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Abstract 

Background: Wheat is the most important crop around the world. Drought stresses affect wheat production and 
their characterization. Most of the traits that are affected by drought are quantitative traits, so detection of the quan‑
titative trait’s loci (QTLs) related to these traits is very important for breeder and wheat producers. In this trend, 285 
F2 individuals from crosses between four bread wheat genotypes (Triticum aestivum L.), i.e., Sakha93, Sids1, Sakha94, 
and Gemmiza9, were used for identified QTLs associated with plant height (PH) and leaf wilting (LW). Single marker 
analysis and composite interval mapping (CIM) were used.

Results: A total of 116 QTLs loci were detected which covered 19 chromosomes out of the 21 chromosomes of 
wheat. PH and LW had 74 and 42 QTLs loci, respectively. On the other hand, chromosome 7A showed to bear the 
highest number of QTLs loci (15 loci). While chromosome 1A beard the highest number of QTLs loci related to PH (10 
loci), chromosome 2B and 7A beard the highest number of QTLs related LW. We highly recommend our finding to 
help breeders in wheat breeding programs to improve plant height and leaf wilting.

Conclusion: Our investigation concluded that SSR markers have high efficiency in the identification of QTLs related 
to abiotic stress; also the CIM method had more advanced priority for QTLs mapping.

Keywords: Wheat, QTLs, Mapping, Composite interval mapping (CIM), Plant height, Leaf wilting, Simple sequence 
repeats, SSR
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1  Background
Wheat is the most important crop that contributes to 
nutritional and food security around the world. Wheat is 
one of the strategic crops in Egypt, and the wheat breed-
ing program to produce superior varieties is one of the 
important breeding programs that many researchers 
are concerned with. Despite this importance, there is 
relatively little research in the field of identifying QTLs 
responsible for some yield-related traits, especially by 
using the Molecular markers technique. Therefore, this 

research is an important step to identify the QTLs asso-
ciated with some drought-affected traits in order to con-
tribute to the development of drought-tolerant wheat 
cultivars. Although many QTLs related to plant height 
(PH) were detected in wheat, no QTL related to wilt-
ing was detected. On the other hand, abiotic stresses 
(drought, cold, heat, and salt) affected wheat productiv-
ity, while drought stress affects about 1 billion hectares of 
global agricultural soil including sodic and saline soils [1].

Among the environmental stresses, drought is the 
important one that affects the development and growth 
of crops. Drought still to be a major challenge to 
researchers and breeders. Factors that affect responses 
of plants to drought stress include genotype, stage of 
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growth, duration and stress severity, physiological pro-
cess of growth, different genes expression patterns, the 
different activity of respiration patterns and photosynthe-
sis activity, and environmental factors [2–5]. A drought 
had effects on genes expression, so various respon-
sive genes related to drought were featured [6]. Gene’s 
role could be featured by gene expression to high levels 
of resistance between varieties (Ouvard et  al., 1995). 
Drought influence plants in levels of protein, production 
of antioxidant, osmotic adjustment, the composition of 
the hormone, depth and extension of the root, stomata 
closing and opening, photosynthesis inhibition, chloro-
phyll decreasing content, transpiration reduction, and 
growth inhibition [7–10]. Drought can also cause pollen 
sterility, loss in grain yield, and abscisic acid accumula-
tion [11].

Recent techniques like molecular methods must be 
appropriate useful identification tools for some clonal 
variation, stress tolerance, and genetic stability establish-
ment [12–16].

The main goal of quantitative trait loci (QTL) analysis 
is to answer the question of whether phenotypic differ-
ences are depending on a few loci with quite large effects, 
or to many loci, each with midget effects. Remington 
and Purugganan [17] said, “It appears that a substantial 
proportion of the phenotypic variation in many quantita-
tive traits can be explained with few loci of large effect, 
with the remainder due to numerous loci of small effect” 
[17–19].

