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A hyper‑resolving polynomial aperture 
and its application in microscopy
A. M. Hamed*   

Abstract 

Background:  A hyper-resolving aperture composed of a polynomial distribution is suggested. The point spread 
function (PSF) is computed and compared with that corresponding to linear, quadratic, and circular apertures. In addi-
tion, the influence of the number of zones on the PSF is discussed. An application on confocal scanning laser micro-
scope using Siemen’s star pattern as an object considering the polynomial apertures is given.

Results:  We have made polynomial apertures using MATLAB code, and we tested the resolution from the computa-
tion of the cut-off spatial frequency obtained from the computation of the point spread function.

Conclusions:  We get compromised resolution and contrast for the polynomial apertures as compared with uniform 
circular apertures.
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1 � Background
The microscope used in the processing called CSLM is 
mainly composed of two objective lenses arranged in tan-
dem and having common short focus where the scanned 
object is placed. Coherent illumination of the microscope 
is provided by a laser beam and a coherent point detector 
is placed in the imaging plane. This confocal microscope 
is studied by many authors [1–10]. An explanation for the 
imaging of confocal microscopy attaining super-resolu-
tion in confocal imaging was presented [7].

It was shown early [3] that resolution has been 
improved by using annular aperture as compared with 
the open circular aperture. The microscope resolution 
is basically dependent on the wavelength of illumination 
and the numerical aperture NA or the aperture size for 
certain focal length, hence the theoretical limit of reso-
lution is computed as follows: resolution = λ/NA. While 
the distribution in the aperture has a little effect on the 
resolution and contrast as in [11–17].

The main object of the proposed methods of modula-
tion is based on improving the transverse resolution of 
the confocal microscope outlined previously in many 
publications [18–24]. Recently, resolution and contrast 
measurements of optical microscope based on PSF engi-
neering is investigated in [25–27] while the resolution 
and contrast enhancement in laser scanning microscopy 
using dark beam is discussed in [28]. A scanning twice 
in confocal microscopy for better resolution is studied in 
[29] and confocal microscopy with pinhole super-resolu-
tion is discussed in [30]. The relation between the optical 
transfer function and the PSF using obstructed apertures 
is widely used to compare the performance of different 
optical systems in [31]. Enhancing the performance of 
fluorescence emission difference microscopy using beam 
modulation is given in [32], while the effects of polariza-
tion on the deexcitation dark focal spot in STED micros-
copy is discussed in [33]. Recent publication in aperture 
modulation, using annular Hermite Gaussian aperture, is 
investigated in [34].

In this study, the motivation for choosing the hyper-
resolving apertures which has the form of polynomial 
distribution is discussed showing further improvement in 
resolution compared with the open circular aperture.
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2 � Methods
In the first model, we proposed five equal zones of 
higher-order polynomial ρ8 at the center ending with a 
linear function of ρ at the surface of the aperture as fol-
lows: ρ8, ρ6, ρ4, ρ2, and ρ.

The selection of five zones is presented to fulfill the 
arrangement assumed for the polynomial.

For the second model, this number is doubled since 
the center is assumed dark. In general, we can take any 
number of zones either even or odd depending on the 
proposed distribution. Hence, the first model has odd 
number of zones N = 5, while the second model has 
N = 10.

The assumed polynomial aperture has five equal zones 
of distributions, starting from the center, represented as 
ρ8, ρ6, ρ4, ρ2, and ρ as shown in Fig. 1. The correspond-
ing line plot is shown as in Fig. 1c. In our case, the cen-
tral zone has transmission intensity proportional to ρ8 
instead of zero for the annular aperture.

Now, the polynomial aperture is written as follows:

a, b, c, d, e, constants are proportional to the cross-sec-
tional areas of the corresponding zones.

In this model, referring to Eq. (1),

Hence, a+ b+ c + d + e = πρ2
max is the total area of 

open circular aperture of radius ρmax.

