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Prediction of the hot asphalt mix properties 
using deep neural networks
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Abstract 

Background: Marshall design process is the most common method used for estimating the Optimum asphalt con-
tent (OAC) and this process is called the asphalt mix design. However, this method is time-consuming, labor-intensive, 
and its results are subjected to variations.

Results: This paper employs artificial neural network (ANN) for the estimation of Marshall test parameters (OAC, Sta-
bility, Flow, Air voids, Voids in mineral aggregate) using the aggregate gradation as the input of the prediction process. 
Multiple ANNs are tested in order to optimize the NN hyperparameters and produce accurate predictions. Different 
activation functions, number of hidden layers, and number of neurons per hidden layer are tested and heatmaps are 
generated to compare the performance of every ANN. Results show that the optimum ANN hyperparameters change 
depending on the predicted parameter. Finally, the deep NN can predict the OAC, stability, flow, density, air voids, and 
voids in mineral aggregate with R values of 0.91, 0.8, 0.53, 0.65, 0.77, and 0.66.

Conclusion: The linear activation function is the most efficient activation function and generates more accurate 
results than the logistic and the hyperbolic tangent functions. Additionally, it is shown that the deep neural net-
work approach represents a major innovative tool for the prediction of the asphalt mix properties as results of this 
approach outperforms results of the shallow ANN that consists of a single hidden layer which is the only approach 
used in the literature. Thus, the use of the deep ANN can be useful during the phase of the design of the asphalt mix 
process because of its ability to predict variables with high accuracy. For example, the ANN with 3 hidden layers and 
16 neurons per layer with the linear activation function can predict the OAC with high accuracy (R = 0.91), which can 
be helpful in the design process as the ANN can be employed for the prediction of the OAC of the asphalt mix.

Keywords: Artificial neural networks, Early stopping technique, Hot asphalt mix, Marshall mix design, Mechanical 
properties, Optimum asphalt content, Volumetric properties
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1  Background
Asphalt concrete was originally invented with the pur-
pose of carrying the high pressure and heavy loads gen-
erated from aircrafts [1]. In general, pavement consists 
of multiple layers to transfer the heavy loads to the soil 
without causing soil failure [2]. The process of asphalt 
pavement design consists of two main processes. The 

first process is the thickness design which focuses on 
estimating the required thickness of each pavement layer 
to transfer traffic load safely to the soil. The second pro-
cess, which is the main focus of this paper, is called the 
asphalt mix design and it focuses on estimating the opti-
mum aggregate and bitumen characteristics in the mix 
[3–8]. Usually, the asphalt mix design process is carried 
out through laboratory tests with the goal of estimating 
the optimum asphalt content (OAC) in the asphalt mix 
[9] as the OAC has a significant influence on the final 
performance of the mix [10]. Low asphalt content leads 
to harsh mix which causes durability issues, while high 
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asphalt content leads to rutting, flushing, and insufficient 
air voids [11].

Marshall mix design method was firstly proposed in 
1939 by Bruce Marshall in the Mississippi State High-
way Department [1]. Marshall test was widely adopted in 
1948 with slight modifications from country to country 
[9]. Currently, Marshall test remains the most common 
way used for estimating the optimum asphalt content 
[12, 13]. Marshall test procedure requires the prepara-
tion of at least fifteen samples for five different asphalt 
contents (three samples for each) then draw the design 
curves [14, 15] and estimate the OAC that satisfies a pre-
defined criterion which depends on the Maximum stabil-
ity, Maximum density or unit weight, predefined air voids 
percent, and a min value for voids in mineral aggregate 
[9]. Finally, the OAC is estimated as the average value 
that corresponds to the maximum stability, maximum 
unit weight, and prespecified air voids percentage [14, 
15]. As a result, the estimation of the OAC is subjected 
to significant deviations, as it relies on the average value 
of a group of different ACs. Additionally, Marshall design 
method requires significant time for sample preparation 
and testing [14, 16]. Consequently, a large number of 
studies focus on developing alternative methods for Mar-
shall test to save time.

AC is a composite material that consists of aggregate 
and bitumen. Aggregate makes up a high proportion of 
volume and mass of mixtures (around 95% of the mix 
weight), hence it is considered as the most important 
constituent of asphalt concrete [17] so characteristics 
of the asphalt mix mainly depend on the aggregate used 
and its gradation [18]. Thus, it is predicted that the aggre-
gate properties have an enormous impact on the mixture 
properties. Aggregate gradation can be defined as the dis-
tribution of particle sizes expressed as a percentage of the 
total weight [18, 19] and considered as the centerpiece 
property of aggregate which needs careful considera-
tion due to its effect on mix properties and performance 
of HMA mixtures, including air void, stability, stiffness, 
durability, permeability, workability, fatigue resistance, 
frictional resistance, resistance to moisture damage [18, 
20] and also rutting resistance of asphalt concrete under 
traffic and environmental loads [21]. As a result, this 
parameter is considered as a very important parameter in 
the process of mixture design. For example, changing the 
aggregate gradation changes the required asphalt content 
because the asphalt content is responsible for coating the 
aggregate surface and filling the voids between the aggre-
gate particles [16]. Moreover, the main sources of the mix 
strength or stability are the friction between the aggre-
gate particles, interlocking resistance between the aggre-
gate particles and the consistency of the bitumen used 
[14, 17].

Therefore, the main objective of this paper is to test the 
effectiveness of using ANN for accurate and fast predic-
tion of the asphalt mix properties (mechanical and volu-
metric properties) to enhance the mix design process in 
the laboratory. The ANNs developed in this study were 
trained and tested on the basis of laboratory data of 
HMAs for two types of aggregate. The tests were carried 
out in the Highway and Airport Engineering Research 
Laboratory, Cairo University, Egypt for the most com-
mon aggregate (3D, 4C) and bitumen (60/70) used in 
Egypt.