QTLs can be categorized to constitutive QTL, that 
detected with most environments (their effects are sta-
ble across environmental conditions); and adaptive QTL, 
that detected with specific conditions of the environment 
(expression increasing with a level of environmental fac-
tor) like QTL that increases drought tolerance [20]. The 
sensitivity to environmental stress could be explained 
due to the regulations response (e.g., transcription) of the 
QTL gene to hint of environment. Meanwhile, response 
differences may cause by an indirect effect (e.g., larger 
root systems genotypes will be less affected by water or 
nutrient deficit, so genes controlling root development 
may underpin QTLs defined by stomatal conductance, 
or biomass accumulation). On the other hand, QTLs that 
caused an alteration in flowering time often affect yield 
against water or nutrient deficit because the duration of 
the crop life cycle affects the timing and intensity of the 
stress experienced by the plants [21]

Many QTLs and molecular markers are related to 
genes responsible for drought tolerance or sensitivity 
[22]. Advances in genomic and molecular technologies 
develop molecular markers which could be useful for 
QTLs identification. DNA markers based on the poly-
merase chain reaction (PCR) were the most notable ones 

among markers that used in studying the genetic charac-
terization of wheat, sequence tagged microsatellite sites 
(STMSs) and/or simple sequence repeats (SSRs) [23], 
amplified fragment length polymorphisms (AFLP) [15], 
and chloroplast simple sequence repeats (cpSSR) [24]. 
SSR markers had an advantage in wheat molecular stud-
ies because it has a co-dominant type of inheritance, a 
large number of genomes, reproducibility, locus specific-
ity, and high informational content. Moreover, their high 
polymorphism ratio, chromosome specificity, multial-
lelic nature, and wide distribution throughout the wheat 
genome are observed [25, 26].

SSR markers used to identify QTLs related to yield 
traits such as harvest index and thousand-grain weight 
[27], to study D genome-based genetic diversity in terms 
of drought tolerance [28], to study the physiological and 
genetic characterization wheat genotypes against the 
drought and temperature tolerance [29], and to detect 
the quantitative trait loci (QTL) for various traits [30, 
31]. The aim of our investigation is to construct QTLs 
mapping for some traits related to drought tolerance in 
wheat.

2  Methods
2.1  Wheat materials
A total of 285 F2 individuals from crosses between four 
bread wheat genotypes (Triticum aestivum L.), i.e., 
Sakha93, Sids1, Sakha94, and Gemmiza9, were used for 
QTL analysis of four traits related to drought tolerance. 
The parents were chosen from a previous study [32], as 
representing a wide range of diversity for several agro-
nomic characters. The parents were supplied by Field 
Crops Research Institute, Agricultural Research Center, 
Giza, Egypt. Table  1 presents the Parent’s name, pedi-
gree, and drought stress.

Table 1 Names, pedigree, and drought stress response of the 
parental genotypes used in the study according to previous 
findings from the maize breeding program in Egypt