(1)

P(ρ) = aρ8, for 0 ≤ ρ < 0.2ρmax

= bρ6, for 0.2 ≤ ρmax < 0.4ρmax

= cρ4, for 0.4 ≤ ρmax < 0.6ρmax

= dρ2, for 0.6 ≤ ρmax < 0.8ρmax

= eρ, for 0.8 ≤ ρmax < ρmax

a = 0.04πρ2
max, b = 0.12πρ2

max, c = 0.20πρ2
max, d = 0.28πρ2

max, e = 0.36πρ2
max

ρ = (u, v) is the radial coordinate corresponding to the 
Cartesian coordinates (u, v) and ρmax is the total aperture 
radius.

The PSF corresponding to the polynomial aperture, 
described in Equ 1, is computed by operating the Fourier 
transform upon Eq. (1) considering coherent illumination 
emitted from spatially filtered Laser beam. Hence, the 
PSF is represented in integral form in polar coordinates 
as follows:

where u = ρ cos Φ, v = ρ sin Φ are the Cartesian coordi-
nates in the aperture plane corresponding to the polar 
coordinates (ρ, Φ), while x = r cos θ, y = r sin θ are the 
Cartesian coordinates in the Fourier or focal plane cor-
responding to the polar coordinates (r, θ). The Fourier 
transform lens has focal length = f.

Since the aperture has circular symmetry of revolution, 
equation, (2) is reduced to a function of r only as follows 
[11]:

where J0(x) represents the Bessel function of zero order 
and the Bessel function of any order n Jn(x) is repre-
sented by the following summation:

Substituting Eq. 1 in Equ 3, we get:

(2)h(r; θ) =
ρmax

∫

0

2π
∫

0
P(ρ) exp

[

−
j2π

�f
ρr cos (�− θ)

]

ρdρd�

(3)hmodel 1(r) = 2π
ρmax

∫

0
P(ρ)J0

(

2π

�f
ρr

)

ρdρ

Jn(x) =

∞
∑

m=0

(−1)m

m!(m+ n)!

(x

2

)n+2m
.

(4)

hmodel 1(r) = 2π

{

a
0.2ρmax

∫

0
ρ8J0

(

2π

�f
ρr

)

ρdρ + b
0.4ρmax

∫

0.2ρmax

ρ6J0

(

2π

�f
ρr

)

ρdρ

+ c
0.6ρmax

∫

0.4ρmax

ρ4J0

(

2π

�f
ρr

)

ρdρ + d
0.8ρmax

∫

0.6ρmax

ρ2J0

(

2π

�f
ρr

)

ρdρ

+e
ρmax

∫

0.8ρmax

ρJ0

(

2π

�f
ρr

)

ρdρ

}

(See figure on next page.)
Fig. 1  a Color image corresponding to the first model of polynomial aperture showing the five concentric layers. b Gray-scale image of a circular 
aperture in the form of a polynomial distribution with five equal zones. The concentric zones have distributions ρ8, ρ6, ρ4, ρ2 and ρ computed 
from the aperture center. The matrix dimensions have 512 × 512 pixels and the total radius of the aperture = 128 pixels. c The intensity plot of the 
polynomial aperture shown in the (b) at the center of the aperture at constant y = 256 pixels
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Fig. 1  (See legend on previous page.)
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Solving Eq. (4), we finally get the corresponding result 
for the PSF as follows:

where i = (1, 3, 5, …, N), W1 =
2
f (0.2ρmax)r , 

W2 =
2
f (0.4ρmax)r,

W3 =
2
f (0.6ρmax)r , W4 =

2
f (0.8ρmax)r , W5 =

2
f (ρmax)r.

