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Abstract 

Background: Bacteriocins are generally defined as ribosomally synthesized peptides, which are produced by lactic 
acid bacteria (LAB) that affect the growth of related or unrelated microorganisms. Conventionally, the extracted 
bacteriocins are purified by precipitation, where ammonium sulphate is added to precipitate out the protein from the 
solution.

Main text: To achieve the high purity of bacteriocins, a combination with chromatography is used where the hydro-
phobicity and cationic properties of bacteriocins are employed. The complexity column inside the chromatography 
can afford to resolve the loss of bacteriocins during the ammonium sulphate precipitation. Recently, an aqueous 
two-phase system (ATPS) has been widely used in bacteriocins purification due to the several advantages of its 
operational simplicity, mild process conditions and versatility. It reduces the operation steps and processing time yet 
provides high recovery products which provide alternative ways to conventional methods in downstream processing. 
Bacteriocins are widely approached in the food and medical industry. In food application, nisin, which is produced 
by Lactococcus lactis subsp. has been introduced as food preservative due to its natural, toxicology safe and effective 
against the gram-positive bacteria. Besides, bacteriocins provide a board range in medical industries where they are 
used as antibiotics and probiotics.

Short conclusion: In summary, this review focuses on the downstream separation of bacteriocins from various 
sources using both conventional and recent ATPS techniques. Finally, recommendations for future interesting areas of 
research that need to be pursued are highlighted.
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1  Background
Lactic acid bacteria (LAB) are Gram-positive, rod or 
cocci-shaped facultative anaerobes which are being 
increasingly studied for their ability to produce bacteri-
ocin-like inhibitory substances. Bacteriocins are ribo-
somally assembled peptides that show antimicrobial 
properties to closely or distantly related bacteria [98, 
99]. They are either bacteriocidal or bacteriostatic to 

obliterate or repress the development of different micro-
organisms as a way of competition and survival in the 
microbial community [39].

Bacteriocins produced by each bacteria species are 
significantly dissimilar from one another in terms of 
the mode of action, inhibitory spectrum, molecular 
weight, biochemical properties, and genetic origin [74]. 
Hence, Klaenhammer, [74] had classified LAB bacteri-
ocins into four distinct classes with further subclasses 
according to their structural differences: Class I bac-
teriocins are named lantibiotics (e.g. nisin) due to the 
presence of the unusual amino acids lanthionines and 
β-methyllanthionines. Lantibiotics are small (< 5  kDa), 
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post-translationally modified membrane-targeting 
peptides,Class II bacteriocins are small (< 10 kDa), mem-
brane-targeting peptides which do not contain lanthio-
nine residues. They are further subdivided into three 
divisions: (a) Listeria-active peptides (e.g. leucocin B-TA1 
Ia and pediocin PA-1/AcH), (b) poration complex-form-
ing bacteriocins (e.g. lactococcin G and lactococcin F) 
which require two peptides for activity and (c) thiol-acti-
vated peptides, e.g. lactococcin B whose activity depends 
on the presence of reduced cysteine residue; Class III 
bacteriocins are larger (> 30 kDa) and heat-labile usually 
comes with enzyme activity (e.g. helveticin J, lactacins 
A and lactacin B); Class IV bacteriocins are convoluted 
bacteriocins complexed with other chemical moieties 
like carbohydrates or lipids for their antimicrobial activ-
ity (e.g. plantaricin S, lactocin 27 and leuconocin S). This 
classification scheme had become the backbone for the 
following categorization of LAB bacteriocins, though dif-
ferent suggestions have been proposed by Kumariya et al. 
[77].

Bacteriocins work based on a similar mechanism, 
which is by membrane disruption. Despite the peptide 
diversity, bacteriocins share a net positive charge which 
allows the folding into amphiphilic conformation upon 
interacting with bacterial membranes [146]. In fact, the 
cationic bacteriocins adsorb to the target cell through 
the binding to the anionic cell surface receptors like 
teichoic acid and lipotheichoid acid [104]. From there, 
bacteriocins dissipate the transmembrane potential and 
increase the ion permeability through pore formation 
followed by direct cell lysis, and hence, cell death [154]. 
Goh and Philip [54] have proved the membrane disrup-
tion through the use of SYTOX Green fluorescent dye 
and a similar conclusion was drawn by Bauer et al. [13] 
who proposed the cell death was caused by disruption 
of proton motive force at the cell membrane through the 
measurement of  K+ efflux.

Nonetheless, these antimicrobial peptides are nature 
which can be hydrolysed by proteolytic enzymes in the 
gastrointestinal tract and their effect is strong and rapid 
even at low concentrations [87]. Recently, different strat-
egies to modify the peptide backbone have been devel-
oped to circumvent the low metabolic stability of AMPs 
and reduce their susceptibility to proteolytic degradation, 
such as incorporation of D-amino acids, end-tagging by 
hydrophobic amino acid stretches, intramolecular cycli-
zation, and blocking N- and/or C-terminal ends of the 
peptide by N-acetylation, C-amidation, or N-pyrogluta-
mate [60, 88]. Several studies had reported D-amino acid 
substitution can improve the activity of antimicrobial 
peptides or retain its activity, and more importantly can 
improve their stability [71],Y. [85, 87]. Thus, bacteriocins 
produced by LAB were being extensively researched as a 

safer and promising alternative to chemical additives or 
antibiotics in various industries. Various strategies were 
used in the purification of bacteriocin in order to fulfill 
the demand for large yield and high purity of bacteriocin. 
Despite major advancements in the development of non-
chromatographic separation methods like precipitation 
and aqueous two-phase separation (ATPS), chromatogra-
phy continues to be the workhorse of biopharmaceutical 
industry and serves as the industry gold standard. This 
review focuses on the pre-purification (precipitation) 
and purification strategies (chromatography and aque-
ous two-phase system) of bacteriocins, and its potential 
application in the food and medical industries.

2  Main text
Precipitation is a pre-purification step for many proteins; 
hence it is discussed here as a pre-purification process 
for bacteriocin derived from lactic acid bacteria. Further-
more, two purification strategies have been highlighted, 
which are chromatography and aqueous two-phase for 
the purification of bacteriocin derived from lactic acid 
bacteria. The potential use of bacteriocin in food and 
medical applications is also reviewed.