Over the past few years, ANNs have been used in the 
prediction problem and indeed in the pavement engi-
neering field. The study by Kaseko and Ritchie (1993) 
is one of the oldest studies that employed ANN for the 
detection of pavement cracks [22]. This was followed by 
Gagarin, Flood, and Albrecht (1994) study that employed 
ANN for the estimation of different truck attributes 
from the strain response readings from bridges [23]. In 
1995, Cal employed an ANN that takes plasticity index, 
water content, and liquid limit as an input for the predic-
tion of the soil classification [24]. In 1998, Roberts and 
Attoh-Okine employed an ANN for the prediction of the 
pavement condition [25]. Similarly, the study by Attoh-
Okine (2001) proposed an ANN that uses the pavement 
characteristics and the surrounding conditions such as 
weather, age, and traffic condition in the prediction of the 
pavement condition [26]. In 2010, Tapkın et al. proposed 
an ANN for estimating Marshal test results for dense 
asphalt mixes that are modified with different types and 
percentages of an additive which is the polypropylene 
[10]. In 2014, Khuntia et  al. used ANN for the predic-
tion of Marshall test results for the polyethylene modified 
mixes using two techniques which are ANNs and support 
vector machine [27]. In 2016, Ozturk et al. proposed an 
ANN for the prediction of the volumetric properties of 
the asphalt mix [28]. In 2017, Ivica and Ivan proposed an 
ANN for the prediction of the air voids and the asphalt 
content of asphalt mixes in Croatia [29]. In 2018, Baldo 
et al. used the ANN technique for the prediction of the 
mechanical properties of asphalt mixes (stability and 
flow) [9]. In 2019, Nguyen et al. used artificial intelligence 
techniques for the prediction of the characteristics of the 
stone matrix asphalt [30].

Since 2006, when Hinton proposed several techniques 
for deep learning structures, configuring deep networks 
with more than three layers have shown widespread 
success in training neural networks. Artificial Neural 
Networks (ANN) is a learning algorithm that imitates 
the human neural system. An ANN consists of multiple 
nodes, called neurons, that communicate through syn-
apses. Typically, there are three sets of layers: input layer, 
hidden layer, and output layer and each type of layer plays 
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unique roles. The Input layer receives input information, 
the output layer yields output signals, and the interme-
diate layer (hidden layer) receives signals from the input 
layer and manipulates the information to give results to 
the output layer. An ANN model can have multiple inter-
mediate layers [31]. In general, ANNs can be defined as 
parallel distributed processors that have the potential 
to store the learned knowledge and use it in the future. 
The fundamental unit of any ANN is the artificial neu-
ron. The function of the neuron is to process the input 
signals and modulate its own response through an acti-
vation function or sometimes called the transfer func-
tion. The activation function determines the interruption 
or transmission of the outgoing impulse. Each neuron 
computes a weighted sum of elements of the input vec-
tor (Xs) through weights associated with the connections 
(W) [32]. Then, the neuron output value is calculated by 
applying the assigned transfer function to the weighted 
sum as follows:

There are many types of neural networks such as 
feedforward and feedback. Also, there are many types 
of training techniques deepening on the data such as 
supervised and unsupervised learning. In this study, the 
supervised learning is employed for the proposed ANN. 
Additionally, the backpropagation learning algorithm is 
the most common training algorithm used for the train-
ing of ANN, so the backpropagation technique is used 
for the training of the proposed ANN in this paper. Addi-
tionally multiple ANN will be tested to optimize the 
ANN architecture.

2  Methods
2.1  Material selection
In general, two aggregate gradations are commonly used 
in Egypt (4C and 3D) [10–18]. Between 2015 and 2016, 
the highway and research laboratory, Cairo University, 
Egypt collected 2073 asphalt mix samples from different 
locations all over Egypt. Out of these 2073 samples, 1186 
are wearing course samples, and 887 are binder course 
samples. Results of laboratory tests show that gradation 
4C is the most common gradation used in the wearing 
course, and gradation 3D is the most common gradation 
used in the binder course samples followed by grade gra-
dation 4C as shown in Fig. 1. On the other hand, the fig-
ure shows the poor quality control in sites as most of the 
collected samples do not satisfy any aggregate gradations 
according to the Egyptian code for urban and rural roads. 

H = WX + B

Y = F(H)

For the bitumen or binder used in Egypt, the most com-
mon binder grade used in Egypt is binder 60–70. These 
results comply with the results of two recent studies by 
Mousa et al. (2018) and Othman and Abdelwahab (2021) 
[10, 18] in Egypt which showed that binder grade 60–70 
and aggregate 4C and 3D are the most common binder 
and aggregate gradations used in Egypt [10].

2.2  Characteristics of the materials used
In this study, 102 asphalt mix samples are prepared and 
tested using bitumen 60–70 and dolomite aggregate gra-
dations 4C and 3D. Properties of the aggregate used (3D 
and 4C) are summarized in Table  1 and tier limits are 
shown in a sieve size distribution graph in Fig. 2. Addi-
tionally, properties of the bitumen used (60/70) are sum-
marized in Table 2.

out of
limits

4C 4B 3D 3C 3B 2D
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Fig. 1 Number of wearing course and binder course samples for 
different aggregate gradations

Table 1 Aggregate gradations (4C and 3D) used in the mixes 
(The Egyptian code for urban and rural roads (ECP, 2008) part (4)) 
[33]

Sieve size Limits

Wearing surface 
(4C)

Binder layer 
(3D)

Min Max Min Max

% Passing from sieve 1 in 100 100 100 100

% Passing from sieve 3/4 in 80 100 75 100

% Passing from sieve 3/8 in 60 80 45 70

% Passing from sieve number 4 48 65 30 50

% Passing from sieve number 8 35 50 20 35

% Passing from sieve number 30 19 30 5 20

% Passing from sieve number 50 13 23 3 12

% Passing from sieve number 100 7 15 2 8

% Passing from sieve number 200 3 8 0 4
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2.3  Marshall test
For every asphalt mix, five binder contents were chosen, 
and three samples were prepared and tested for every sin-
gle binder content. Thus, for each mix, at least 15 samples 
were prepared and tested in the standard Marshall test 
to estimate the flow, stability values, and the volumetric 

characteristics. Then, for every binder content, the aver-
age value of these three samples was used as an indicator 
for the stability, flow, and the remaining volumetric prop-
erties. At this point, the five design curves were drawn 
to estimate the OAC that corresponds to the maximum 
stability, maximum density, and specific percentage of air 
voids in the mix as follows:

In this paper, the standard Marshall test is used to esti-
mate the optimum asphalt content for 102 asphalt mixes 
samples prepared using bitumen 60–70 and aggregates 
(3D and 4C). Out of these 102 samples, 63 were prepared 
using aggregate grade 3D and 39 were prepared using 
aggregate grade 3C.