The PSF corresponding to the second model is com-
puted by following the above analysis; Eq.  (4) except 
the integral limits changed following the new intervals 
between the ten concentric equal zones of different dis-
tributions. Hence, we write the PSF as follows:

(5)

hmodel 1(r) =
J1(W5)

W5
− 0.08

4
∑

i=1

J1(Wi)

Wi
+ 0.4

J2(W1)

W 2
1

+ 0.08
J2(W2)

W 2
2

− 0.24
J2(W3)

W 2
3

− 0.56
J2(W4)

W 2
4

+ 0.36

(

J0(W5)

W 2
5

−
J0(W4)

W 2
4

)

− 0.96
J3(W1)

W 3
1

+ 1.28
J3(W2)

W 3
2

+ 1.6
J3(W3)

W 3
3

+ 0.72

N
∑

i=1

(

Ji(W4)

W 3
4

−
Ji(W5)

W 3
5

)

− 1.92
J4(W1)

W 4
1

− 5.76
J4(W2)

W 4
2

+ 15.36
J5(W1)

W 5
1

It is noted that the other five integrals are set equal to 
zero for the dark zones in the (B/Wpolynomial) aperture. 

The cross-sectional areas corresponding to the transpar-
ent zones have the values:

We finally get the PSF corresponding to the second 
model of polynomial aperture as follows:

a = 0.03πρ2
max, b = 0.07πρ2

max, c = 0.11πρ2
max,

d = 0.15πρ2
max, e = 0.19πρ2

max.

(7)

hmodel 2(r) = 0.19

[

J0(W10)

W 2
10

−
J0(W9)

W 2
9

]

− 0.38
∑

i=1,3,5,...

[

Ji(W10)

W 3
10

−
Ji(W9)

W 3
9

]

+

5
∑

i=1

[

J1(W2i)

W2i
−

J1(W2i−1)

W2i−1

]

− 0.24

[

J2(W2)

W 2
2

−
J2(W1)

W 2
1

]

− 0.42

[

J2(W4)

W 2
4

−
J2(W3)

W 2
3

]

− 0.44

[

J2(W6)

W 2
6

−
J2(W5)

W 2
5

]

− 0.3

[

J2(W8)

W 2
8

−
J2(W7)

W 2
7

]

+ 1.44

[

J3(W2)

W 3
2

−
J3(W1)

W 3
1

]

+ 1.68

[

J3(W4)

W 3
4

−
J3(W3)

W 3
3

]

+ 0.88

[

J3(W6)

W 3
6

−
J3(W5)

W 3
5

]

− 5.76

[

J4(W2)

W 4
2

−
J4(W1)

W 4
1

]

− 3.36

[

J4(W4)

W 4
4

−
J4(W3)

W 4
3

]

+ 11.52

[

J5(W2)

W 5
2

−
J5(W1)

W 5
1

]

(6)
hmodel 2(r) = 2π

{

a

0.2ρmax

∫

0.1ρmax

ρ8
J0

(

2π

�f
ρr

)

ρdρ + b
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ρ2
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(

2π

�f
ρr

)

ρdρ+e

ρmax

∫
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(
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)

ρdρ
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An application in microscopy is given, particularly in 
the case of the CSLM [1–5], provided with polynomial 
apertures of type 1 or type 2 described above, and the 
obtained image is computed from Eq. (8), where the poly-
nomial aperture for both microscope objectives is given 
in Eq. (1) for the first model:

Consequently, the formed image is the modulus square 
of the convolution product of the resultant point spread 
function and the complex amplitude of the object. It is 
written symbolically as:

hr
(

x, y
)

= [hpolynomial

(

x, y
)

]
2. ; for two symmetric objec-

tives of polynomial apertures.
Here, hpolynomial(r) is computed from Eq.  (5) for the 

first model and computed from Eq.  (7) for the second 
model. The image used in the processing is the Siemen’s 
test chart.

For a point object, the above convolution is reduced to 
the resultant PSF squared computed as follows:

when the polynomial aperture is replaced by open circu-
lar aperture [1].

3 � Results
A color image showing the five concentric layers is shown 
in Fig. 1a, while a gray-scale image of a circular aperture in 
the form of a polynomial distribution with five equal zones 
is shown in Fig.  1b. The concentric zones have distribu-
tions ρ8, ρ6, ρ4, ρ2 and ρ computed from the aperture center. 