2.1  Precipitation
To begin with purification, proteinaceous bacteriocins 
are first concentrated, corresponding to a reduction in 
supernatant volume. Proteins are usually precipitated 
by several methods including the use of ammonium sul-
phate, polyethylene glycol (PEG) and organic solvents 
like alcohol or acetone with the most common salting-
out agent being the use of ammonium sulphate. Addition 
of ammonium sulphate increases the ionic strength of 
solution and decreases the protein solubility hence pre-
cipitates out the proteins from the solution [22]. Accord-
ing to Scopes [131], the salt is relatively inexpensive 
and more readily available compared to PEG hence it is 
capable of large-scale commercial applications in protein 
purifications. Besides, ammonium sulphate is very solu-
ble in water and the protein precipitate formed is stable 
against proteolysis and bacterial degradation.

It is not uncommon to find the use of ammonium sul-
phate as a protein preliminary purification step in many 
bacteriocin-related research. For instance, the soluble 
bacteriocins were isolated from the supernatant of Lac-
tobacillus salivarius strain NRRL B-30514 by a combi-
nation of ammonium sulphate precipitation and dialysis 
to produce a crude bacteriocin against Campylobacter 
jejuni. The specific activity increased from 14,000 AU/
mg to 29,000 AU/mg with purity of 9.1% [139]. Bauer 
et al. [13] have purified pediocin PD-1 from Pediococcus 
damnosus NCFB1832 using 70% ammonium sulphate 
followed by SP Sepharose Fast Flow cation exchange 
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column. A four-step purification method of ammonium 
sulphate precipitation (80%), Amberlite XAD-16 column 
chromatography, Vivaspin size exclusion chromatogra-
phy and finally reversed-phase HPLC was reported by 
Goh et  al. [54] to purify the bacteriocin A3 from lactic 
acid bacteria (LAB) Weissella confusa A3. The difference 
in the ammonium sulphate saturation in which protein 
precipitates is determined empirically, depending on the 
bacteriocin concentration and molecular weight. Purifi-
cation of the paracasin SD1 from Lactobacillus paracasei 
SD1 was achieved with 40% ammonium sulfate precipi-
tation followed by chloroform and gel filtration chroma-
tography (Superdex 200 HR 10/30 column) [150]. It was 
revealed that the specific antimicrobial activity of the 
paracasin SD1 against S. mutans ATCC 25,175 increased 
from 53.8 AU μg − 1 (in the supernatant) to 46,875 AU 
μg − 1 (in the active fraction).

Although ammonium sulphate precipitation is popular, 
there were still limitations in this method. For instance, 
the lack of clear ammonium sulphate saturation con-
vention in published protocols, incomplete solid form 
of pellet and the floatation of pellet in high ammonium 
sulphate concentration [22]. However, some bacterioc-
ins do not precipitate even at a high ammonium sulphate 
concentration of 75 – 80% since they pose low molecular 
weight [19]. Other than the floatation of precipitate, the 
loss of small molecular weight bacteriocin through the 
dialysis membrane was also a major problem in ammo-
nium sulphate precipitation, causing significant vari-
ables in recovery yields as seen in the 10% recovery of 
plantaricin LR14 [144], 17% recovery of curvaticin L442 
[153], 200% recovery for plantaricin S [72] and the 500% 
recovery of enterocin I [48]. These remarkable increase 
in bacteriocin activity could be explained by dissociation 
of protein into its smaller active forms by ammonium 
sulphate [72]. Some ammonium sulphate precipitates 
were insoluble in the washing solvents including distilled 
water, phosphate buffer, Tris–HCl and Triton X20. This 
problem was resolved by washing with urea or phosphate 
or acetate buffer containing SDS [133]. Nevertheless, 
ammonium sulphate precipitation solely is insufficient 
to achieve high purity of bacteriocin hence the step was 
usually followed by combinations of cation exchange 
chromatography, hydrophobic interaction chromatogra-
phy and reversed-phase high-performance liquid chro-
matography [93, 161].

Comparing the antibacterial ability of the crude extract 
from L. plantarum zrx03 obtained by ammonium sul-
phate precipitation and organic solvent extraction, the 
ethyl acetate extraction method was the optimal solution, 
which the crude extract obtained had the strongest anti-
bacterial ability. The cell-free supernatant from L. plan-
tarum zrx03 was extracted by ethyl acetate, obtaining a 

crude extraction with a 23.86% recovery and a special 
activity of 5,775.89 AU/mg against E.  coli  JM109 [82]. 
Another study also shows that recovery of lacidin from 
liquid culture of Lactobacillus acidophilus OSU133 by 
the chloroform extraction procedure, compared with 
ammonium sulphate precipitation method, was > tenfold 
greater, in which the total recovered AU per L of culture 
liquid was 4,500,000 [23]. Chung et al. [31] reported that 
pediocin could be recovered from the culture superna-
tant of Pediococcus acidilactici WRL-1 by mixing with 
3 volumes of cold acetone and maintained at − 20 °C for 
2  h. The solvent and precipitate were separated by cen-
trifugation, and most (95.2 ± 2.5%) pediocin activity was 
found in the liquid phase and it was obtained by evapo-
ration. Other solvents (methanol, ethanol, and butanol) 
were also suitable for  this end.

2.2  Chromatography
The purification of bacteriocin-like inhibitory substance 
(BLIS) using chromatography is shown in Table 1. Gener-
ally, protein separation and purification schemes usually 
include one or more chromatographic steps to achieve 
the final separation and purification purpose. After pep-
tide concentration, chromatographic methods employing 
the cationic and hydrophobicity characteristics of bac-
teriocins were used for further purification [115]. These 
include ion-exchange chromatography, hydrophobic 
interaction chromatography, gel filtration chromatogra-
phy, and reversed-phase high-performance liquid. Plan-
taricin secreted by Lactobacillus spp., enterocin secreted 
by Enterococcus spp. and pediocin secreted by Pediococ-
cus spp. have been purified to various degrees of purity 
and recovery using multi-step chromatographic combi-
nations. However, the understanding of peptide proper-
ties and chromatographic conditions is crucial prior to 
the selection of any chromatographic methods. Some 
bacteriocins produced in a large initial amount in the cul-
ture broth may be ended up with a low purification yield 
due to the high hydrophobicity of peptide or adsorption 
of the peptide to the chromatographic column, as seen 
in the comparison by Guyonnet et al. [58]. For instance, 
only 10% yield sakacin A was recovered after purifica-
tions in affinity chromatography followed by an ultra-
filtration prior to reverse-phase high-pressure liquid 
chromatography (HPLC).