2.4  ANN structure
The accuracy of any ANN depends on setting the hyper-
parameters and selecting the appropriate ANN architec-
ture. However, till the moment, there is no scientific way 
for the selection of the hyperparameters or the archi-
tecture. Thus, the optimum ANN architecture is usually 
selected following the trial-and-error technique. Thus, in 
this study multiple ANN are tested using different acti-
vation functions, different number of hidden layers, and 
different number of neurons per hidden layer.

The activation function or the transfer function may 
take multiple analytical expressions. In this study, three 
different activation functions are tested. These activa-
tion functions are shown in Fig. 3 and can be expressed 
as follows:

– The Linear activation function or called the Rectified 
Linear Unit (ReLU) function

OAC =
OACstability +OACdensity +OACair voids
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Fig. 2 Aggregate gradation limits for gradations 4C and 3D used in 
the mixes

Table 2 Specifications of the bitumen used (The Egyptian code 
for urban and rural roads (ECP, 2008) part (4)) [33]

Experiment Specifications

Penetration (0.1 mm) 60–70

Softening point (degree) 45–55

Viscosity (centistoke) Min 320

Logistic ReLU Tanh
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Fig. 3 The three transfer/activation functions tested
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– The logistic activation function or called the sigmoid 
function

– The hyperbolic activation function or called the tanh 
activation function

For every activation function, multiple ANN archi-
tectures are tested with different number of hidden lay-
ers and different number of neurons per layer. For every 
activation function, 64 different ANN architectures are 
tested starting from an ANN with one hidden layer to 
an ANN with 4 hidden layers. Moreover, for every hid-
den layer, different number of neurons per layer are 
tested starting from 4 neurons per layer to 20 neurons 
per layer. Figure 4 shows the general architecture of the 
ANNs tested in this study. Additionally, while initial 

f (x) =

{

x x > 0

0 x < 0

f (x) =
1

1+ e−x

f (x) =
ex − e−x

ex + e−x
=

2

1+ e−2x
− 1

weights of the ANN significantly influence the final 
performance of the ANN and the speed of the training 
process, there is no specific approach for estimating the 
best initial weights. Thus, initial weights are assigned 
randomly at the beginning of the training process.

For the training of the ANN, the dataset was randomly 
divided into two sets: training set (61%-62 samples) and 
testing set (49%-40 samples) while the backpropagation 
technique was used to train the data for 500 iterations. 
For the testing set, 50% of the testing samples were used 
to monitor the performance of the training process to 
avoid overfitting and this segment of the dataset is called 
the validation set. Additionally, the early stopping tech-
nique was employed to avoid overfitting. Overfitting 
occurs when the training set error declines while the vali-
dation or the testing set error increases. Thus, the early 
stopping technique stops the training once the validation 
set error starts to increase [34, 35]. However, the train-
ing of the neural network is a stochastic process, and the 
error of the validation set might go up or down at any 
point. Thus, the first overfitting point might not be the 
perfect point to stop the training. As a result, the perfor-
mance of the ANN is monitored for a number of itera-
tions and if the validation set error keeps increasing the 

Fig. 4 General architecture of the proposed ANNs
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training process should stop. On the other hand, if the 
validation set error declines, the training process should 
continue [36]. In this study, 100 iterations are used to 
monitor the validation set error. After these 100 itera-
tions, if the validation set error declined again the train-
ing process proceeds, other than that the training process 
is halted.

3  Results
The selection of the optimum ANN hyperparameters 
should be based on the evaluation of the ANNs’ ability 
to predict the outputs [37, 38], which through statisti-
cal indicators. The main goal of the evaluation process 
or testing process is to estimate the ANN generaliza-
tion error. The term generalization can be defined as 
the ability of the model to return high accuracy results 
on unknown data that is not used in the training pro-
cess. The most common statistical indicator is the coef-
ficient of correlation (R) that measures the linear relation 
between the ANN predictions (Xprediction) and the target 
values of the actual values ( Xactual ) and it is calculated as 
follows:

R =
n[
∑

i Xactual(i) ∗ Xprediction(i)] − [
∑

i Xactual(i) ∗
∑

i Xprediction(i)]
√

[

n
∑

i Xactual(i)
2
−

(
∑

i Xactual(i)
)2
][

n
∑

i Xprediction(i)
2
−

(
∑

i Xprediction(i)
)2
]

The coefficient of correlation of the different ANNs for 
the testing set are shown in Tables 3, 4, 5, 6, 7 and 8, and 
for visualization purposes, the cells are highlighted from 
red which indicates the lowest value to green which indi-
cates the highest value according to their R-value.

3.1  OAC
Table 3 reports the R values in the prediction of the OAC 
for the different ANNs. Results show that the logistic 
activation function produces the highest R-value, and 
the highest R-value (= 0.91) is achieved using three hid-
den layers and 16 neurons per layer. Additionally, for 
the three activation functions, no specific pattern can be 
observed with respect to the number of neurons per hid-
den layer or the number of hidden layers in the ANN.