(8)I
(

x, y
)

=

∣

∣

∣

∣

∣

∣

∞
∫∫

−∞

hpolynomial

(

x, y
)

· hpolynomial

(

x, y
)

· g
(

x − x′, y− y′
)

dx′dy′

∣

∣

∣

∣

∣

∣

2

I
(

x, y
)

=
∣

∣hr
(

x, y
)

⊗ g
(

x, y
)∣

∣

2

I
(

x, y
)

=

∣

∣

∣

∣

∣

∣

∞
∫∫

−∞

hpolynomial

(

x, y
)

· hpolynomial

(

x, y
)

· δ
(

x − x′, y− y′
)

dx′dy′

∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣
h2polynomial

(

x, y
)

∣

∣

∣

2
=

[

2J1(W5)

W5

]4

The matrix dimensions have 512 × 512 pixels and the total 
radius of the aperture = 128 pixels. The intensity plot of the 
polynomial aperture shown in Fig. 1b at the center of the 
aperture at constant y = 256 pixels is given in Fig. 1c.

The linear and quadratic apertures and their plots are 
shown in Figs.  2 and 3 for the sake of comparison. The 

normalized PSF computed by operating the FFT upon 
the polynomial aperture of total diameter = 32 pixels is 
shown in Fig. 4a. The cut-off spatial frequency is located 
at Wcut-off = 0.81. The comparative normalized PSF for the 
linear aperture of diameter = 32 pixels is shown in Fig. 4b. 
It is shown that the cut-off spatial frequency is located at 
Wcut-off = 0.86, while the normalized PSF corresponding 
to the quadratic aperture is shown in Fig.  4c. Improved 
cut-off spatial frequency is located at Wcut-off = 0.76. The 
comparison with the circular aperture gives greater cut-
off spatial frequency at Wcut-off = 1.0 as shown in Fig. 4d.

The influence of the number of zones upon the PSF is 
investigated, and the PSF plots are shown in Fig. 5a–h.

The PSF corresponding to the first model using the 

analytical solution represented by Eq.  (5) is plotted in 
Fig.  6 and compared with uniform circular aperture. In 
the computation, it is assumed that λ = 500 nm and the 
NA = 0.5.

Color image corresponding to the second model of 
polynomial aperture showing ten concentric layers of 
B/Wpolynomial distribution where the center is dark. The 
layers from the center are 0, ρ8, 0, ρ6, 0, ρ4, 0, ρ2, 0, ρ as 
shown in Fig. 7a. Its line plot is shown in Fig. 7b. The PSF 
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corresponding to the second model of aperture using 
FFT technique is represented in Fig. 8.

The normalized autocorrelation curves for the first and 
second model of polynomial aperture and compared with 
the linear, and circular apertures are plotted in Fig. 9.

The image of the autocorrelation corresponding to the 
polynomial aperture of the second model or the coher-
ent transfer function (CTF) in the CSLM is shown in 
Fig.  10a. The autocorrelation profile corresponding to 

a

b

Fig. 2  a An image of a linearly distributed aperture. The matrix dimensions have 512 × 512 pixels and the total radius of the aperture = 128 pixels. b 
The intensity plot of the linearly distributed aperture shown in the (a) at the center of the aperture at constant y = 256 pixels
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a

b

Fig. 3  a An image of a quadratic distributed aperture. The matrix dimensions have 512 × 512 pixels and the total radius of the aperture = 128 
pixels. b The intensity plot of the quadratic distributed aperture shown in the (a) at the center of the aperture at constant y = 256 pixels

the second model of polynomial aperture computed 
from the FFT technique is shown in Fig. 10b, where again 

the total band width = two times the aperture diame-
ter = 2 × 256 = 512 pixels.
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4 � Discussions
It is shown, from the numerical results using the FFT 
technique, that the polynomial aperture gives PSF curve 
of spatial frequency cut-off better than that obtained 
in case of the uniform circular and linear apertures as 
shown in Fig. 4.

While the pure quadratic aperture has better reso-
lution compared with the polynomial aperture since 

Wcut-off = 0.81
(

polynomial
)

< Wcut-off = 0.86 (linear) < Wcut-off = 1.0 (circular).

