fig. 5  Overlapping of top ten genes using betweenness, degree, closeness, bottleneck and radiality of cytoHubba resulted to identify two hub 
genes
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and have built a considerable argument that abnormal 
PCOS is linked to diabetes and infertility; however, few 
studies have given direct proof. Anovulation, hyperan-
drogenism, and insulin resistance are all symptoms of 
PCOS. Hyperinsulinemia has been linked to an increased 
risk of cardiovascular disease and the progression of 
T2DM. T2DM is manifested by hyperglycaemia caused 
by insulin resistance, which results in impaired glucose 
uptake and utilization. Insulin resistance can be found 
in the liver, skeletal muscle, and adipose tissue. Skeletal 
muscle, in particular, loses its metabolic versatility, mak-
ing it difficult to switch between glucose and fatty acid 
use [27]. Recent evidence suggests that broken-down 
fatty acid oxidation is a contributing factor in insulin 
resistance in muscles [28]. By 2025, a global agreement 
has been reached to halt the increase in diabetes and 
obesity. Diabetes affects approximately 422 million peo-
ple worldwide, most of whom live in low- and middle-
income countries, and diabetes is directly responsible 
for 1.6 million deaths per year. Over the last few decades, 
both the number of cases and the incidence of diabetes 
have gradually increased. (who.int).

The KEGG pathway analysis also indicated that the 
DEGs were mainly enriched in the AMPK signaling 
pathway; alanine, aspartate and glutamate metabo-
lism; neuroactive ligand-receptor interaction; butanoate 
metabolism; and adipocytokine signaling pathway. While 
AMPK is commonly considered an energy sensor, recent 
research has established fructose 1,6-bisphosphate as 
an AMPK metabolite regulator [29]. For T2DM, AMPK 

activation in response to exercise has a huge advan-
tage [30]. Therapeutic agents that resolve insulin resist-
ance have gotten a lot of publicity for the same reason. 
The thiazolidinediones (TZDs) and metformin are two 
primary insulin-sensitizing agents that have been devel-
oped. Both drugs work by activating AMPK and thus 
bypassing insulin signaling [31]. AMPK regulates the 
downstream kinases glucose-6-phosphatase (G-6-Pase) 
and phosphoenolpyruvate carboxykinase (PEPCK), influ-
encing gluconeogenesis and alleviating diabetes. AMPK 
can also enhance IR by regulating glucose transporter 4 
and free fatty acids [32]. Understanding the entire signal 
transduction pathway involving AMPK in skeletal mus-
cle may lead to major pharmacologic improvements in 
managing and treating T2DM. Further, an increase in 
adipocytokine is also found an essential role in PCOS 
pathophysiology [33].

The gene interaction network of DEGs is used to 
explore the underlying biochemical processes and 
interaction pathways related to insulin resistance in 
PCOS women, which may lead to a risk of T2DM. The 
background network was further constructed by the 
genes like AR, STK11, PDX1, MYCN, DYPK1A, FST, 
SFYA, RAD51, SIRT5, REST, THRA, NRF1, TWIST2, 
NR4A, TP73, SMARCA4, SIRT5, and RAD51. Further, 
the hub genes (top 10) in the network were identified 
based on the five ranking methods of Cytohubba. The 
overlap of results from all the five methods resulted 
from two central genes, such as AR and STK11. Sev-
eral studies have been demonstrated that AR is a target 

Table 1  List of genes in the backbone network

Sl. no Gene symbol Description

01 AR Androgen receptor

02 STK11 serine/threonine-protein kinase

03 DYRK1A Dual specificity tyrosine-phosphorylation-regulated kinase 1A

04 TWIST2 Twist-related protein 2

05 TP74 –

06 PDX1 Pancreas/duodenum homeobox protein 1

07 MYCN N-myc proto-oncogene protein

08 FST Follistatin

09 NFYA Nuclear transcription factor Y subunit alpha

10 RAD51 DNA repair protein RAD51 homolog 2

11 SIRT5 NAD-dependent protein deacylase sirtuin-5, mitochondrial

12 REST RE1-silencing transcription factor

13 THRA Thyroid hormone receptor alpha

14 NRF1 Endoplasmic reticulum membrane sensor NFE2L1

15 NR4A3 Nuclear receptor subfamily 4 group A member 3

16 SMARCA4 Transcription activator BRG1

17 SIRT5 NAD-dependent protein deacylase sirtuin-5, mitochondrial

18 RAD51 DNA repair protein RAD51 homolog 2
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to prevent androgen-related metabolic disorders like 
T2DM. AR is less important in females to maintain 
energy homeostasis, but elevated androgen concentra-
tions increase pathological levels leading to metabolic 
dysfunction [34]. The main clinical hallmark of PCOS is 
hyperandrogenism [35] and clinical evidence has been 
reported that the ovary is the primary source of andro-
gens in women with PCOS [36]. Gao et al. [37] reported 
that AR was differently expressed in PCOS, especially 
in actual PCOS subtypes. On the other side, it is also 
hypothesized that gene variants in SKT11 would be 
associated with the metabolic risk in PCOS women 
[38, 39]. Similarly, Single Nucleotide Polymorphism in 

the STK11 gene has been suggested to be associated 
with metformin efficacy in PCOS-treated patients [40]. 
Another study has demonstrated that a polymorphism 
in the STK11 gene is associated with low ovulatory 
response to treatment with metformin alone in a pro-
spective, randomized trial [41].

However, the current analysis of the GEO data-
set revealed major metabolic processes and pathways 
involved in PCOS women that may lead to the risk of 
T2DM. The DEGs identified are majorly found enriched 
in the down-regulation of various biological processes 
and pathways. Overall, our systematic analysis will gain 
insights into PCOS pathogenesis at molecular level 

Fig. 6  The backbone network’s topology constructed based on 11 nodes with a high BC value, where sizes of nodes are proportional to their BC 
values
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and help to identify the potential candidate genes for 
development of metabolic disorders in PCOS individ-
uals. Therefore, the hub genes and pathways may be 
potential therapeutic targets of PCOS treatment. Nev-
ertheless, the potential limitations and other alterna-
tive explanations would be very insightful for future 
research, such as the limited control numbers in the 
database. Furthermore, we inferred the possible role of 
the hub genes identified, which need to be verified by 
further experimental biological studies and confirm the 
potential mechanisms of the hub proteins identified. 
The next stage of this study involves in vivo or clinical 
studies to verify in silico results.

5 � Conclusions
The current results demonstrate that the pathogenesis 
of PCOS is linked with the risk of developing T2DM 
with the contribution of common pathological path-
ways in women. The two hub genes AR and STK11 
identified from the gene interaction network are clini-
cal hallmarks of PCOS and T2DM, respectively. These 
hub genes are involved in the pathogenesis via the 
AMPK pathway and adipocytokine signaling pathway. 
Based on the obtained results, the molecular mecha-
nism underlying in developing diabetic risk in PCOS 
women can be investigated. Additional in vivo or clini-
cal research is needed to validate the function of the 
identified genes as potent diagnostic or therapeutic 
interest.
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