3.2  Stability
Table 4 reports the R values in the prediction of the sta-
bility value for the different ANNs. Results show that, in 
general, the R values of the linear activation function are 
better than the R-values produced using the other acti-
vation functions. On the other hand, the highest R-value 
(= 0.8) is achieved using an ANN with three hidden layers, 

Table 3 Coefficient of correlation for different ANN architectures in the prediction of the OAC testing set

OAC
Number of Hidden Layers

Linear ac�va�on func�on Logis�c ac�va�on func�on Tanh ac�va�on func�on
1 2 3 4 1 2 3 4 1 2 3 4

Number 
of 

Neurons 
per 

Layer

4 0.839 0.876 0.849 0.844 0.866 0.851 0.854 0.85 0.86 0.859 0.805 0.853
5 0.868 0.863 0.853 0.794 0.875 0.764 0.849 0.865 0.851 0.839 0.817 0.839
6 0.831 0.847 0.804 0.848 0.858 0.874 0.855 0.84 0.889 0.859 0.852 0.79
7 0.819 0.857 0.847 0.814 0.831 0.806 0.835 0.852 0.85 0.856 0.892 0.747
8 0.806 0.87 0.814 0.863 0.881 0.875 0.85 0.847 0.631 0.844 0.818 0.589
9 0.832 0.859 0.829 0.858 0.857 0.866 0.849 0.86 0.863 0.848 0.834 0.853

10 0.858 0.849 0.826 0.817 0.848 0.834 0.874 0.848 0.751 0.857 0.877 0.846
11 0.822 0.841 0.846 0.83 0.781 0.822 0.862 0.831 0.877 0.828 0.818 0.883
12 0.842 0.847 0.805 0.868 0.845 0.878 0.858 0.884 0.868 0.847 0.815 0.794
13 0.821 0.811 0.663 0.82 0.842 0.815 0.907 0.859 0.799 0.756 0.777 0.671
14 0.829 0.829 0.827 0.831 0.789 0.774 0.85 0.809 0.835 0.839 0.748 0.857
15 0.827 0.838 0.854 0.849 0.827 0.729 0.87 0.795 0.82 0.851 0.81 0.632
16 0.827 0.839 0.828 0.824 0.821 0.882 0.909 0.868 0.87 0.831 0.759 0.559
17 0.825 0.83 0.829 0.823 0.879 0.894 0.803 0.867 0.741 0.779 0.802 0.837
18 0.834 0.829 0.83 0.824 0.823 0.878 0.852 0.823 0.823 0.873 0.63 0.558
19 0.833 0.835 0.83 0.824 0.885 0.835 0.836 0.85 0.891 0.847 0.753 0.537
20 0.831 0.792 0.832 0.829 0.822 0.862 0.897 0.879 0.81 0.825 0.845 0.767

MAX 0.909
MIN 0.537
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9 neurons per layer, and the hyperbolic tanh activation 
function. Additionally, for the logistic and tanh activation 
functions, no specific pattern can be observed with respect 
to the number of neurons per hidden layer or the number 
of hidden layers in the ANN. However, for the linear acti-
vation function, the performance of the ANN gets worth 
with the increase in the number of the hidden layers.

3.3  Flow
Table 5 reports the R-values in the prediction of the flow 
value for the different ANNs. Results show that, in gen-
eral, the R-values of the linear activation function are 
better than the R values produced using the other acti-
vation functions. On the other hand, the highest R-value 
(= 0.53) is achieved using an ANN with two hidden lay-
ers, 15 neurons per layer, and the logistic activation func-
tion. Additionally, for the three activation functions, the 
performance of the ANN, in general, gets worth with the 
increase in the number of the hidden layers.

3.4  Density
Table 6 reports the R-values in the prediction of the den-
sity value for the different ANNs. Results show that, in 
general, the R-values of the linear activation function 
are better than the R values produced using the other 
activation functions, and the highest R-value (= 0.65) is 

achieved using an ANN with two hidden layers, 11 neu-
rons per layer. Additionally, for the three activation func-
tions, the performance of the ANN, in general, gets worth 
with the increase in the number of the hidden layers.

3.5  AV
Table  7 reports the R-values in the prediction of the 
AV value for the different ANNs. Results show that, in 
general, the R values of the linear activation function 
are better than the R-values produced using the other 
activation functions. On the other hand, the highest 
R-value (= 0.77) is achieved using an ANN with four 
hidden layers, 8 neurons per layer, and the hyperbolic 
tanh activation function. Additionally, for the logistic 
and tanh activation functions, no specific pattern can 
be observed with respect to the number of neurons 
per hidden layer or the number of hidden layers in the 
ANN. However, for the linear activation function, the 
performance of the ANN gets worth with the increase 
in the number of the hidden layers.

3.6  VMA
Table  8 reports the R-values in the prediction of the 
VMA value for the different ANNs. Results show that, 
in general, the R-values of the linear activation func-
tion are better than the R-values produced using the 

Table 4 Coefficient of correlation for different ANN architectures in the prediction of the stability value testing set

Stability
Number of Hidden Layers

Linear ac�va�on func�on Logis�c ac�va�on func�on Tanh ac�va�on func�on
1 2 3 4 1 2 3 4 1 2 3 4