A preliminary step of purification by ammonium sul-
phate precipitation had shown an almost 90% reduction 
in yield, leading to a very low final recovery. Ion-exchange 
chromatography hence has been seen to replace the use 
of salt precipitation and resulted in the marginal loss of 
yield from crude bacteriocin [3]. In fact, the use of ion-
exchange chromatography alone is able to achieve > 80% 
final yield. Several studies have shown the purification of 
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bacteriocin such as Enterocin AS-48 and Pediocin PA-1 
could be purified without the need for pre-purification 
step of ammonium sulphate precipitation as presented 
in Table  1 [3, 14, 53, 147]. Hence, ammonium sulphate 
precipitation is unnecessary prior to ion-exchange chro-
matography because it is reliable for the purification of 
crude supernatant. Another advantage of this method is 
the reusability of column matrix. Abriouel et al. [3] had 
regenerated and reused the matrix for 20 times with-
out any significant loss of its properties on the purifica-
tion of enterocin AS-48. Ion-exchange method was also 
combined with other purification methods to resolve the 
peptide loss which is a problem of ammonium sulphate 
precipitation and complex chromatographic protocol. 
For instance, Enterocin LD3 from Enterococcus hirae 
was purified using ion-exchange chromatography and 
gel filtration chromatography, Enterocin B from Ente-
rococcus faecium was purified using cation-exchange 
chromatography and reverse-phase high-performance 
liquid chromatography, bacteriocin from Lactobacillus 
murinus AU06 was purified using cation exchange chro-
matography and hydrophobic interaction chromatogra-
phy (Table 1). Cheigh et al. [30] had used expanded bed 
ion-exchange chromatography to purify nisin Z from 
the unclarified culture broth of Lactococcus lactis to 90% 
recovery and 31-fold purity. This method is simple, cost-
effective and reported to give higher recovery of bacteri-
ocins compared to conventional methods by reducing the 
number of purification steps.

Gel filtration chromatography is a common purifica-
tion method of bacteriocin, which purifies bacteriocins 
based on their molecular mass. Because the molecular 
masses of bacteriocins vary widely, various gel columns, 
such as Superdex, Sephadex and Sepharose, are available 
(P [150, 153]. Purification by hydrophobic interaction 
chromatography was able to greatly increase the specific 
activity, providing a very high purification fold but con-
tritely almost halving the yield [45]. To counter this issue, 
the protocol of Gaussier et al. [53] was modified by Beau-
lieu et al. [14]. The Sep-pack  C18 column was replaced by 
a scalable and more efficient octyl-Sepharose column in 
the purification of pediocin PA-1. HCl was used as the 
peptide eluent instead of trifluoroacetic acid (TFA) in 
the hydrophobic and reversed-phase high-performance 
liquid chromatography columns because the presence of 
TFA contamination may interfere with the protein struc-
ture; HCl is relatively easy removed by a low-coating fil-
tration membrane and did not affect on the protein yield 
and characterization. The change of column and eluent 
had increased the amount of pediocin purified, to an 
overall yield of 73% which is much higher than the 38% 
recovery by the former, 34% by Bauer et al. [13], 25% by 
Guyonnet et al. [58] and 15% by Meena et al. [92].

Reversed-phase high-performance liquid chromatogra-
phy (RP-HPLC) is usually the final step of peptide puri-
fication to homogeneity yet is usually associated with 
loss of activity [97]. Todorov et al. [145] have compared 
two purification methods in the purification of planta-
ricin ST31 with method one being ammonium sulphate 
precipitation, Sep-pack  C18 cartridge and RP-HPLC and 
method two utilizing only cation exchange chromatog-
raphy with 0.8% and 5.9% yield, respectively. The small 
activity recovery of method one was due to half of the 
plantaricin ST31 purified by RP-HPLC being converted 
to its oxygenated form, thus reducing the final yield by 
50%. The longer procedure of method one also contrib-
uted to the lower yield of plantaricin ST31.

In general, chromatographic methods pose several 
drawbacks in terms of the lengthy procedures and low 
yields, usually less than 20% [125]. The pricey equipment 
required at each step also made the purification difficult 
to scale up [44]. The more the number of steps, the more 
peptide were lost during the process as seen in the recov-
ery by 4-steps purification protocol as shown in Table 1, 
in which the yields of bacteriocins (Enterocin HDX-
2, Plantaricin LR14, Paracin 54, Plantaricin ZJ5, and 
Bacteriocin-zrx01) were in the range from 1.7 to 6.4%. 
Other than that, the complex composition of the culture 
medium not only has important effects on the bacteri-
ocin production, but also affects the downstream purifi-
cation scheme. For instance, [14] had reported difficulties 
in the chromatographic capturing of bacteriocin from 
complex supernatant containing high levels of unwanted 
medium peptides. The use of a semi-defined medium 
could reduce the excess level of contaminants while pro-
viding sufficient nutrients to sustain the growth and pro-
duction of the bacteriocin-producing strain.

Overall, chromatographic purification employed the 
cationic and hydrophobicity characteristics of bacterioc-
ins. An ideal protocol for bacteriocin purification should 
be simple, rapid, low production and recovery cost, and 
applicable for large-scale production to achieve more 
than 50% yield and more than 90% purity. The complexity 
of chromatographic combinations had urged the devel-
opment of a more efficient and robust procedure to han-
dle a larger amount of bacteriocins from the upstream 
process.