No Genotype Cross name and pedigree Drought 
stress 
response

1 Sakha93 Sakha 92/TR810328
S.8871‑1S‑2S‑1S‑0S

Tolerant

2 Sids1 HD2172/ Pavon “S”//1158.57/ 
Maya74 “S” Sd 46‑4Sd‑2Sd‑1Sd‑
0Sd

Tolerant

3 Sakha94 Opata / Rayon // Kauz
CMBW90Y3180‑0TOPM‑3Y‑010M‑
010M ‑010Y‑10M‑015Y‑0Y‑0AP‑0S

Sensitive

4 Gemmiza9 Ald"S"/Huac//Cmh74A.630/Sx
CGM4583‑5GM‑1GM‑0GM

Sensitive
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2.2  Field experiment and drought tolerance assessment
The four parental wheat varieties were sown at the Exper-
imental Farm of Genetics Department, Faculty of Agri-
culture, Mansura University (31.0449°  N, 31.3537°  E). 
Then, these varieties were crossed to produce possible 
crosses, i.e., Cross 1 (H1) = (Sakha93 × Gemmiza9), 
Cross 2 (H2) = (Sakha94 × Gemmiza9) , and Cross 3 
(H3) = (Sakha93 × Sids1) according to Habiba et al. [32]. 
F2 and their parents were evaluated for drought toler-
ance at two drought treatments. They were sown in pots 
(25 cm.) containing sand and clay (2:1 v/v). Irrigation was 
given as normal irrigation for control and one irrigation 
45 days after planting irrigation, i.e., two irrigations were 
given through the whole season for drought treatment. 
Pots were fertilized with  P2O5, in one dose during soil 
preparing and Nitrogen was added by ammonia injection 
in one dose after soil preparing and before 4  days from 
planting. The trial was arranged in randomized com-
plete blocks design with three replications. The experi-
ment was conducted with 13/11 day/night photoperiod, 
20/15  °C  day/night temperature, and relative humidity 
of about 85%. Data were recorded on plant height (PH in 
cm) and leaf wilting (LW = per day to wilting).

2.3  DNA extraction and SSR markers amplification
DNA extracted from green leaves from each genotype 
was collected from ten-day seedlings germinated from 
seeds of each genotype according to Khaled and Esh [33] 
and Khaled et al. [16]. A set of 143 SSRs from the Wheat 
database (BARC, CFA, CFD, GWM, WMC, WMSX, 
BARC, XGWM, XPSP, and XWMC) and new 52 SSRs 
from the Cotton database (JESPR) involve the 21 chromo-
somes of wheat (References). Out of the 530 SSR prim-
ers, 195 (143 of wheat primers and 52 of cotton primers) 
have polymorphism to distinguish the genotypes and are 
used for mapping. Amplification was performed as fol-
lows,94 °C for 1 min (one cycle); 94 °C for 20 s, 50–55 °C 
for 35 s, 72 °C for 45 s (35 cycles), and final extension at 
72 °C for 45 s (one cycle). Then hold at 4 °C (infinite). The 
PCR products were conducted to electrophoresis at 90 V, 
in 2% agarose gel containing 0.5 μg/ml ethidium bromide 
for approximately 2 h, using 0.5 × TBE buffer, along with 
a DNA ladder. The gel was visualized under UV.

2.4  Linkage map and QTLs analysis
Single marker analysis (SMA) and composite interval 
mapping (CIM) were used to localize the QTL associ-
ated with drought tolerance in wheat using 285 plants 
of an F2 population derived from crosses between four 
bread wheat genotypes using QTL IciMapping v4.2.5.3 
software [34] depending on Kosambi mapping function. 
The logarithm of odds (LOD) threshold of higher than 3 

was used. Segregation ratios of the genotypes classes at 
each locus were tested using the chi-square test (p < 0.01). 
The linkage mapping was compared with previous maps. 
The QTL analysis was also performed using IciMapping 
v4.2.5.3 software by combined analysis of adjusted means 
of the phenotypic trait value and genotyping data via 
inclusive composite interval mapping (ICIM) algorithm 
for additive gene effect with function inbuilt in the soft-
ware. The walking speed chosen for all QTLs was 1 cM 
and the LOD threshold was calculated by 1000 permuta-
tion and p = 0.05.

2.5  Statistical analysis
The collected data were subjected to analysis of variance 
of the split-plot design and significant differences were 
estimated according to Bernardo [35]. The analyses of 
variance (ANOVA) were calculated using SPSS v25 and 
MS-Excel v365. Values of means, standard deviation, cor-
relation coefficients, and plots showing the distribution 
of phenotypic data for different traits were determined 
using SPSS v25 and MS-Excel365. QTLs map was con-
structed using QTL IciMapping v4.2.5.3 software [34]

3  Results
3.1  Phenotypic evaluation
The phenotypic variations between parents and their 
hybrids (i.e., Sakha93 (S93), Sids1(Sids), Sakha94 (S94), 
Gemmiza9 (G9), H1, H2, and H3) were evaluated for 
plant height (PH) and leaf wilting (LW). Mean, standard 
error, standard deviation, and coefficient of variance (CV 
%) are presented in Table 2. Analysis of variance and cor-
relation are presented in Table 3.