Number 
of 

Neurons 
per 

Layer

4 0.768 0.698 0.668 0.734 0.714 0.726 0.741 0.743 0.719 0.734 0.61 0.686
5 0.763 0.668 0.738 0.722 0.721 0.696 0.704 0.73 0.74 0.645 0.767 0.488
6 0.753 0.751 0.701 0.758 0.672 0.728 0.72 0.759 0.731 0.696 0.781 0.606
7 0.764 0.765 0.75 0.622 0.699 0.678 0.749 0.738 0.729 0.707 0.719 0.476
8 0.752 0.727 0.749 0.671 0.743 0.765 0.719 0.746 0.711 0.661 0.757 0.445
9 0.73 0.746 0.646 0.732 0.699 0.722 0.709 0.749 0.695 0.716 0.795 0.661
10 0.764 0.771 0.764 0.763 0.612 0.682 0.661 0.731 0.702 0.75 0.469 0.736
11 0.731 0.753 0.717 0.757 0.615 0.676 0.717 0.706 0.793 0.751 0.648 0.746
12 0.749 0.641 0.781 0.683 0.787 0.722 0.699 0.749 0.642 0.688 0.653 0.746
13 0.776 0.772 0.589 0.764 0.762 0.675 0.601 0.74 0.713 0.736 0.587 0.753
14 0.753 0.76 0.757 0.756 0.752 0.78 0.703 0.695 0.678 0.563 0.717 0.647
15 0.642 0.743 0.733 0.753 0.705 0.575 0.704 0.631 0.7 0.717 0.754 0.621
16 0.76 0.755 0.766 0.763 0.731 0.682 0.718 0.682 0.591 0.683 0.615 0.33
17 0.759 0.753 0.764 0.755 0.538 0.616 0.641 0.725 0.407 0.648 0.65 0.542
18 0.727 0.756 0.76 0.745 0.714 0.688 0.566 0.779 0.592 0.722 0.199 0.205
19 0.759 0.762 0.769 0.761 0.609 0.695 0.664 0.741 0.453 0.654 0.246 0.494
20 0.755 0.749 0.757 0.753 0.557 0.592 0.61 0.712 0.715 0.7 0.525 0.168

MAX 0.795
MIN 0.168
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other activation functions. On the other hand, the 
highest R-value (= 0.66) is achieved using an ANN 
with four hidden layers, 7 neurons per layer, and the 
hyperbolic tanh activation function. Additionally, for 
the three activation functions, no specific pattern can 
be observed with respect to the number of neurons 
per hidden layer or the number of hidden layers in the 
ANN.

4  Discussion
It can be seen that the linear activation function produces 
the best R-values; however, the linear activation function 
does not provide the highest R-value for all the outputs. 
Additionally, the optimum ANN architecture changes 
according to the desired output. Thus, in this section, 
a search for the optimum ANN that produces the best 
results for all outputs will be investigated.

4.1  Optimum ANN architecture for all output variables
Instead of choosing the optimum ANN that optimizes 
the performance for a single desired output. This section 
focuses on choosing the optimum ANN architecture that 
optimizes that performance for all predictions. In other 
words, this section focuses on choosing the optimum 
ANN architecture that produces the best predictions for 
all the outputs. Thus, a weight is assigned to each output 
R-value and then the weighted sum is calculated for every 
signal ANN. In this case, the new R-value is calculated as 
follows:

The updated R-values are shown in Table  9. It can 
be seen that the linear activation function, in general, 
provides the best results for all the predictors, followed 
by the logistic activation function, then the hyperbolic 
tanh activation function. From the updated table, the 
optimum ANN that provides the best predictions for all 
the six predictions has two hidden layers, 11 neurons 
per layer, and using the linear activation function as 
shown in Fig.  5. A comparison between the best pos-
sible ANN architecture and the optimum ANN for all 
predictions is shown in Table 10. It is clear that the dif-
ference between the two ANN is not significant for the 
OAC, stability, flow, density, and AV; however, there is 
a considerable error in the predictions of the VMA for 
the optimum ANN for all predictions when compared 
with the optimum ANN for the VMA.

4.2  Optimum ANN for the prediction of the asphalt mix 
mechanical characteristics (stability and flow)

Similar to the previous section, this section focuses 
on choosing the optimum ANN architecture that 
optimizes that ANN predictions of the asphalt mix 
mechanical properties. Thus, a weight is assigned 
to each output R-value and then the weighted sum is 

Rnew =
ROAC

6
+

Rstability

6
+

Rflow

6
+

Rdensity

6
+

RAV

6
+

RVMA

6

Table 5 Coefficient of correlation for different ANN architectures in the prediction of the flow value testing set

Density
Number of Hidden Layers

Linear ac�va�on func�on Logis�c ac�va�on func�on Tanh ac�va�on func�on
1 2 3 4 1 2 3 4 1 2 3 4

Number 
of 

Neurons 
per Layer

4 0.519 -0.0997 -0.00864 0.18 0.145 -0.0187 -0.0446 -0.064 -0.0857 -0.12 -0.0558 -0.041
5 0.512 -0.0963 -0.306 -0.291 0.0496 -0.179 -0.136 -0.0512 -0.0832 0.0335 0.0117 -0.112
6 0.458 0.534 0.288 0.0106 0.0877 0.105 -0.0451 -0.0186 -0.358 -0.0889 -0.0737 -0.307
7 0.419 0.472 0.13 0.261 0.176 0.122 -0.275 -0.015 0.0258 -0.143 0.118 -0.144
8 0.526 0.482 0.252 0.415 0.191 -0.0557 -0.281 -0.073 -0.153 -0.509 -0.45 -0.483
9 0.461 0.52 0.464 0.359 -0.279 -0.185 -0.345 -0.113 -0.0718 -0.0186 0.195 0.196

10 0.342 0.247 0.433 0.416 0.186 -0.0453 0.252 -0.0367 0.347 0.00519 -0.358 -0.138
11 0.467 0.653 0.443 0.45 0.418 -0.464 -0.0159 0.0218 0.315 0.261 -0.205 0.464
12 0.473 0.338 0.283 0.344 0.143 0.219 -0.238 -0.238 0.264 -0.0559 -0.394 0.0598
13 0.385 0.482 -0.0497 0.438 0.169 0.167 -0.124 0.1 0.249 0.364 0.303 0.365
14 0.464 0.447 0.445 0.484 0.324 0.187 0.158 0.154 0.209 -0.0906 0.184 -0.0365
15 0.506 0.339 0.407 0.375 0.192 0.249 0.126 -0.0387 0.399 0.379 -0.219 0.0677
16 0.43 0.446 0.46 0.466 0.397 0.0302 -0.0295 0.051 0.258 0.228 -0.488 0.08
17 0.462 0.44 0.435 0.455 0.352 0.246 0.0417 0.0137 0.348 -0.126 -0.152 -0.0175
18 0.382 0.469 0.462 0.462 -0.237 0.145 0.138 -0.219 0.28 -0.353 0.208 0.253
19 0.464 0.45 0.528 0.442 0.52 -0.043 -0.379 -0.145 0.195 0.207 0.397 -0.292
20 0.46 0.402 0.459 0.467 0.202 0.212 -0.0702 0.0305 0.235 -0.321 -0.129 -0.0869

MAX 0.653
MIN -0.509
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calculated for every signal ANN. In this case, the new 
R-value is calculated as follows:

The updated R-values are shown in Table  11. It can 
be seen that the linear activation function, in general, 
provides the best results for all the predictors, followed 
by the logistic activation function, then the hyper-
bolic tanh activation function. From the updated table, 
results show that the optimum ANN that provides the 
best predictions of the asphalt mix mechanical prop-
erties is the same as the optimum ANN for all predic-
tions. This ANN has two hidden layers, 11 neurons per 
layer, and using the linear activation function.