2.3  Aqueous two‑phase system
Throughout the years, the aqueous two-phase system 
(ATPS) has gained attention in the separation, extraction 
and purification of biological products [68]. There are 
two types of major ATPS systems: polymer/polymer sys-
tem and polymer/salt system. The polymer polyethylene 
glycol (PEG) is commonly used in both systems due to its 
low cost and its ability to enhance protein refolding for 
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higher recovery. The polymer/polymer system (e.g. PEG/
dextran) is high cost and high viscosity compared with 
the polymer/salt system (e.g. PEG/phosphate) which is 
low cost, low viscosity and provides wider hydrophobicity 
range of difference [111]. Thus, the polymer/salt system 
is more preferred in the ATPS bioseparation process. The 
polymer phase separation occurs when two hydrophilic 
polymers exhibit incompatibility and become immisci-
ble in aqueous solution above a critical concentration. 
The critical concentration for phase separation to occur 
depends on several factors including the type of phase-
forming polymer, ionic strength, pH, and temperature 
of the solution [114]. In a polymer/salt system, the wide 
density difference between polymer and salt gives rise 
to the separation of the polymer-rich fraction to the top 
phase whereas the salt-rich fraction to settle as bottom 
phase [124]. Although ATPS has been well-established, 
the studies on the purification of bacteriocin was limited.

The purification of bacteriocin-like inhibitory sub-
stance (BLIS) using ATPS is shown in Table 1. Abbasiliasi 
et al. [1] had attempted to purify a BLIS from the lactic 
acid bacteria Pediococcus acidilactici Kp10 using ATPS 
as an alternative method to reduce the lengthy, costly 
and complicated purification steps of conventional chro-
matographic methods. An ATPS system of PEG/sodium 
citrate was used by the researchers who had successfully 
recovered 81.18% of BLIS from the PEG-rich top phase. 
Citrate was used instead of the common phosphate and 
sulphate salts because their presence in the effluent poses 
serious issues to the environment. Citrates are biodegrad-
able, non-toxic and have lower euphoric potential which 
is more environmentally friendly to be used [1, 134]. 
Jawan et al. [70] had successfully purified the BLIS from 
Lactococcus lactis Gh1 using PEG2000/Dextran T500 
based ATPS. ATPS composed of 10% (w/w) PEG2000 
and 8% (w/w) dextran T500, provided the greatest condi-
tions for the extractive BLIS production with purification 
fold of 2.92 and yield of 77.24%. An ATPS was used to 
grow Lactococcus lactis to relieve lactic acid inhibition, 
simultaneously producing the nisin. The nisin produc-
tion (803  IU   ml−1) was enhanced by 33% using ATPS, 
which composition was 11% (w/v) PEG 20,000 and 3.5% 
(w/v)  MgSO4.7H2O [84]. In 2001, C. Li et al. [83] had con-
ducted ATPS using PEG and sodium sulphate  (Na2SO4) 
for nisin recovery, and it was found that the nisin recov-
ery was greatly improved under optimal composition 
which consisted of 15.99% (w/w) PEG 4000 and 15.85% 
(w/w)  Na2SO4 (pH 2), and the optimal ATPS allowed an 
11.60% increase of nisin recovery.

The partition of the target protein to either the PEG-
rich top phase or salt-rich bottom phase is based on the 
interaction of hydrophobic interaction and electrostatic 
forces between the two phases and the protein. Several 

factors were known to influence the biomolecule parti-
tion in ATPS including the molecular weight of poly-
mer used, pH of the system, volume ratio of top to 
bottom phase and the presence of neutral salts in the 
system [119].

For the effect of polymer molecular weight, an 
increase in PEG molecular weight had enhanced the 
purification of biomolecules as reported by Abbasiliasi 
et  al. [1]. The highest purification factor was recorded 
using PEG 8000 in both cases as a higher PEG molec-
ular weight indicates more units of PEG involved in 
biomolecule partitioning due to the increased hydro-
phobic interaction between polymer and biomolecule. 
Next, pH of the system not only affects the charge of 
solute, but also affects the solubility of proteins [8]. 
Since PEG is positively charged, the negatively charged 
proteins are more attracted to the PEG phase due to a 
higher electrostatic difference at higher pH [114, 141].

Besides, the volume ratios of top to bottom phases of 
the system also influence the ATPS biomolecule parti-
tion although located at the same tie-line with the same 
phase composition. Volume ratio larger than 1 con-
tains diluted PEG hence it is a less effective extractant 
whereas volume ratio smaller than 1 contains concen-
trated PEG hence it is a more effective extractant [124]. 
A lower volume ratio has reduced the partition of unde-
sired protein into the free volume of top phase thus 
resulted in higher purification factor of target protein 
[1, 134]. However, if end-product inhibition is a con-
sideration during bacteriocin production, a larger vol-
ume ratio could be effective for the in-situ removal of 
inhibitory end-product [29]. C. Li et al. [84] employed a 
PEG 20,000/MgSO4•7H20 system with a higher volume 
ratio of 1.71:1 instead of 0.45:1 to allow the partition of 
inhibitory lactic acid into the top phase, remaining the 
nisin-producing Lactococcus lactis cells in the bottom 
phase.

The presence of neutral salts in the system alters the 
partition of biomolecules due to the differential distri-
bution of salt ions between the top and bottom phases 
[55]. Improvement of bacteriocin partition in the pres-
ence of sodium sulphate and choline-based salts has 
been reported by da Silva Sabo et al. [37]. The group of 
researchers employed a PEG 10,000/sodium polyacrylate 
(NaPA) system for the bacteriocin partition from a clari-
fied fermentation broth of Lactobacillus plantarum 
ST16Pa. The addition of salts into the system had boosted 
the product yield as well as highest partition coefficient at 
K = 32 although the volume ratio was kept lower than 1. 
The presence of negatively-charged salts created stronger 
electrostatic forces in the system which then improved 
the partition of negatively-charged bacteriocin to the top 
phase.
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ATPS is a new purification method with several advan-
tages in terms of its operational simplicity, mild process 
conditions and versatility. ATPS has been used as a sim-
ple yet powerful single-step purification method to mini-
malize the number of purification steps. For instance, 
recovery of BLIS from Pediococcus acidilactici Kp10 
using ATPS only required one step to recover 81.18% 
of BLIS [1]. A similar outcome was also drawn by other 
studies on ATPS for bacteriocin purification as presented 
in Table 1. Hence, ATPS can simplify the overall lengthy 
purification protocol by reducing the number of unit 
operations and processing time yet providing high recov-
ery and purity of products [111]. Next, ATPS provides a 
mild process condition in which the degradation of pro-
teins at the interface could be minimized. Rapid mass 
transfer is allowed between the two hydrophilic phase-
forming polymers due to low interfacial tension. Residues 
of neutral salts like choline added to the system to boost 
product recovery are also very mild and is not a concern 
to consumers as choline has been used in animal feeds as 
a dietary supplement [68].