Data presented in Table  2 and Fig.  1 illustrated that 
genotypes (parents and their crosses) exhibited signifi-
cant variations among studied traits. Due to the results 
of agronomic traits, Sakha93 and Sids1 were consid-
ered drought-tolerant genotypes; and Gemmaza9 and 
Sakha94 were the sensitive ones. While Sakha93 and 
Sids1 surpass the others in LW and PH, their cross (H3) 
was on average. In general, significant variation between 
tolerant and sensitive genotypes was observed.

Figure  1 and Table  2 reveal that Sakha93 recorded 
the highest value of PH within parents, while Sids1 sur-
passed all genotypes and hybrids for their survival against 
drought treatment (LW value). On other hand, the cross 
H1 had the highest PH among parents and their crosses, 
while H1 was in average LW. Variations for all the traits 
were significantly observed for treatments, genotypes, 
and genotype × treatments under drought conditions 
(p < 0.05).

The coefficient of variation (CV) was lower for all traits, 
while LW was the highest among them. Because mean is 
used in calculating CVs, increasing mean were expected 
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Table 2 Mean, standard error, standard deviation, and coefficient of variance of parents and their crosses for plant height (PH) and leaf 
wilting (LW) traits

PH: plant height, and LW: leaf witling

Mean Standard error Standard deviation CV%

PH LW PH LW PH LW PH LW

G9 11.737 39.313 1.067 2.313 1.509 3.270 12.856 27.864

S94 12.100 42.500 1.100 2.500 1.556 3.536 12.856 29.219

Sids 32.263 98.813 2.933 5.813 4.148 8.220 12.856 25.478

S93 46.013 90.313 4.183 5.313 5.916 7.513 12.856 16.328

H1 (S93 × G9) 44.605 79.581 4.055 4.681 5.735 6.620 12.856 14.842

H2 (S94 × G9) 29.755 64.635 2.705 3.802 3.825 5.377 12.856 18.071

H3 (S93 × Sids) 48.290 88.152 4.390 5.185 6.208 7.333 12.856 15.186

Table 3 Analysis of variance (ANOVA) of plant height (PH) and leaf wilting (LW)

Source of variation SS Df MS F p value F crit

Plant height (PH)

 Genotypes 2864.4790 6.0000 477.4132 121.0000 0.0000 4.2839

 Drought treatments 119.2879 1.0000 119.2879 30.2334 0.0015 5.9874

 Error 23.6734 6.0000 3.9456

 Total 3007.4402 13.0000

Leaf wilting (LW)

 Genotypes 6731.0279 6.0000 1121.8380 289.0000 0.0000 4.2839

 Drought treatments 250.4372 1.0000 250.4372 64.5159 0.0002 5.9874

 Error 23.2908 6.0000 3.8818

 Total 7004.7558 13.0000
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Fig. 1 Response of different parental genotypes to drought stress, i.e., the effect of drought on plant height (cm) and leaf wilting (days) of Wheat 
genotypes



Page 5 of 13Khaled et al. Beni-Suef Univ J Basic Appl Sci           (2022) 11:38  

to produce smaller coefficients of variation. Phenotypic 
correlations ranged widely among traits under drought 
conditions and control. Correlations were significantly 
positive (p < 0.05) between genotypes and both PH and 
LW.

3.2  Construction of linkage map
A genetic map was constructed for plant height and leaf 
wilting using 195 SSR markers of that 79 SSRs on A chro-
mosomes were mapped, 69 SSRs on B chromosomes, and 
47 SSRs on D chromosomes. Chromosomes 1A and 2B 
beard highest markers that coverage of 19 SSRs, and the 
chromosome 7D had the lowest one that 3 SSRs coverage 
it. The genetic length that the linkage map covered was 
5057.4858 cM and the average inter marker distance was 
25.9358 cM (Fig. 2).