4.3  Optimum ANN for the prediction of the asphalt mix 
volumetric characteristics (AV, VMA, and density)

Similar to the previous two section, this section focuses 
on choosing the optimum ANN architecture that opti-
mizes that ANN predictions of the asphalt mix volumet-
ric properties. Thus, a weight is assigned to each output 
R-value and then the weighted sum is calculated for every 
signal ANN. In this case, the new R-value is calculated as 
follows:

Rnew =
Rstability

2
+

Rflow

2

Rnew =
Rdensity

3
+

RAV

3
+

RVMA

3

The updated R-values are shown in Table 12. It can be 
seen that the linear activation function, in general, pro-
vides the best results for all the predictors, followed by 
the logistic activation function, then the hyperbolic tanh 
activation function. From the updated table, results show 
that the optimum ANN that provides the best predic-
tions of the asphalt mix volumetric properties is the same 
as the optimum ANN for all predictions and the same as 
the optimum ANN for the prediction of the asphalt mix 
mechanical properties. This ANN has two hidden lay-
ers, 11 neurons per layer, and using the linear activation 
function.

5  Conclusions
This study focuses on the prediction of the OAC, 
mechanical, and volumetric properties of the hot asphalt 
mix from the aggregate gradation using ANN. 204 dif-
ferent ANN are tested using different activation func-
tions, number of hidden layers, and number of neurons 
per layer in order to choose the ANN that optimizes the 
prediction accuracy based on results of 102 asphalt mix 
samples that were prepared and tested in the standard 
Marshall test. The main outcomes of this study can be 
summarized as follows:

– The optimum ANN architecture changes depending 
on the desired output as shown in Table 13.

Table 6 Coefficient of correlation for different ANN architectures in the prediction of the density value testing set

AV
Number of Hidden Layers

Linear ac�va�on func�on Logis�c ac�va�on func�on Tanh ac�va�on func�on
1 2 3 4 1 2 3 4 1 2 3 4

Number 
of 

Neurons 
per 

Layer

4 0.732 0.453 0.548 0.62 0.447 0.67 0.533 0.513 0.522 0.565 0.217 0.54
5 0.721 0.584 0.523 0.438 0.654 0.477 0.443 0.491 0.503 0.504 0.65 0.0858
6 0.716 0.656 0.702 0.664 0.626 0.58 0.516 0.547 0.506 0.501 0.512 -0.0159
7 0.745 0.729 0.627 0.648 0.568 0.612 0.52 0.541 0.565 0.551 0.56 0.455
8 0.662 0.73 0.558 0.704 0.753 0.609 0.556 0.474 0.159 0.641 0.659 0.768
9 0.59 0.699 0.651 0.684 0.721 0.62 0.57 0.589 0.555 0.528 0.712 0.466
10 0.728 0.685 0.745 0.701 0.485 0.566 0.641 0.542 0.698 0.525 0.457 0.481
11 0.745 0.714 0.729 0.734 0.687 0.593 0.567 0.553 0.708 0.379 0.463 0.346
12 0.735 0.681 0.653 0.608 0.648 0.646 0.449 0.542 0.48 0.529 0.648 0.493
13 0.692 0.717 0.641 0.738 0.538 0.632 0.587 0.52 0.591 0.65 0.51 0.523
14 0.731 0.734 0.73 0.73 0.572 0.537 0.606 0.524 0.652 0.366 0.538 0.552
15 0.748 0.489 0.712 0.732 0.65 0.531 0.454 0.597 0.526 0.598 0.549 0.609
16 0.74 0.722 0.742 0.73 0.72 0.446 0.455 0.599 0.727 0.499 0.641 0.0864
17 0.741 0.734 0.729 0.735 0.404 0.464 0.52 0.611 0.544 0.58 0.675 0.299
18 0.674 0.731 0.74 0.724 0.659 0.592 0.504 0.671 0.646 0.423 0.34 0.302
19 0.728 0.728 0.67 0.736 0.536 0.615 0.581 0.44 0.596 0.42 0.333 -0.368
20 0.735 0.708 0.729 0.73 0.519 0.446 0.52 0.481 0.491 0.445 0.514 0.59

MAX 0.768
MIN -0.368
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Table 7 Coefficient of correlation for different ANN architectures in the prediction of the AV testing set

AV
Number of Hidden Layers

Linear ac�va�on func�on Logis�c ac�va�on func�on Tanh ac�va�on func�on
1 2 3 4 1 2 3 4 1 2 3 4