Wcut-off = 0.81(polynomial) > Wcut-off = 0.76 (quadratic). 
It is shown that the polynomial aperture gives more 
intensity than the pure quadratic aperture hence com-
promising of resolution and contrast is attained for the 
polynomial aperture as compared with the linear and cir-
cular aperture.

In Fig. 5a–h, the cut-off spatial value in reduced coordi-
nate is varied from 0.7128 for N = 8 up to 0.8603 for N = 1 

Fig. 4  a Normalized PSF for the first model of polynomial aperture using FFT technique. The total diameter = 32 pixels, and the cut-off spatial 
frequency is located at Wcut-off = 0.81. b The normalized PSF for the linear aperture using FFT technique. The diameter = 32 pixels, and the cut-off 
spatial frequency is located at Wcut-off = 0.86. c The normalized PSF for the quadratic aperture using FFT technique. The diameter = 32 pixels, and the 
cut-off spatial frequency is located at Wcut-off = 0.76. d The normalized PSF for the uniform circular aperture using FFT technique. The diameter = 32 
pixels, and the cut-off spatial frequency is located at Wcut-off = 1.0
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Fig. 5  Influence of the number of zones corresponding to the first model of polynomial aperture upon the PSF. The cut-off spatial value in reduced 
coordinate is varied from 0.7128 for N = 8 up to 0.8603 for N = 1 which has linear distribution. It is shown the same cut-off value at 0.7128 for N = 5 
up to N = 8. In addition, another equal value is shown at 0.762 for N = 3 and N = 4, while two different values are obtained for N = 2 at 0.8111 and 
N = 1 at 0.8603
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which has linear distribution. It is shown the same cut-off 
value at 0.7128 for N = 5 up to N = 8. In addition, another 
equal value is shown at 0.762 for N = 3 and N = 4. While 
two different values are obtained for N = 2 at 0.8111 and 
N = 1 at 0.8603. Hence, the resolution is improved for 
N ≥ 5 as compared with the resolution for linear aperture 
since PSF cut-off = 0.7128 for N ≥ 5, while the cut-off for 
linear aperture is 0.8603 for one zone. The values corre-
sponding to the cut-off plots are shown in Table 1.

It is shown, referring to Fig. 6, that:

Fig. 6  PSF corresponding to the polynomial aperture (first model) 
and compared with the corresponding PSF of circular and quadratic 
apertures using the analytical solution given by Eq. (5)

a

b

Fig. 7  a Color image corresponding to the second model of polynomial aperture showing ten concentric layers of B/Wpolynomial distribution where 
the center is dark. The layers from the center are 0, ρ8, 0, ρ6, 0, ρ2, 0, ρ. b The intensity plot of the second model of polynomial aperture shown in the 
(a) at the center of the aperture at constant y = 256 pixels
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in agreement with the shown numerical results using the 
FFT technique except the range is different depending on 
λ and NA.

The cut-off spatial frequency is located at Wcut-off = 0.76 
as shown in Fig. 8. Hence, further improvement of reso-
lution is attained as compared with the first model, linear, 
and circular resolutions, while it has equal resolution like 
quadratic aperture.

It is shown referring to all the apertures shown in Fig. 9 
that the autocorrelation band width = 512 pixels. It is two 
times the aperture diameter as well-known. In addition, 
the curves are different compared with the autocorrela-
tion of the circular aperture.

The Siemen’s star pattern of dimensions 512 × 512 
pixels used as an object in the CSLM provided with the 
second model of polynomial aperture is given in Fig. 11, 
while the reconstructed image is plotted in Fig.  12. The 
contrast of the reconstructed images and the resolution 
corresponding to the different apertures is computed 
and plotted in Table  2. The open circular aperture has 
improved contrast compared with the other modulated 
apertures, while the resolution is improved for the mod-
ulated apertures as shown from the precedent results. 
It is known early that the annular aperture will give an 

Wcut-off = 4.417(quadratic) < Wcut-off = 4.795
(

polynomial
)

< Wcut-off = 5.097 (circular)

improvement in resolution compared with open circular 
aperture, while the contrast is decreased as expected.