The number of QTLs covered by each chromosome is 
presented in Tables 4, 5, and 6. Data in Table 4 revealed 
that QTLs related to plant height (PH) and leaf wilt-
ing (LW) were distributed among all chromosome sets 
except chromosomes 20 and 21.

The nineteen chromosomes were shown to bear 116 
QTLs where plant height had 74 QTLs loci and 42 loci 
for leaf wilting. Out of the observed 116 QTLs, chro-
mosome 19 (7A = 15) beard the highest QTLs number 
for both the studied traits, followed by chromosome 5 
(2B = 14) and chromosome 1 (1A = 13). Among the two 
traits (plant height and leaf wilting), chromosome 1(1A) 
exhibited the highest number of QTLs that related to 
plant height trait (= 10) followed by chromosome 3 (1D) 
and 19 (7A) which recorded 7 QTLs loci, while chromo-
somes 5 (2B) and 19 (7A) showed the highest number of 
QTLs related to leaf wilting.

4  Discussion
Traits such as plant height and leaf wilting, historically, 
have been subjected to strong selective natural and arti-
ficial pressure, to improve the adaptation of bread wheat 
to different climatic conditions and to increase the grain 
yield [36–39]. However, these same traits are not only 
important for increasing crop yield potential, but they 
are also useful in determining the adaptation to climate 
change [40]. In the present work, the genetic control of 
two traits was investigated to identify associated QTLs. 
Variations for all the traits were significantly observed for 
treatments, genotypes, and genotype × treatments under 
drought conditions (p < 0.05). The coefficient of varia-
tion (CV) was lower for all traits, while LW among them 
was the highest. Because mean used in calculating CVs, 
increasing mean were expected to produce smaller coeffi-
cients of variation. Phenotypic correlations ranged widely 
among traits under drought conditions and control. Cor-
relations were significantly positive (p < 0.05) between 

genotypes and plant height, similarly between plant 
height and LW. However, significant negative correlations 
(p < 0.05) were exhibited between LW and genotypes. 
This was consistent with previous reports in wheat and 
also in other cereal species such as rice and barley, indi-
cating a high response to selection of these traits [41–43]. 
Continuous distribution or absence of discrete segregat-
ing classes for PH and LW suggested that its inheritance 
is either determined by a large number of genes with 
small effects or by a few major genes with substantial 
environmental effects. The presence of transgressive seg-
regants in all traits investigated suggested that each of the 
parental cultivars had desirable and undesirable alleles in 
various proportions for loci governing these traits.

A total of 530 high-quality SSR markers were used to 
build the genetic map, and as expected, most of them 
were placed on genomes A and B, in line with previous 
results [44, 45]. Wen et al. [46] showed that the D genome 
had fewer markers than the A and B genomes in the 
high-density consensus map in common wheat. A total of 
28 and 10 QTLs were found in the F2 populations. The 
comparative QTL analysis of genomes A and B between 
F2 populations showed that 55 QTLs for PH could be 
considered to be adjacent and nearly overlapping. Pear-
son rank between the assessed traits revealed that PH 
was correlated with the LW, in agreement with Rabbi and 
Hisam [45], Bilgrami et al. [47], and Mecha et al. [48]. In 
our study, several QTLs for PH and LW co-localized on 
the same chromosome, suggesting that they were not dis-
tributed evenly in the wheat genome, but they tended to 
cluster in particular chromosome regions (Table 4).