Although ATPS has achieved high recovery and purity 
yields, there is still a gap between their bench-scale use 
and potential industrial applications. Hence, ATPS is also 
a versatile technique in which it can be combined with 
other techniques to achieve higher yield and purity, as 
well as scaling up. For instance, the application of ABS 
in the recovery of biomolecules can be extended to the 
large-scale bioprocesses by incorporating the two-phase 
principle in a bioreactor operation for enhanced pro-
ductivity in the integration of upstream and downstream 
processing as compared to laboratory scale, which uses 
test tube or falcon tube (Fig.  1). Besides, membrane-
supported liquid–liquid extraction (MEMEX) is an 
integrated separation method based on ATPS and mem-
brane extraction (Fig.  2). A hydrophobic membrane 
contactor is added to the ATPS, enabling the extraction 
of biomolecules without the need of phase separation. 
Lysozyme and bovine serum albumin (BSA) were suc-
cessfully extracted by [12] using MEMEX in the pres-
ence of a surfactant Tween 20. Since emulsion formation 
during phase separation was avoided, MEMEX is capa-
ble of continuous extraction without centrifugation. For 
better separation of bacteriocin in ATPS, MEMEX tech-
nique can be considered in the future. Next, aqueous 
two-phase floatation (ATPF) is the combination of ATPS 
and solvent sublation in which a stream of nitrogen gas 
bubbles is sparged from the bottom of an ATPS (Fig. 3). 
The biomolecules are adsorbed on the surface of ascend-
ing nitrogen gas bubbles and then released to top phase 
as the bubbles burst. ATPF was introduced by Sidek 
et  al. [134] for the separation of BLIS from a fermenta-
tion broth of Pediococcus acidilactici Kp10. The method 

had reported lesser consumption of organic solvents and 
better separation efficiency compared to ATPS and sol-
vent sublation. Therefore, integration of ATPS with other 
techniques had enhanced the current separation meth-
ods by having the benefits from both techniques, making 
these methods more sophisticated and promising alter-
natives to the conventional separation methods in down-
stream processing.

2.4  Applications in food industry
Food is a major source of energy for living organ-
isms. However, spoilage can easily occur if the food 
was improperly prepared, sterilized or canned at the 

(A)

(B)
Top phase 
collec�on

Bo�om phase 
collec�on

Bioreactor

Top phase

Bo�om phase

Targeted 
compound

Impuri�es

Test tube/falcon tube

Top phase

Bo�om phase

Fig. 1 Schematic diagram of (a) laboratory ATPS and (b) ATPS 
bioreactor

Membrane

Component i to 
be extracted

Liquid phase 1 Liquid phase 2

Phase interface

Fig. 2 Principle of membrane-supported liquid–liquid extraction 
(MEMEX) as explained by [123]. ΔP (Delta P) is a mathematical term 
symbolizing a change (Δ) in pressure (P).
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manufacturing facility and even during transportation 
to the markets. The increase in international food trade 
and human travel result in foodborne outbreak, leading 
to serious health problems and great loss in econom-
ics all over the world [65]. Challenges in food safety are 
higher due to the increasing market demand for higher 
quality, more natural and minimally processed food 
[40]. The use of biopreservatives to replace chemical 
preservatives in food has been adopted by food manu-
facturers using various organic and naturally occurring 
antimicrobials [12]. These include organic acids such 
as lactic acid and citric acid, salts of organic acids such 
as potassium sorbate and potassium benzoate, chelat-
ing agents such as EDTA, proteins such as bacteriocin, 
lactoferrin and reuterin and plant essential oils such as 
carvacrol and grape seed extract.

Bacteriocins are gaining interest among scientists as 
a natural biopreservative in the food industry due to 
their proteinaceous nature and minimal impact on the 
nutritional and sensory properties of food [73, 117]. In 
fact, nisin A is a permitted and commercially available 
food additive under various companies as Nisaplin®, 
Chrisin® and Delvoplus® [41]. Nisin is a bactericidal 
antimicrobial produced by Lactococcus lactis subsp. 
lactis known to be effective against Gram-positive bac-
teria and is widely used for the control of foodborne 
pathogens including Listeria monocytogenes [66] and 
Clostridium botulinum [50]. Nisin acts by pore forma-
tion at the cellular membrane, causing the leaching 
of important cellular compounds including  K+ ions, 
amino acids and ATP, eventually leading to cell death 
[63, 117]. There are a few potential applications of nisin 
in the food industry, including the combinations of 
nisin with other antimicrobial agents or physical food 
processing methods and the use of nisin in the antimi-
crobial packaging of food products.

2.4.1  Combination of nisin and other antimicrobial agents
Due to its limitation to only Gram-positive bacteria, nisin 
has been combined with other antimicrobial agents to 
maximise its inhibitory spectrum [27]. This hurdle tech-
nology allows the additive or synergistic effect between 
both preservation factors while minimising the addition 
of chemically synthesized preservatives. For instance, 
the activity of nisin against Gram-positive foodborne 
pathogens is higher in the presence of other natural anti-
microbial agents [21]; the dual antimicrobial control of 
foodborne pathogens also enabled the bactericidal activ-
ity of nisin against Gram-negative bacteria at lower con-
centrations compared to individual antimicrobial agents 
when used alone [100]. The combination of bacteriocins 
nisin and pediocin AcH has also been long suggested 
for overcoming resistant strains [61]. The examples of 
additive or synergistic effects between nisin and other 
biopreservatives are summarised in Table  2. Nisin has 
combined with organic compounds like diacetyl to inhibit 
the growth of Enterobacter sakazakii and L. monocy-
togenes [101]. Combination with an essential oil such as 
grape seed extract, green tea extract, etc. also showed a 
good synergistic effect against L. monocytogenes [135]. 
Besides that, nisin could be used together with organic 
acids or other bacteriocins as dual antimicrobial control 
of foodborne pathogens [20, 113].