5 � Conclusions
Firstly, the proposed models of polynomial apertures 
showed different PSF of improved resolution compared 
with the circular aperture. The second model of B/W pol-
ynomial aperture showed further improvement of reso-
lution compared with the circular and linear apertures. 
These apertures are considered as amplitude filters where 
the phase is constant like the open circular aperture since 
the aperture phase is responsible on the aberration. The 
influence of the number of zones on the PSF is discussed 
showing resolution improvement for greater number of 
zones (N ≥ 5). It is shown that cut-off value = 0.7128 for 
N = 5 → 8 as compared with 0.8603 for N = 1 for linear 
aperture.

Secondly, the CTF is computed from the autocorrela-
tion function corresponding to the polynomial aper-
tures. The CTF corresponding to the second model is 
different from that corresponding to the autocorrelation 
of the first model and both are different from the CTF 
corresponding to the circular apertures. It is noted that 
the total band width for all apertures is two times the 

Fig. 8  Normalized PSF for the second model of polynomial aperture using FFT technique. The total diameter = 32 pixels, and the cut-off spatial 
frequency is located at Wcut-off = 0.76
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Fig. 9  Normalized autocorrelation for the first model of polynomial, linear, quadratic, and circular apertures

Fig. 10  a The image of the autocorrelation corresponding to the polynomial aperture of the second model or the coherent transfer function 
(CTF) in the CSLM. b The autocorrelation profile corresponding to the second model of polynomial aperture computed from the FFT technique. c 
Normalized autocorrelation for the first and second models of polynomial aperture compared with the circular aperture. It is computed from the 
direct autocorrelation of the aperture

(See figure on next page.)



Page 13 of 15Hamed ﻿Beni-Suef Univ J Basic Appl Sci           (2022) 11:25 	

Circular aperture

c

a

b

Fig. 10  (See legend on previous page.)
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aperture diameter as expected from the autocorrelation 
of a finite object.

Finally, the reconstructed images obtained using the 
CSLM provided with the polynomial apertures are given 
where the original image is the Siemen’s star pattern.

Abbreviations
FFT: Fast Fourier transform; PSF: Point spread function; NA: Numerical aperture; 
B/W: Black and white; CTF: Coherent transfer function; CSLM: Confocal scan-
ning laser microscope.
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Table 1  Influence of the number of zones N upon the PSF for 
constant NA = 0.5, and λ 

Number of zones N PSF cut-off

N = 1, for P (ρ) 0.8603

N = 2, for P (ρ, ρ2) 0.8111

N = 3, for P (ρ, ρ2, ρ4) 0.762

N = 4, for P (ρ, ρ2, ρ4, ρ6) 0.762

N = 5, for P (ρ, ρ2, ρ4, ρ6, ρ8) 0.7128

N = 6, for P (ρ, ρ2, ρ4, ρ6, ρ8, ρ10) 0.7128

N = 7, for P (ρ, ρ2, ρ4, ρ6, ρ8, ρ10, ρ12) 0.7128

N = 8, for P (ρ, ρ2, ρ4, ρ6, ρ8, ρ10, ρ12, ρ14) 0.7128

Fig. 11  Siemen’s star pattern (a) of dimensions 512 × 512 pixels 
used as an object in the CSLM provided with the second model of 
polynomial aperture

Fig. 12  Reconstructed images using the CSLM provided with the 
second model of polynomial aperture

Table 2  Resolution and contrast results for the reconstructed 
images for different apertures

Aperture Resolution in 
reduced coo

Contrast  
= (Imax − Imin)/(Imax + Imin)

Polynomial 1 0.81 0.8359

Polynomial 2 0.76 0.8048 for COVID 19 image

0.9715 for Siemen’s 
star pattern

Linear 0.86 0.8509

Quadratic 0.76 0.8298

Open circular 1.0 0.8772
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