5  Conclusions
Most of the traits that are affected by drought are quan-
titative traits, so detection of the QTLs related to these 
traits is very important for breeder and wheat produc-
ers. In this trend, QTLs for plant height (PH) and days 
to wilting (W) were studied. A total of 116 QTLs loci 
were detected which covered 19 chromosomes out of the 
21 chromosomes of wheat. Chromosome 7A showed to 
bear the highest number of QTLs loci (15 loci). While 
chromosome 1A beard the highest number of QTLs loci 
related to PH (10 loci), chromosome 2B and 7A beard 
the highest number of QTLs related to surviving (days 
to wilting). We highly recommend our finding to help 
breeders in wheat breeding programs to improve plant 
height and survival (days to wilting). SSR markers are 
useful for the detection of QTLs related to abiotic stress 
like drought. Liu et al. [49] detected seven QTLs related 
to PH on chromosomes 1B, 4B (two regions), 6A (two 
regions), 6D and 7A; on the other hand, Wang et al. [50] 
identified two major QTLs related to PH on chromo-
somes 4B and 6D.
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Fig. 2 Linkage maps revealed the position and distribution the QTLs related to plant height and leaf wilting among Wheat chromosomes. QTL 
name on the right side and centimorgan (cM) distance on the left. A colored bar represents the CI (confidence interval) of QTL identified through 
single‑locus analysis
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Fig. 2 continued
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Fig. 2 continued

Table 4 Chromosomes ID and their QTLs loci related to plant height and leaf wilting for nineteen chromosomes out of twenty‑one 
wheat chromosomes

Chrom. ID QTLs

Plant height Leaf wilting Total Mean

‑Ch1‑1A 10 3 13 8.67

‑Ch2‑1B 4 1 5 3.33

‑Ch3‑1D 7 4 11 7.33

‑Ch4‑2A 6 3 9 6.00

‑Ch5‑2B 6 8 14 9.33

‑Ch6‑2D 2 3 5 3.33

‑Ch7‑3A 4 1 5 3.33

‑Ch8‑3B 1 1 2 1.33

‑Ch9‑3D 1 2 3 2.00

‑Ch10‑4A 3 3 6 4.00

‑Ch11‑4B 0 1 1 0.67

‑Ch12‑4D 2 0 2 1.33

‑Ch13‑5A 2 0 2 1.33

‑Ch14‑5B 6 1 7 4.67

‑Ch15‑5D 5 0 5 3.33

‑Ch16‑6A 3 0 3 2.00

‑Ch17‑6B 3 1 4 2.67

‑Ch18‑6D 2 2 4 2.67

‑Ch19‑7A 7 8 15 10.00

Mean 3.89 2.21 6.11 4.07

Total 74 42 116
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Table 5 Position, characters, and distribution the QTLs related to plant height among nineteen chromosomes out of twenty‑one 
wheat chromosomes