Number 
of 

Neurons 
per 

Layer

4 0.732 0.453 0.548 0.62 0.447 0.67 0.533 0.513 0.522 0.565 0.217 0.54
5 0.721 0.584 0.523 0.438 0.654 0.477 0.443 0.491 0.503 0.504 0.65 0.0858
6 0.716 0.656 0.702 0.664 0.626 0.58 0.516 0.547 0.506 0.501 0.512 -0.0159
7 0.745 0.729 0.627 0.648 0.568 0.612 0.52 0.541 0.565 0.551 0.56 0.455
8 0.662 0.73 0.558 0.704 0.753 0.609 0.556 0.474 0.159 0.641 0.659 0.768
9 0.59 0.699 0.651 0.684 0.721 0.62 0.57 0.589 0.555 0.528 0.712 0.466
10 0.728 0.685 0.745 0.701 0.485 0.566 0.641 0.542 0.698 0.525 0.457 0.481
11 0.745 0.714 0.729 0.734 0.687 0.593 0.567 0.553 0.708 0.379 0.463 0.346
12 0.735 0.681 0.653 0.608 0.648 0.646 0.449 0.542 0.48 0.529 0.648 0.493
13 0.692 0.717 0.641 0.738 0.538 0.632 0.587 0.52 0.591 0.65 0.51 0.523
14 0.731 0.734 0.73 0.73 0.572 0.537 0.606 0.524 0.652 0.366 0.538 0.552
15 0.748 0.489 0.712 0.732 0.65 0.531 0.454 0.597 0.526 0.598 0.549 0.609
16 0.74 0.722 0.742 0.73 0.72 0.446 0.455 0.599 0.727 0.499 0.641 0.0864
17 0.741 0.734 0.729 0.735 0.404 0.464 0.52 0.611 0.544 0.58 0.675 0.299
18 0.674 0.731 0.74 0.724 0.659 0.592 0.504 0.671 0.646 0.423 0.34 0.302
19 0.728 0.728 0.67 0.736 0.536 0.615 0.581 0.44 0.596 0.42 0.333 -0.368
20 0.735 0.708 0.729 0.73 0.519 0.446 0.52 0.481 0.491 0.445 0.514 0.59

MAX 0.768
MIN -0.368

Table 8 Coefficient of correlation for different ANN architectures in the prediction of the VMA testing set

VMA
Number of Hidden Layers

Linear ac�va�on func�on Logis�c ac�va�on func�on Tanh ac�va�on func�on
1 2 3 4 1 2 3 4 1 2 3 4

Number 
of 

Neurons 
per 

Layer

4 0.391 0.301 0.292 0.399 0.258 0.342 0.253 0.192 0.333 0.226 -0.0286 0.393
5 0.447 0.276 -0.143 0.358 0.326 0.13 -0.104 0.155 0.319 -0.0375 0.294 0.271
6 0.383 0.438 0.365 0.377 -0.00285 0.345 0.158 -0.123 0.197 0.236 0.251 -0.0429
7 0.392 0.387 0.327 0.434 0.517 -0.117 0.42 0.271 0.273 0.415 0.0913 0.657
8 0.322 0.39 0.415 0.438 0.425 0.28 -0.0338 0.193 0.0909 0.203 0.138 0.564
9 0.412 0.468 0.429 0.431 0.18 0.607 0.0995 0.236 0.252 0.0525 0.262 0.205
10 0.308 0.402 0.391 0.37 0.336 0.29 0.471 0.392 0.312 0.262 -0.0866 0.11
11 0.356 0.37 0.366 0.375 0.409 0.256 -0.23 0.296 0.397 -0.295 -0.3 -0.212
12 0.385 0.394 0.357 0.388 0.343 0.309 0.33 0.326 0.472 0.153 0.454 0.297
13 0.346 0.37 0.219 0.417 -0.0053 0.0594 0.47 0.37 0.222 0.584 0.0315 0.145
14 0.378 0.384 0.379 0.381 0.485 0.42 0.424 0.162 0.272 0.472 0.443 0.149
15 0.459 0.444 0.389 0.38 0.259 -0.166 0.345 0.426 0.451 0.0622 -0.0343 -0.699
16 0.388 0.391 0.372 0.387 0.423 0.439 0.364 0.332 0.291 0.137 0.118 0.613
17 0.376 0.379 0.392 0.369 0.525 0.422 0.22 0.354 0.478 0.209 -0.558 -0.335
18 0.387 0.383 0.392 0.371 0.357 0.306 -0.117 0.255 0.236 -0.273 0.0851 0.632
19 0.388 0.374 0.348 0.393 0.24 0.266 0.306 0.518 0.423 -0.628 -0.00483 0.0543
20 0.389 0.347 0.385 0.383 0.31 0.513 0.149 0.482 0.226 0.35 0.0278 0.547

MAX 0.657
MIN -0.699
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Table 9 Balanced coefficient of correlation for different ANN architectures

Balance
Number of Hidden Layers

Linear ac�va�on func�on Logis�c ac�va�on func�on Tanh ac�va�on func�on
1 2 3 4 1 2 3 4 1 2 3 4

Number 
of 

Neurons 
per 

Layer

4 0.621667 0.42155 0.45106 0.5215 0.398 0.446217 0.363233 0.366717 0.426383 0.351333 0.257442 0.396383
5 0.618 0.412283 0.317333 0.406 0.502267 0.3445 0.284117 0.355 0.420133 0.401167 0.4368 0.265383
6 0.598333 0.5965 0.542833 0.499267 0.459308 0.418167 0.334483 0.324233 0.407333 0.387183 0.398867 0.132033
7 0.593333 0.613 0.5005 0.509167 0.51 0.368333 0.3838 0.379667 0.386633 0.448333 0.43605 0.379017
8 0.5895 0.605 0.538167 0.572667 0.553667 0.437217 0.3232 0.3584 0.239122 0.366667 0.28 0.361167
9 0.567333 0.622667 0.5615 0.580667 0.417333 0.484667 0.270417 0.4535 0.4597 0.354838 0.4945 0.4071