2.4.2  Combination of nisin and high‑pressure processing 
methods

Besides, combined treatment of nisin and high pressure 
has not only shown its potential in microbial reduc-
tion but also in the inactivation of bacterial endospores 
(Table  3). Bacterial spores are more likely to remain in 
food even after sterilization because of their high resist-
ance to radiation, heat and chemicals [132], hence caus-
ing the spoilage of food and are related to foodborne 
diseases. The action of nisin alone is more sporostatic 
than sporicidal, due to the presence of an outer coat and 
cortex protecting the inner membrane [75, 76]. There-
fore, high hydrostatic pressure is applied to enhance the 
nisin inactivation of spores by destabilizing the mem-
brane structure, allowing the penetration of nisin to its 
site of action, where pore formation occurs [18]. In fact, 
the transmission electron micrographs of Bacillus sub-
tilis spores by E. Black et  al. [17] and Rao et  al. [120] 
have illustrated the higher sensitivity of spores to nisin 
due to sublethal injuries to the outer coat and cortex by 
high pressure and moderate heat. This hurdle technol-
ogy is feasible alternative to heat pasteurization of milk 
[5] whereby lower pressure, lower temperature, shorter 
processing time and natural preservative are needed to 
ensure the commercial sterility and quality of milk and 
milk products [51].

Fig. 3 Separation of penicillin G in the aqueous two-phase system 
(ATPF) by (Bi et al. 2009)
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Table 2 Examples of antimicrobial substances showing dual antimicrobial inhibition with nisin

Antimicrobial substance Target organism(s) Substrate References

Organic compound

Diacetyl Enterobacter sakazakii Broth S. Y. Lee et al. [81]

L. monocytogenes, Saline O’Bryan et al. [101]

Essential oil

Grape seed extract L. monocytogenes Cooked shrimp Zhao et al. [160]

Green tea extract L. monocytogenes Mixed fruit and vegetable smoothie Casco et al. [25]

Carvacrol L. monocytogenes Bologna sausage Churklam et al. [32]

Oregano lactic acid bacteria Grass carp Zhang et al. [159]

Perilla frutescense S. aureus, E. coli, S. enteritidis, and P. tolaasii Strawberry Wang et al. [149]

Organic acids

Citric acid L. monocytogenes King oyster mushrooms Yoon et al. [156]

Potassium sorbate E. coli O157:H7 Strawberry puree Santos et al. [129]

Lactic acid E. coli O157:H7 Enoki mushrooms Yoon et al. [156]

Chelating agents

EDTA Salmonella – Özdemir et al. [108]

Salmonella Typhimurium – Yüksel et al. [157]

Other bacteriocins

Buforin I B. subtilis, S. epidermidis, and A. oryzae – Roshanak et al. [126]

Pediocin L. monocytogenes, Vegetables Bari et al. [11]

Lactocin AL705 Listeria innocua 7 Broth and a hard cheese Verdi et al. [148]

Lactoferrin L. monocytogenes, E. coli Broth Murdock et al. [96]

Endolysin L. monocytogenes Queso Fresco Ibarra-Sánchez et al. [67]

Table 3 Examples of the application of nisin under high-pressure conditions showing increased microbial inactivation

Treatment Target organism(s) Substrate Inactivation References

High pressure and nisin E. coli and P. fluorescens Skim milk  > 8 log CFU/mL reduction E. P. Black et al. [18]

L. innocua and E. coli Carrot juice 7-log CFU/mL reduction Pokhrel et al. [116]

S. aureus Cheese 7 log CFU/g reduction Capellas et al. [24]

S. aureus Milk cheese  > 7 log CFU/g reduction on 
day 3

Arqués et al. [7]

L. innocua and E. coli Avocado dressing  > 7 log CFU/mL reduction Manolya E Oner [106, 107]

S. Enteritidis Broth 8 log CFU/mL reduction J. Lee et al. [79]

S. Enteritidis Broth  > 9 log CFU/mL reduction Ogihara et al. [103]

Escherichia coli Green juice (celery stalk, 
apple, cucumber, parsley)

7 log CFU/mL reduction Manolya E Oner [106, 107]

Mesophilic spore count Liquid micellar casein con-
centrates

2 log CFU/g reduction García et al. [52]

Spores of A. acidoterrestris Apple juice 6.15 log CFU/g reduction Sokołowska et al. [137]

High pressure  CO2 (HPCD) 
and nisin

Spores of B. subtilis Broth 4.1 log CFU/mL reduction Rao et al. [120]

Spores of B. subtilis, G. stearo-
thermophilus

Metal plate  > 7 log CFU/mL reduction da Silva et al. [35]

High hydrostatic pressure 
(HP), moderate heat and 
nisin

Spores of B. sporothermo-
durans

Broth 5 log CFU/mL reduction Aouadhi et al. [5]

Spores of C. perfringens Milk 6 log CFU/mL reduction Y. Gao et al. [51]

Paenibacillus sp. and Terriba-
cillus aidingensis spores

UHT milk 6 log CFU/mL and 4 log 
CFU/mL reduction

Kmiha, et al. [75, 76]
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2.4.3  Antimicrobial packaging of food products
On the other hand, antimicrobial packaging is a multi-
functional hurdle technology employing antimicrobial 
agents into packaging materials, aiming to improve food 
preservation by protecting it from external environments 
and inhibiting the undesired growth of spoilage bacte-
ria at the same time [6, 140. Having a GRAS (generally 
regarded as safe) status, nisin has been widely immobi-
lized [9] or coated onto packaging matrices in different 
forms (Table 4). The consistent migration or direct con-
tact of nisin on packaging to the food would result in a 
rapid, irreversible extension of lag phase and retardation 
of the proliferation of surface contaminant [46], 152]. 
However, antimicrobial packaging is still facing several 
challenges. Firstly, the kinetics governing bacteriocin 
release from the polymeric matrix is still unclear, leading 
to the uncontrolled release of nisin from packaging [130]. 
This results in inconsistent control of bacteria flora and 
rises the chance of resistance development by the sur-
vivors. The unpredictable release of bacteriocins is also 
ascribed to pH and temperature and substrate water con-
tent and hydrophobicity of the environment [91]. Shelf-
life and stability of the bioactive films are also a concern 
in developing an active antimicrobial packaging as the 
degradation of film is ascribed to uncontrolled release 
of antimicrobial agents [95]. In short, the potential of 
antimicrobial packaging can be extrapolated by further 
understanding the complex kinetics and factors influenc-
ing the antimicrobial effectiveness in real food systems 
[9].