Chromosome Position Left marker Right marker LOD PVE (%) Add

‑Ch1‑1A 29 XWMC695 XWMC304 34.4606 0.9496 0.0102

40 XWMC304 XGWM610 33.8512 0.9572 0.0055

261 JESPR311 JESPR7 38.0261 0.8465 − 0.0055

276 JESPR7 WMC165 33.7177 0.8451 − 0.0010

280 WMC165 WMS024 36.4749 0.843 0.0041

298 WMC165 WMS024 36.085 0.8498 0.0311

303 WMS024 WMS304 38.5963 0.8532 0.0293

320 WMS024 WMS304 34.9425 0.8486 0.0031

390 WMS030 WMS198 40.7933 0.8392 − 0.0085

393 WMS198 WMS337 40.1553 0.8495 − 0.0067

‑Ch2‑1B 8 XGWM484 WMS493 27.2976 0.9367 − 0.0055

145 JESPR292 JESPR284 36.5342 0.8558 0.0052

169 JESPR284 JESPR19 40.0445 0.8551 0.0010

192 JESPR284 JESPR19 36.1952 0.9561 − 0.0163

‑Ch3‑1D 98 WMC170 JESPR287 36.2982 0.9524 − 0.0011

107 JESPR287 GWM271 39.0537 0.9532 − 0.0001

132 JESPR287 GWM271 41.4678 0.951 0.0050

140 GWM271 XGWM493 41.6785 0.9556 0.0004

174 GWM271 XGWM493 34.5048 0.9617 − 0.0220

187 XGWM493 XGWM130 33.928 0.9609 − 0.0238

218 XGWM493 XGWM130 39.2011 0.9562 − 0.0153

‑Ch4‑2A 30 WMC407 JESPR2 24.0876 0.9642 − 0.0172

83 GWM257 JESPR13 35.7785 0.8563 − 0.0446

152 JESPR293 JESPR300 32.2305 0.9634 − 0.0264

228 GWM219 BARC101 30.7708 0.9618 0.0200

242 BARC101 CFD65 26.2169 0.953 0.0276

477 WMC054 WMS148 26.4074 0.9607 0.0042

‑Ch5‑2B 170 BARC124 WMS325 34.6034 0.9596 0.0364

187 WMS325 WMS297 46.0389 1.0697 0.0773

190 WMS297 WMS193 48.4367 1.0739 0.0825

297 WMS164 WMS144 51.8691 1.1331 0.0507

301 WMS144 WMC144 52.1626 1.1341 0.0486

338 WMS144 WMC144 43.3711 1.1476 − 0.0264

‑Ch6‑2D 204 WMC154 GWM292 41.742 0.8497 0.0142

207 GWM292 JESPR6 39.0355 0.8485 0.0139

‑Ch7‑3A 12 WMC028 JESPR309 24.3793 0.9536 − 0.0136

303 GWM011 JESPR288 33.0059 0.9451 − 0.0024

311 JESPR288 GWM148 29.471 0.8896 0.0093

333 GWM148 XGWM389 28.0939 0.9657 0.0016

‑Ch8‑3B 96 WMC044 WMC245 28.7844 0.9661 − 0.0006

‑Ch9‑3D 3 JESPR308 JESPR302 41.7766 1.0162 − 0.0162

‑Ch10‑4A 46 JESPR4 JESPR296 48.1947 1.2901 − 0.0150

180 XGWM332 XWMC017 34.6088 0.9524 − 0.0102

218 XWMC182 JESPR11 25.6417 0.9619 − 0.0001

‑Ch12‑4D 73 Xgwm1302 JESPR310 21.3911 0.8453 − 0.0044

86 JESPR310 Xgwm194 25.5533 0.9638 − 0.0022

‑Ch13‑5A 31 JESPR286 XGWM099 23.3193 0.9656 − 0.0195

76 WMS218 WMC765 36.0515 0.8476 0.0000
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Table 5 (continued)

Chromosome Position Left marker Right marker LOD PVE (%) Add

‑Ch14‑5B 68 WMC532 WMS060 29.1324 0.9597 0.0092

106 WMS060 XWMC603 38.4724 0.8466 − 0.0050

114 XWMC603 CFD38 38.8464 0.9508 − 0.0107

129 XWMC603 CFD38 39.614 0.9535 − 0.0209

137 CFD38 GWM294 39.7165 0.8489 0.0013

159 CFD38 GWM294 36.638 0.9537 − 0.0016

‑Ch15‑5D 7 WMS261 JESPR297 32.7536 0.9607 0.0148

135 XGWM011 JESPR280 39.4811 0.8469 0.0009

138 JESPR280 WMS340 39.8181 0.8478 − 0.0070

168 WMS340 JESPR282 33.824 0.95 − 0.0080

185 WMS340 JESPR282 32.8221 0.9507 0.0030

‑Ch16‑6A 43 WMC516 WMS118 37.929 0.8452 0.0030

47 WMS118 XGWM108 40.1389 0.8504 − 0.0023

73 WMS118 XGWM108 38.4625 0.9541 − 0.0014

‑Ch17‑6B 5 XGWM186 XPSP3200 38.204 0.9564 − 0.0190

39 XGWM186 XPSP3200 36.8637 0.8546 − 0.0215

44 XPSP3200 JESPR9 36.7797 0.8585 − 0.0235

‑Ch18‑6D 59 WMS058 WMC235 29.0349 0.9574 0.0221

73 WMC235 XWMC233 27.5574 0.9571 0.0188

‑Ch19‑7A 120 XWMC009 GWM181 35.1153 0.9549 − 0.0035

151 XWMC009 GWM181 31.242 0.9585 0.0080

160 GWM181 JESPR290 31.5985 0.8614 0.0412

163 GWM181 JESPR290 31.6545 0.9482 0.0114

223 JESPR290 JESPR304 32.1148 0.8729 0.0646

264 WMC177 WMS043 152.458 6.5384 1.0027

271 WMS043 WMS044 144.937 6.5372 1.0032
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Table 6 Position, characters, and distribution the QTLs related to leaf wilting among nineteen chromosomes out of twenty‑one wheat 
chromosomes