10 0.5525 0.560833 0.601833 0.578833 0.464333 0.42895 0.450833 0.408067 0.533667 0.432365 0.235683 0.332283
11 0.598 0.6405 0.595 0.600167 0.536 0.392667 0.34135 0.430467 0.519767 0.345833 0.250717 0.409333
12 0.606167 0.547 0.548 0.553667 0.518667 0.512333 0.325167 0.37135 0.518167 0.372567 0.404667 0.3957
13 0.579333 0.600333 0.413383 0.591833 0.44045 0.4389 0.457333 0.442617 0.491 0.518417 0.364683 0.416
14 0.600167 0.600833 0.5985 0.600667 0.535167 0.477833 0.517333 0.423333 0.504833 0.327567 0.479667 0.363267
15 0.59 0.553167 0.587 0.582833 0.449567 0.407667 0.4665 0.48005 0.536167 0.484367 0.274783 0.173117
16 0.598 0.600167 0.604167 0.6015 0.5785 0.4602 0.475583 0.4386 0.514 0.406533 0.2415 0.2999
17 0.601 0.596 0.599 0.599833 0.4755 0.475333 0.42595 0.40495 0.433783 0.34615 0.2745 0.254083
18 0.5615 0.6 0.606167 0.5865 0.461667 0.4845 0.392833 0.445 0.4485 0.285667 0.235033 0.358
19 0.601167 0.5985 0.581 0.601333 0.525833 0.4215 0.345933 0.4445 0.498 0.284 0.283745 0.039383
20 0.6025 0.5745 0.602667 0.603167 0.460333 0.482167 0.395633 0.464917 0.419683 0.360833 0.313217 0.312183

MAX 0.6405
MIN 0.039383

Fig. 5 The optimum ANN that provide the best predictions for all the six predictions
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– The use of the hyperbolic tangent function provides 
the worst level of accuracy, followed by the logistic 
activation function. On the other hand, the linear 
activation function is the most efficient activation 
function.

– The optimum ANN for the prediction of all the six 
output variables consists of two hidden layers, every 
hidden layer has elven neurons, and with a linear 
activation function. This architecture is also the best 
architecture for the prediction of either the mechani-
cal properties of the mix, or the volumetric proper-
ties.

– Results of this study show that the development of 
deep ANN represents a major innovative tool for 
the prediction of the asphalt mix properties as it is 
verified that the deep ANN is useful for the predic-
tions of any of the desired outputs as summarized in 
Table 1.

– The use of the ANN can be useful during the phase 
of the design of the asphalt mix process because of 
its ability to predict variables with high accuracy. For 
example, the ANN with 3 hidden layers and 16 neu-
rons per layer with the linear activation function can 
predict the OAC with high accuracy (R = 0.91), which 

Table 10 Comparison between the optimum ANN for every output and the optimum ANN for all predictions

Optimum ANN for every output R-value Optimum ANN for all predictions R-value R-difference

Hidden 
layers

Neurons/layer Activation 
function

Hidden layers Neurons/layer Activation function

OAC 3 16 Logistic 0.909 2 11 Linear 0.841 0.068

Stability 3 9 Tanh 0.795 0.753 0.042

Flow 2 15 Logistic 0.528 0.512 0.016

Density 2 11 Linear 0.653 0.653 0

AV 4 8 Tanh 0.768 0.714 0.054

VMA 4 7 Tanh 0.657 0.37 0.287

Table 11 Balanced coefficient of correlation for different ANN architectures for the prediction of the asphalt mix mechanical 
properties

Balance
Number of Hidden Layers

Linear ac�va�on func�on Logis�c ac�va�on func�on Tanh ac�va�on func�on
1 2 3 4 1 2 3 4 1 2 3 4

Number 
of 

Neurons 
per 

Layer

4 0.6245 0.4995 0.513 0.543 0.336 0.4165 0.292 0.35465 0.4645 0.289 0.303525 0.31665
5 0.58 0.4235 0.4885 0.5685 0.5545 0.4375 0.32635 0.3351 0.4655 0.534 0.42405 0.25425
6 0.601 0.552 0.549 0.548 0.5935 0.3025 0.2615 0.35 0.605 0.408 0.42595 0.184
7 0.5925 0.6165 0.536 0.449 0.484 0.3935 0.4014 0.3145 0.303 0.5055 0.4775 0.27955
8 0.6105 0.579 0.595 0.508 0.536 0.4575 0.424 0.3547 0.353415 0.5105 0.2575 0.3645
9 0.5545 0.595 0.498 0.576 0.5125 0.5 0.2245 0.5745 0.58 0.359565 0.482 0.3613
10 0.5395 0.591 0.608 0.5845 0.4655 0.4645 0.2335 0.35155 0.547 0.4725 0.26235 0.34735
11 0.599 0.6325 0.593 0.606 0.4605 0.5745 0.4325 0.4405 0.4108 0.451 0.36415 0.4875
12 0.601 0.511 0.595 0.557 0.5665 0.511 0.276 0.35705 0.5125 0.38115 0.4525 0.3652
13 0.616 0.611 0.5035 0.569 0.5495 0.48 0.452 0.40335 0.5425 0.37825 0.2833 0.396
14 0.5995 0.6055 0.605 0.589 0.5205 0.4745 0.533 0.4455 0.5305 0.1895 0.4825 0.32905
15 0.5 0.6045 0.58 0.5805 0.3847 0.5515 0.502 0.5505 0.5105 0.508 0.2715 0.2145
16 0.6015 0.6015 0.6115 0.601 0.555 0.482 0.5775 0.3908 0.469 0.3721 0.2095 0.2305
17 0.601 0.5965 0.6045 0.6085 0.3465 0.413 0.4855 0.292 0.24585 0.31745 0.44 0.3705
18 0.546 0.594 0.6065 0.569 0.584 0.493 0.49 0.57 0.353 0.522 0.07355 0.2015
19 0.597 0.602 0.555 0.6065 0.487 0.428 0.3658 0.502 0.4415 0.429 0.11215 0.1525
20 0.6 0.599 0.6055 0.605 0.4545 0.43 0.439 0.4585 0.37805 0.433 0.31075 0.028

MAX 0.6325
MIN 0.028
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can be helpful in the design process as the ANN can be 
employed for the design of the hot asphalt mix. In this 
case, the ANN can be used for the prediction of the 
OAC instead of the standard Marshall test procedures 
that require the preparation of fifteen samples. Then, 
only three samples are prepared and tested to estimate 
the design parameters and make sure they match the 
design criteria. This approach saves time, resources, 
and the required effort to estimate the OAC.

Abbreviations
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