The advances in bioengineering and molecular biol-
ogy enable the production of recombinant bacteriocin 
with higher bactericidal activity, which is an adjunct in 
expanding its inhibitory spectrum [102] and overcoming 
the development of nisin-resistant mutants [10]. In fact, 
Smith et  al. [136]has proved that a bioengineered nisin 
derivative, M21A when combined with food-grade addi-
tives citric acid or cinnamaldehyde, was able to eliminate 
the Listeria monocytogenes biofilm grown on Tryptic 
Soy Broth compared to wild-type nisin A. The group of 
researchers have suggested the substitution of nisin A in 
commercial Nisaplin® with M21A to augment the bacte-
ricidal activity in food products. Nevertheless, additional 
studies on bioengineered bacteriocins in terms of their 
production and working conditions and safety are para-
mount before it can be accepted by the food industry and 
consumers [112].

2.5  Medical industry
Antibiotics are secondary metabolites of microorganisms 
that show a broad spectrum of inhibitory activity against 
other microorganisms. The first antibiotic, penicillin was 
discovered by Alexander Fleming in 1928, leading to its 
large-scale production and dissemination for disease 
control worldwide [141]. Since then, exclusive reliance 
and overuse or misuse of antibiotics have been ascribed 
with the emergence of antibiotic-resistant pathogens, 
jeopardizing the efficacy of currently available antibiotics 
and consequently posing a huge menace to human health 
[143]. Therefore, the search for alternative prophylactic 

Table 4 Examples of the incorporation of nisin in the antimicrobial packaging of food products

Packaging material Target organism(s) Substrate References

Cellophane surface Various Gram-positive bacteria Chopped meat Guerra et al. [56]

Soy lecithin nanovesicle capsules L. monocytogenes Milk da Silva Malheiros et al. [36]

Polyvinyl alcohol-Alyssum homolocarpum seed gum 
(PVA-AHSG) films

- – Marvdashti et al. [90]

Chitosan-cellulose film L. monocytogenes Cheese Divsalar et al. [42]

Palmitoylated alginate-based films and beads S. aureus Beef Millette et al. [95]

Corn-zein-based coating L. monocytogenes Hybrid striped bass Hager et al. [59]

Mater-Bi film Listeria monocytogenes, Salmonella enter-
itidis, Escherichia coli, and Staphylococcus 
aureus

– Lopresti et al. [86]

Chitosan-polylactic acid (PLA) composite film E. coli and S. aureus Fish fillet Chang et al. [28]

Poly(vinyl alcohol)-based nanofibers (NP) with poly-
ethylene (PE)

Total Mesophilic Bacteria Rainbow trout fillets Oner et al. [105]

Nisin-chitosan coated on vinyl acetate-ethylene 
copolymer

L. monocytogenes, M. flavus, E. coli Milk, Orange juice C. H. Lee et al. [79]

Aerobic bacteria, Yeast Milk, Orange juice C. H. Lee et al. [80]

ZrO2/poly (vinyl alcohol)-wheat gluten antimicrobial 
barrier film

Staphylococcus aureus – Pang et al. [109]

Hydroxypropylmethylcellulose Staphylococcus aureus and Listeria innocua Mozzarella cheese Freitas et al. [49]
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agents is of utmost importance to overcome the prob-
lematic issue of microbial resistance [4].

Lactic acid bacteria as probiotics are non-pathogenic, 
live microorganisms capable of conferring beneficial 
effects on the host when consumed in adequate amounts. 
Bacteriocins produced from probiotic bacteria (Pedio-
coccus, lactobacilli, bifidobacteria and enterococci) are 
widely researched for their clinical applications in the 
prevention and/or treatment of gastroenteritis infec-
tions (Table 5). These bacteriocins have gained extensive 
attention as a potential solution to antibacterial short-
comings as they have a relatively narrow and specific 
killing spectrum without compromising the surrounding 
microflora and their proteinaceous nature which is sen-
sitive to digestive enzymes in the GI tract. [38, 78, 82]. 
More specifically, narrow-spectrum bacteriocins tar-
get specific types of bacteria, such as Gram-negative or 
Gram-positive bacteria. For example, nisin has a narrow 
spectrum inhibiting only Gram-positive bacteria, includ-
ing Clostridium botulinum, Listeria monocytogenes, Mic-
rococcus, Staphylococcus, etc. Nisin does not generally 
inhibit gram-negative bacteria, yeasts, or molds [41]. The 
spectrum of activity of nisin can be expanded to include 
gram-negative bacteria when it is used in combination 
with other antimicrobial agents. In fact, bacteriocins 
when used alone or in combination with other antimicro-
bial agents are shown effective to inhibit nosocomial or 
antibiotic-resistant pathogens such as methicillin-resist-
ant Staphylococcus aureus (MRSA) and vancomycin-
resistant enterococci (VRE).

EntDD14 produced from Enterococcus faecalis 14, 
alone or in combination with methicillin successfully 
reduced by ∼30% the biofilm formation capability of 
MRSA-S1 strain and impacted on the expression of the 
main genes involved in biofilm formation like nuc and 
pvl which code, respectively, for nuclease and Panton-
Valentine leucocidin. Similar effects were registered 
for other genes such as cflA, cflB and icaB, coding for 
bacterial ligands clumping factors A, B and intercel-
lular adhesion factor, respectively [16]. Millette et  al. 
[94] have demonstrated that a reduction of 1.85 log10 
CFU/g of VRE was measured at 3  days post-infection 
in VRE-colonized mice after treatment with the pedi-
ocin PA-1/AcH producing P. acidilactici MM33. Lev-
els of VRE in the treated mice were undetectable at 
6  days postinfection, which indicates pediocin PA-1/
AcH can reduce VRE intestinal colonization. Lauková 
et al. [78] also reported that Enterocin A producing E. 
faecium EK13 protects the digestive tract of rabbits and 
reduced the counts of E. coli and Enterobacteriaceae. 
Other than that, nisin has been shown to be an effective 
agent for the treatment of staphylococcal mastitis dur-
ing lactation. A solution of the bacteriocin nisin (6 µ/
mL) was applied to the nipple and mammary areola of 
the women with clinical signs of staphylococcal mastitis 
and no clinical signs of mastitis were observed among 
the women of the nisin group on day 14 [47]. Clostrid-
ium difficile-associated diarrhoea (CDAD) is a common 
diarrhoea and is a major type of gastroenteritis infec-
tion for the elderly. The results by Rea et al. [122] indi-
cate that lacticin 3147 has potential for the treatment 