Chromosome Position Left Marker Right Marker LOD PVE (%) Add

‑Ch1‑1A 39 XWMC304 XGWM610 17.4069 1.4801 0.0521

259 JESPR311 JESPR7 25.6445 1.4736 − 0.0308

394 WMS198 WMS337 28.8588 1.4826 − 0.0584

‑Ch2‑1B 119 WMS130 JESPR294 15.5173 1.4733 0.0358

‑Ch3‑1D 61 WMC083 WMC170 19.5631 1.5356 − 0.0081

139 GWM271 XGWM493 24.2811 1.4685 0.0499

192 XGWM493 XGWM130 16.9353 1.5755 0.0080

218 XGWM493 XGWM130 22.9043 1.4934 0.0029

‑Ch4‑2A 60 JESPR2 JESPR1 21.0829 1.4521 − 0.0257

229 GWM219 BARC101 20.7341 1.5709 0.0967

241 BARC101 CFD65 16.8518 1.5776 0.1122

‑Ch5‑2B 172 BARC124 WMS325 48.1412 2.165 0.1868

179 WMS325 WMS297 40.9734 2.179 0.1843

191 WMS297 WMS193 26.859 1.5677 0.1432

220 WMS193 WMS165 30.6749 1.9623 0.1286

337 WMS144 WMC144 25.9318 1.513 0.0143

345 WMC144 WMC167 23.2376 1.4579 0.0052

359 WMC144 WMC167 22.3533 1.4586 − 0.0399

432 WMC445 XGWM273 17.488 1.7303 0.0011

‑Ch6‑2D 208 GWM292 JESPR6 23.6446 1.4494 − 0.0133

229 GWM292 JESPR6 24.7027 1.4517 − 0.0232

234 JESPR6 WMS006 26.735 1.4583 − 0.0281

‑Ch7‑3A 334 GWM148 XGWM389 11.8946 1.5697 − 0.0263

‑Ch8‑3B 109 WMC044 WMC245 21.0153 1.4801 − 0.0107

‑Ch9‑3D 87 JESPR18 JESPR15 17.3147 1.4543 − 0.0231

93 JESPR15 WMC333 23.7691 1.4605 − 0.0264

‑Ch10‑4A 22 JESPR12 WMC018 18.9897 1.5582 0.0009

41 WMC018 JESPR4 27.6101 1.9431 0.0079

46 JESPR4 JESPR296 38.4845 1.9785 0.0033

‑Ch11‑4B 271 WMS109 XGWM350 8.3317 1.5451 0.0391

‑Ch14‑5B 105 WMS060 XWMC603 22.9912 1.4643 0.0136

‑Ch17‑6B 83 JESPR9 JESPR8 20.0978 1.4532 − 0.0056

‑Ch18‑6D 61 WMS058 WMC235 16.8681 1.5493 0.0933

73 WMC235 XWMC233 19.853 1.5985 0.0760

‑Ch19‑7A 70 WMS095 XGWM626 16.0521 1.618 − 0.0311

112 XGWM626 XWMC009 21.471 1.4436 − 0.0188

119 XWMC009 GWM181 24.079 1.4653 − 0.0075

152 XWMC009 GWM181 22.432 1.5547 0.0712

162 GWM181 JESPR290 22.8931 1.5316 0.0929

222 JESPR290 JESPR304 26.2245 1.5366 0.1215

229 JESPR304 WMC177 26.1425 1.5501 0.1487

278 WMS043 WMS044 81.141 5.268 0.9462
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