Table 5 Examples of the bacteriocin in the clinical applications

Bacteriocins Producing microorganism Target organism(s) Clinical application References

Pediocin PA-1 P. acidilactici UL5 L. monocytogenes Prevent intestinal infection in 
mouse model

Dabour et al. [38]

Bacteriocin CC2 Enterococcus faecium DSM 
20,477

Streptococcus mutans Prevent oral cavity Ng et al. [98, 99]

Bacteriocin AS-48 Enterococcus faecalis UGRA10 Trypanosoma cruzi Chagas treatment Martín-Escolano et al. [89]

Bacteriocin AS-48 Enterococcus faecalis UGRA10 Propionibacterium acnes Treatment of dermatological 
diseases

Cebrián et al. [26]

Pediocin PA-1/AcH, Nisin Z L. lactic MM19, P. acidilactici 
MM33

VRE Reduce intestinal coloniza-
tion by VRE in mouse model

Millette et al. [94]

Plantaricin EF L. plantarum Mucispirillum and Parabac-
teroides

Treatment of acute inflam-
matory bowel disease

Yin et al. [155]

enterocin DD14 Enterococcus faecalis 14 Methicillin-resistant Staphylo-
coccus aureus (MRSA)

Treatment of multidrug-
resistant bacteria

Belguesmia et al. [16]

Nisin L. lactis ESI 515 S. aureus, S. epidermis Treatment of staphylococcal 
mastitis during lactation in 
human

Fernández et al. [47]

Nisin Lactococcus lactis subsp. lactis SW1088 tumor cell line Anti-cancer therapy Zainodini et al. [158]

Bacteriocin-like inhibitory 
substance

Enterococcus faecium DSM 
20,477

Streptococcus mutans, Can-
dida albicans

Prevention of dental caries Ng et al. [98, 99]
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of C. difficile infections. The addition of lacticin 3147 
to faecal fermentation demonstrated that lacticin is 
effective in completely eliminating C. difficile from a 
model faecal environment within 30 min when present 
at concentrations as low as 18 µg/mL. Bacteriocin also 
helps in oral health by inhibiting Streptococcus mutans 
and Candida albicans [98, 99]. Streptococcus mutans is 
found to be the most virulent species that acts as a den-
tal caries initiator and it was found to have a synbiotic 
relationship C. albicans synergizes in plaque-forming 
in human oral environment, which makes them more 
resistant to the human oral environment. BLIS pro-
duced by Enterococcus faecium CC2 has shown to be 
effective against these oral pathogens with 76.46% of 
inhibition.

As potential antimicrobial agents, few bacteriocins 
have been commercially applied. Although bacterioc-
ins are generally thought to be non-toxic for mamma-
lian cells, enterococcal cytolysin has shown toxicity at 
high concentrations [34]. Further toxicity tests are vital 
when considering the clinical feasibility and commer-
cial relevance of bacteriocins. This is because the sensi-
tivity of bacteriocins can differ significantly in vitro and 
in vivo due to limited understanding of the interaction 
between bacteriocins, host flora and pathogens in dif-
ferent conditions, and most of the experiments were 
based on gnotobiotic models which do not represent 
the actual interactive niche [15]. Next, the concomi-
tant perturbation of indigenous commensal micro-
flora entailed by transient introduction of bacteriocins 
comes with an unknown long-term effect to the host 
GI tract [33]. Many studies have been done to investi-
gate toxicity and biosafety of bacteriocins. For example, 
the enterocin AS-48 produced by Enterococcus strains, 
when administered to BALB/c mice at concentra-
tions of 50, 100, and 200 mg/kg in the diet for 90 days 
showed no lethal effect and no toxic effect. Another 
example is the bacteriocin TSU4 from Lactobacillus 
animalis. This bacteriocin was demonstrated to be safe 
in a sub-chronic toxicity test in BALB/c mice [128]. On 
the other hand, the toxicological tests of two bacterioc-
ins (plantaricin E and F) that have been heterologously 
produced in L. lactis NZ3900 showed that these bacte-
riocins are non-toxic compounds that can be consid-
ered as a strong antibiotic candidate [62]. Other than 
the toxicity testing, the stability and survival of bacte-
riocins under acidic GI conditions is also a key crite-
rion during the selection of a desired therapeutic agent 
(Dunne et al. 2001). The future of bacteriocins lies not 
only in their discovery but also in their testing for tox-
icity to prove their safe use in a preclinical phase as 
candidates for therapeutic processes.

3  Conclusions
This study explored the purification methods of bacteri-
ocin, as many researches have proved that bacteriocin has 
a strong antibacterial activity and is a broad‐spectrum 
bacteriostatic substance, which has high thermal stabil-
ity and pH stability. From previous studies, there are pros 
and cons of each purification method. Selection of meth-
ods for the bacteriocins purification and quantification 
is quite wide. Conventional method is still the preferred 
approach in the current industries, and yet other alterna-
tive approaches have been intensively studied. However, 
a few-step procedures, combining various extraction, 
precipitation chromatographic, and other methods, is 
necessary, as the amount of bacteriocin in culture media 
is quite low. An alternative purification method such as 
ATPS, which exploited the size, charge, and hydrophobic 
properties of the target bacteriocin, with a lower cost of 
purifying materials, was employed. In recent, the bacteri-
ocin research has shown a clear upward trend in response 
to the potential applications of these antimicrobial pep-
tides in the field of food and medicines. However, there 
are still less bacteriocins to be marketed and approved for 
its use in food preservation and treatment for infectious 
diseases as compared to antibiotic. This may be due to 
the high cost of purification of bacteriocin, which reduces 
the demand for bacteriocin. Future work on the applica-
tion of other purification methods at cheaper cost should 
be up scaled, in order to convince the industries to apply 
the method. Therefore, the purification processes have 
to be tested on a larger scale to develop this natural and 
high‐efficiency preservatives, which can be well used in 
the food and medical industries.
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